PHIElimination.cpp revision b126d0530d48890e1689975483b9f923a0fca1da
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "PHIElimination.h"
18#include "llvm/CodeGen/LiveVariables.h"
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/CodeGen/MachineDominators.h"
21#include "llvm/CodeGen/MachineInstr.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/Function.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Compiler.h"
31#include "llvm/Support/Debug.h"
32#include <algorithm>
33#include <map>
34using namespace llvm;
35
36STATISTIC(NumAtomic, "Number of atomic phis lowered");
37STATISTIC(NumSplits, "Number of critical edges split on demand");
38
39static cl::opt<bool>
40SplitEdges("split-phi-edges",
41           cl::desc("Split critical edges during phi elimination"),
42           cl::init(false), cl::Hidden);
43
44char PHIElimination::ID = 0;
45static RegisterPass<PHIElimination>
46X("phi-node-elimination", "Eliminate PHI nodes for register allocation");
47
48const PassInfo *const llvm::PHIEliminationID = &X;
49
50void llvm::PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
51  AU.addPreserved<LiveVariables>();
52  AU.addPreserved<MachineDominatorTree>();
53  if (SplitEdges) {
54    AU.addRequired<LiveVariables>();
55  } else {
56    AU.setPreservesCFG();
57    AU.addPreservedID(MachineLoopInfoID);
58  }
59  MachineFunctionPass::getAnalysisUsage(AU);
60}
61
62bool llvm::PHIElimination::runOnMachineFunction(MachineFunction &Fn) {
63  MRI = &Fn.getRegInfo();
64
65  PHIDefs.clear();
66  PHIKills.clear();
67  bool Changed = false;
68
69  // Split critical edges to help the coalescer
70  if (SplitEdges)
71    for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
72      Changed |= SplitPHIEdges(Fn, *I);
73
74  // Populate VRegPHIUseCount
75  analyzePHINodes(Fn);
76
77  // Eliminate PHI instructions by inserting copies into predecessor blocks.
78  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
79    Changed |= EliminatePHINodes(Fn, *I);
80
81  // Remove dead IMPLICIT_DEF instructions.
82  for (SmallPtrSet<MachineInstr*,4>::iterator I = ImpDefs.begin(),
83         E = ImpDefs.end(); I != E; ++I) {
84    MachineInstr *DefMI = *I;
85    unsigned DefReg = DefMI->getOperand(0).getReg();
86    if (MRI->use_empty(DefReg))
87      DefMI->eraseFromParent();
88  }
89
90  ImpDefs.clear();
91  VRegPHIUseCount.clear();
92  return Changed;
93}
94
95/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
96/// predecessor basic blocks.
97///
98bool llvm::PHIElimination::EliminatePHINodes(MachineFunction &MF,
99                                             MachineBasicBlock &MBB) {
100  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
101    return false;   // Quick exit for basic blocks without PHIs.
102
103  // Get an iterator to the first instruction after the last PHI node (this may
104  // also be the end of the basic block).
105  MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin());
106
107  while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
108    LowerAtomicPHINode(MBB, AfterPHIsIt);
109
110  return true;
111}
112
113/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
114/// are implicit_def's.
115static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
116                                         const MachineRegisterInfo *MRI) {
117  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
118    unsigned SrcReg = MPhi->getOperand(i).getReg();
119    const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
120    if (!DefMI || DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
121      return false;
122  }
123  return true;
124}
125
126// FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg
127// when following the CFG edge to SuccMBB. This needs to be after any def of
128// SrcReg, but before any subsequent point where control flow might jump out of
129// the basic block.
130MachineBasicBlock::iterator
131llvm::PHIElimination::FindCopyInsertPoint(MachineBasicBlock &MBB,
132                                          MachineBasicBlock &SuccMBB,
133                                          unsigned SrcReg) {
134  // Handle the trivial case trivially.
135  if (MBB.empty())
136    return MBB.begin();
137
138  // Usually, we just want to insert the copy before the first terminator
139  // instruction. However, for the edge going to a landing pad, we must insert
140  // the copy before the call/invoke instruction.
141  if (!SuccMBB.isLandingPad())
142    return MBB.getFirstTerminator();
143
144  // Discover any defs/uses in this basic block.
145  SmallPtrSet<MachineInstr*, 8> DefUsesInMBB;
146  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
147         RE = MRI->reg_end(); RI != RE; ++RI) {
148    MachineInstr *DefUseMI = &*RI;
149    if (DefUseMI->getParent() == &MBB)
150      DefUsesInMBB.insert(DefUseMI);
151  }
152
153  MachineBasicBlock::iterator InsertPoint;
154  if (DefUsesInMBB.empty()) {
155    // No defs.  Insert the copy at the start of the basic block.
156    InsertPoint = MBB.begin();
157  } else if (DefUsesInMBB.size() == 1) {
158    // Insert the copy immediately after the def/use.
159    InsertPoint = *DefUsesInMBB.begin();
160    ++InsertPoint;
161  } else {
162    // Insert the copy immediately after the last def/use.
163    InsertPoint = MBB.end();
164    while (!DefUsesInMBB.count(&*--InsertPoint)) {}
165    ++InsertPoint;
166  }
167
168  // Make sure the copy goes after any phi nodes however.
169  return SkipPHIsAndLabels(MBB, InsertPoint);
170}
171
172/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
173/// under the assuption that it needs to be lowered in a way that supports
174/// atomic execution of PHIs.  This lowering method is always correct all of the
175/// time.
176///
177void llvm::PHIElimination::LowerAtomicPHINode(
178                                      MachineBasicBlock &MBB,
179                                      MachineBasicBlock::iterator AfterPHIsIt) {
180  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
181  MachineInstr *MPhi = MBB.remove(MBB.begin());
182
183  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
184  unsigned DestReg = MPhi->getOperand(0).getReg();
185  bool isDead = MPhi->getOperand(0).isDead();
186
187  // Create a new register for the incoming PHI arguments.
188  MachineFunction &MF = *MBB.getParent();
189  const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
190  unsigned IncomingReg = 0;
191
192  // Insert a register to register copy at the top of the current block (but
193  // after any remaining phi nodes) which copies the new incoming register
194  // into the phi node destination.
195  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
196  if (isSourceDefinedByImplicitDef(MPhi, MRI))
197    // If all sources of a PHI node are implicit_def, just emit an
198    // implicit_def instead of a copy.
199    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
200            TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg);
201  else {
202    IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
203    TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
204  }
205
206  // Record PHI def.
207  assert(!hasPHIDef(DestReg) && "Vreg has multiple phi-defs?");
208  PHIDefs[DestReg] = &MBB;
209
210  // Update live variable information if there is any.
211  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
212  if (LV) {
213    MachineInstr *PHICopy = prior(AfterPHIsIt);
214
215    if (IncomingReg) {
216      // Increment use count of the newly created virtual register.
217      LV->getVarInfo(IncomingReg).NumUses++;
218
219      // Add information to LiveVariables to know that the incoming value is
220      // killed.  Note that because the value is defined in several places (once
221      // each for each incoming block), the "def" block and instruction fields
222      // for the VarInfo is not filled in.
223      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
224    }
225
226    // Since we are going to be deleting the PHI node, if it is the last use of
227    // any registers, or if the value itself is dead, we need to move this
228    // information over to the new copy we just inserted.
229    LV->removeVirtualRegistersKilled(MPhi);
230
231    // If the result is dead, update LV.
232    if (isDead) {
233      LV->addVirtualRegisterDead(DestReg, PHICopy);
234      LV->removeVirtualRegisterDead(DestReg, MPhi);
235    }
236  }
237
238  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
239  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
240    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(),
241                                 MPhi->getOperand(i).getReg())];
242
243  // Now loop over all of the incoming arguments, changing them to copy into the
244  // IncomingReg register in the corresponding predecessor basic block.
245  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
246  for (int i = NumSrcs - 1; i >= 0; --i) {
247    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
248    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
249           "Machine PHI Operands must all be virtual registers!");
250
251    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
252    // path the PHI.
253    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
254
255    // Record the kill.
256    PHIKills[SrcReg].insert(&opBlock);
257
258    // If source is defined by an implicit def, there is no need to insert a
259    // copy.
260    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
261    if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
262      ImpDefs.insert(DefMI);
263      continue;
264    }
265
266    // Check to make sure we haven't already emitted the copy for this block.
267    // This can happen because PHI nodes may have multiple entries for the same
268    // basic block.
269    if (!MBBsInsertedInto.insert(&opBlock))
270      continue;  // If the copy has already been emitted, we're done.
271
272    // Find a safe location to insert the copy, this may be the first terminator
273    // in the block (or end()).
274    MachineBasicBlock::iterator InsertPos =
275      FindCopyInsertPoint(opBlock, MBB, SrcReg);
276
277    // Insert the copy.
278    TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC);
279
280    // Now update live variable information if we have it.  Otherwise we're done
281    if (!LV) continue;
282
283    // We want to be able to insert a kill of the register if this PHI (aka, the
284    // copy we just inserted) is the last use of the source value.  Live
285    // variable analysis conservatively handles this by saying that the value is
286    // live until the end of the block the PHI entry lives in.  If the value
287    // really is dead at the PHI copy, there will be no successor blocks which
288    // have the value live-in.
289
290    // Also check to see if this register is in use by another PHI node which
291    // has not yet been eliminated.  If so, it will be killed at an appropriate
292    // point later.
293
294    // Is it used by any PHI instructions in this block?
295    bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;
296
297    // Okay, if we now know that the value is not live out of the block, we can
298    // add a kill marker in this block saying that it kills the incoming value!
299    if (!ValueIsUsed && !isLiveOut(SrcReg, opBlock, *LV)) {
300      // In our final twist, we have to decide which instruction kills the
301      // register.  In most cases this is the copy, however, the first
302      // terminator instruction at the end of the block may also use the value.
303      // In this case, we should mark *it* as being the killing block, not the
304      // copy.
305      MachineBasicBlock::iterator KillInst = prior(InsertPos);
306      MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
307      if (Term != opBlock.end()) {
308        if (Term->readsRegister(SrcReg))
309          KillInst = Term;
310
311        // Check that no other terminators use values.
312#ifndef NDEBUG
313        for (MachineBasicBlock::iterator TI = next(Term); TI != opBlock.end();
314             ++TI) {
315          assert(!TI->readsRegister(SrcReg) &&
316                 "Terminator instructions cannot use virtual registers unless"
317                 "they are the first terminator in a block!");
318        }
319#endif
320      }
321
322      // Finally, mark it killed.
323      LV->addVirtualRegisterKilled(SrcReg, KillInst);
324
325      // This vreg no longer lives all of the way through opBlock.
326      unsigned opBlockNum = opBlock.getNumber();
327      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
328    }
329  }
330
331  // Really delete the PHI instruction now!
332  MF.DeleteMachineInstr(MPhi);
333  ++NumAtomic;
334}
335
336/// analyzePHINodes - Gather information about the PHI nodes in here. In
337/// particular, we want to map the number of uses of a virtual register which is
338/// used in a PHI node. We map that to the BB the vreg is coming from. This is
339/// used later to determine when the vreg is killed in the BB.
340///
341void llvm::PHIElimination::analyzePHINodes(const MachineFunction& Fn) {
342  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
343       I != E; ++I)
344    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
345         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
346      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
347        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(),
348                                     BBI->getOperand(i).getReg())];
349}
350
351bool llvm::PHIElimination::SplitPHIEdges(MachineFunction &MF,
352                                         MachineBasicBlock &MBB) {
353  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
354    return false;   // Quick exit for basic blocks without PHIs.
355  LiveVariables &LV = getAnalysis<LiveVariables>();
356  for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
357       BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) {
358    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
359      unsigned Reg = BBI->getOperand(i).getReg();
360      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
361      // We break edges when registers are live out from the predecessor block
362      // (not considering PHI nodes). If the register is live in to this block
363      // anyway, we would gain nothing from splitting.
364      if (isLiveOut(Reg, *PreMBB, LV) && !isLiveIn(Reg, MBB, LV))
365        SplitCriticalEdge(PreMBB, &MBB);
366    }
367  }
368  return true;
369}
370
371bool llvm::PHIElimination::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB,
372                                     LiveVariables &LV) {
373  LiveVariables::VarInfo &VI = LV.getVarInfo(Reg);
374
375  // Loop over all of the successors of the basic block, checking to see if
376  // the value is either live in the block, or if it is killed in the block.
377  std::vector<MachineBasicBlock*> OpSuccBlocks;
378  for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
379         E = MBB.succ_end(); SI != E; ++SI) {
380    MachineBasicBlock *SuccMBB = *SI;
381
382    // Is it alive in this successor?
383    unsigned SuccIdx = SuccMBB->getNumber();
384    if (VI.AliveBlocks.test(SuccIdx))
385      return true;
386    OpSuccBlocks.push_back(SuccMBB);
387  }
388
389  // Check to see if this value is live because there is a use in a successor
390  // that kills it.
391  switch (OpSuccBlocks.size()) {
392  case 1: {
393    MachineBasicBlock *SuccMBB = OpSuccBlocks[0];
394    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
395      if (VI.Kills[i]->getParent() == SuccMBB)
396        return true;
397    break;
398  }
399  case 2: {
400    MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1];
401    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
402      if (VI.Kills[i]->getParent() == SuccMBB1 ||
403          VI.Kills[i]->getParent() == SuccMBB2)
404        return true;
405    break;
406  }
407  default:
408    std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
409    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
410      if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
411                             VI.Kills[i]->getParent()))
412        return true;
413  }
414  return false;
415}
416
417bool llvm::PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock &MBB,
418                                    LiveVariables &LV) {
419  LiveVariables::VarInfo &VI = LV.getVarInfo(Reg);
420
421  if (VI.AliveBlocks.test(MBB.getNumber()))
422    return true;
423
424  // defined in MBB?
425  const MachineInstr *Def = MRI->getVRegDef(Reg);
426  if (Def && Def->getParent() == &MBB)
427    return false;
428
429  // killed in MBB?
430  return VI.findKill(&MBB);
431}
432
433MachineBasicBlock *PHIElimination::SplitCriticalEdge(MachineBasicBlock *A,
434                                                     MachineBasicBlock *B) {
435  assert(A && B && "Missing MBB end point");
436  ++NumSplits;
437
438  MachineFunction *MF = A->getParent();
439  MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
440  MF->push_back(NMBB);
441  DEBUG(errs() << "PHIElimination splitting critical edge:"
442        " BB#" << A->getNumber()
443        << " -- BB#" << NMBB->getNumber()
444        << " -- BB#" << B->getNumber() << '\n');
445
446  A->ReplaceUsesOfBlockWith(B, NMBB);
447  // If A may fall through to B, we may have to insert a branch.
448  if (A->isLayoutSuccessor(B))
449    A->updateTerminator();
450
451  // Insert unconditional "jump B" instruction in NMBB.
452  NMBB->addSuccessor(B);
453  SmallVector<MachineOperand, 4> Cond;
454  MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, B, NULL, Cond);
455
456  // Fix PHI nodes in B so they refer to NMBB instead of A
457  for (MachineBasicBlock::iterator i = B->begin(), e = B->end();
458       i != e && i->getOpcode() == TargetInstrInfo::PHI; ++i)
459    for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
460      if (i->getOperand(ni+1).getMBB() == A)
461        i->getOperand(ni+1).setMBB(NMBB);
462
463  if (LiveVariables *LV=getAnalysisIfAvailable<LiveVariables>())
464    LV->addNewBlock(NMBB, A);
465
466  if (MachineDominatorTree *MDT=getAnalysisIfAvailable<MachineDominatorTree>())
467    MDT->addNewBlock(NMBB, A);
468
469  return NMBB;
470}
471