PHIElimination.cpp revision c321a20b2e250a755bd06f36d896d00d9fd396ad
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "PHIEliminationUtils.h"
18#include "llvm/CodeGen/LiveVariables.h"
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/CodeGen/MachineDominators.h"
21#include "llvm/CodeGen/MachineInstr.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Target/TargetInstrInfo.h"
26#include "llvm/Function.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Compiler.h"
33#include "llvm/Support/Debug.h"
34#include <algorithm>
35using namespace llvm;
36
37static cl::opt<bool>
38DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
39                     cl::Hidden, cl::desc("Disable critical edge splitting "
40                                          "during PHI elimination"));
41
42namespace {
43  class PHIElimination : public MachineFunctionPass {
44    MachineRegisterInfo *MRI; // Machine register information
45
46  public:
47    static char ID; // Pass identification, replacement for typeid
48    PHIElimination() : MachineFunctionPass(ID) {
49      initializePHIEliminationPass(*PassRegistry::getPassRegistry());
50    }
51
52    virtual bool runOnMachineFunction(MachineFunction &Fn);
53    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
54
55  private:
56    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
57    /// in predecessor basic blocks.
58    ///
59    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
60    void LowerAtomicPHINode(MachineBasicBlock &MBB,
61                            MachineBasicBlock::iterator AfterPHIsIt);
62
63    /// analyzePHINodes - Gather information about the PHI nodes in
64    /// here. In particular, we want to map the number of uses of a virtual
65    /// register which is used in a PHI node. We map that to the BB the
66    /// vreg is coming from. This is used later to determine when the vreg
67    /// is killed in the BB.
68    ///
69    void analyzePHINodes(const MachineFunction& Fn);
70
71    /// Split critical edges where necessary for good coalescer performance.
72    bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
73                       LiveVariables &LV, MachineLoopInfo *MLI);
74
75    typedef std::pair<unsigned, unsigned> BBVRegPair;
76    typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
77
78    VRegPHIUse VRegPHIUseCount;
79
80    // Defs of PHI sources which are implicit_def.
81    SmallPtrSet<MachineInstr*, 4> ImpDefs;
82
83    // Map reusable lowered PHI node -> incoming join register.
84    typedef DenseMap<MachineInstr*, unsigned,
85                     MachineInstrExpressionTrait> LoweredPHIMap;
86    LoweredPHIMap LoweredPHIs;
87  };
88}
89
90STATISTIC(NumAtomic, "Number of atomic phis lowered");
91STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
92STATISTIC(NumReused, "Number of reused lowered phis");
93
94char PHIElimination::ID = 0;
95char& llvm::PHIEliminationID = PHIElimination::ID;
96
97INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
98                      "Eliminate PHI nodes for register allocation",
99                      false, false)
100INITIALIZE_PASS_DEPENDENCY(LiveVariables)
101INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
102                    "Eliminate PHI nodes for register allocation", false, false)
103
104void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
105  AU.addPreserved<LiveVariables>();
106  AU.addPreserved<MachineDominatorTree>();
107  AU.addPreserved<MachineLoopInfo>();
108  MachineFunctionPass::getAnalysisUsage(AU);
109}
110
111bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
112  MRI = &MF.getRegInfo();
113
114  bool Changed = false;
115
116  // This pass takes the function out of SSA form.
117  MRI->leaveSSA();
118
119  // Split critical edges to help the coalescer
120  if (!DisableEdgeSplitting) {
121    if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) {
122      MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
123      for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
124        Changed |= SplitPHIEdges(MF, *I, *LV, MLI);
125    }
126  }
127
128  // Populate VRegPHIUseCount
129  analyzePHINodes(MF);
130
131  // Eliminate PHI instructions by inserting copies into predecessor blocks.
132  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
133    Changed |= EliminatePHINodes(MF, *I);
134
135  // Remove dead IMPLICIT_DEF instructions.
136  for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
137         E = ImpDefs.end(); I != E; ++I) {
138    MachineInstr *DefMI = *I;
139    unsigned DefReg = DefMI->getOperand(0).getReg();
140    if (MRI->use_nodbg_empty(DefReg))
141      DefMI->eraseFromParent();
142  }
143
144  // Clean up the lowered PHI instructions.
145  for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
146       I != E; ++I)
147    MF.DeleteMachineInstr(I->first);
148
149  LoweredPHIs.clear();
150  ImpDefs.clear();
151  VRegPHIUseCount.clear();
152
153  return Changed;
154}
155
156/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
157/// predecessor basic blocks.
158///
159bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
160                                             MachineBasicBlock &MBB) {
161  if (MBB.empty() || !MBB.front().isPHI())
162    return false;   // Quick exit for basic blocks without PHIs.
163
164  // Get an iterator to the first instruction after the last PHI node (this may
165  // also be the end of the basic block).
166  MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
167
168  while (MBB.front().isPHI())
169    LowerAtomicPHINode(MBB, AfterPHIsIt);
170
171  return true;
172}
173
174/// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
175/// This includes registers with no defs.
176static bool isImplicitlyDefined(unsigned VirtReg,
177                                const MachineRegisterInfo *MRI) {
178  for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(VirtReg),
179       DE = MRI->def_end(); DI != DE; ++DI)
180    if (!DI->isImplicitDef())
181      return false;
182  return true;
183}
184
185/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
186/// are implicit_def's.
187static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
188                                         const MachineRegisterInfo *MRI) {
189  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
190    if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
191      return false;
192  return true;
193}
194
195
196/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
197/// under the assumption that it needs to be lowered in a way that supports
198/// atomic execution of PHIs.  This lowering method is always correct all of the
199/// time.
200///
201void PHIElimination::LowerAtomicPHINode(
202                                      MachineBasicBlock &MBB,
203                                      MachineBasicBlock::iterator AfterPHIsIt) {
204  ++NumAtomic;
205  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
206  MachineInstr *MPhi = MBB.remove(MBB.begin());
207
208  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
209  unsigned DestReg = MPhi->getOperand(0).getReg();
210  assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
211  bool isDead = MPhi->getOperand(0).isDead();
212
213  // Create a new register for the incoming PHI arguments.
214  MachineFunction &MF = *MBB.getParent();
215  unsigned IncomingReg = 0;
216  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
217
218  // Insert a register to register copy at the top of the current block (but
219  // after any remaining phi nodes) which copies the new incoming register
220  // into the phi node destination.
221  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
222  if (isSourceDefinedByImplicitDef(MPhi, MRI))
223    // If all sources of a PHI node are implicit_def, just emit an
224    // implicit_def instead of a copy.
225    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
226            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
227  else {
228    // Can we reuse an earlier PHI node? This only happens for critical edges,
229    // typically those created by tail duplication.
230    unsigned &entry = LoweredPHIs[MPhi];
231    if (entry) {
232      // An identical PHI node was already lowered. Reuse the incoming register.
233      IncomingReg = entry;
234      reusedIncoming = true;
235      ++NumReused;
236      DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
237    } else {
238      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
239      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
240    }
241    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
242            TII->get(TargetOpcode::COPY), DestReg)
243      .addReg(IncomingReg);
244  }
245
246  // Update live variable information if there is any.
247  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
248  if (LV) {
249    MachineInstr *PHICopy = prior(AfterPHIsIt);
250
251    if (IncomingReg) {
252      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
253
254      // Increment use count of the newly created virtual register.
255      LV->setPHIJoin(IncomingReg);
256
257      // When we are reusing the incoming register, it may already have been
258      // killed in this block. The old kill will also have been inserted at
259      // AfterPHIsIt, so it appears before the current PHICopy.
260      if (reusedIncoming)
261        if (MachineInstr *OldKill = VI.findKill(&MBB)) {
262          DEBUG(dbgs() << "Remove old kill from " << *OldKill);
263          LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
264          DEBUG(MBB.dump());
265        }
266
267      // Add information to LiveVariables to know that the incoming value is
268      // killed.  Note that because the value is defined in several places (once
269      // each for each incoming block), the "def" block and instruction fields
270      // for the VarInfo is not filled in.
271      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
272    }
273
274    // Since we are going to be deleting the PHI node, if it is the last use of
275    // any registers, or if the value itself is dead, we need to move this
276    // information over to the new copy we just inserted.
277    LV->removeVirtualRegistersKilled(MPhi);
278
279    // If the result is dead, update LV.
280    if (isDead) {
281      LV->addVirtualRegisterDead(DestReg, PHICopy);
282      LV->removeVirtualRegisterDead(DestReg, MPhi);
283    }
284  }
285
286  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
287  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
288    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
289                                 MPhi->getOperand(i).getReg())];
290
291  // Now loop over all of the incoming arguments, changing them to copy into the
292  // IncomingReg register in the corresponding predecessor basic block.
293  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
294  for (int i = NumSrcs - 1; i >= 0; --i) {
295    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
296    unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
297    bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
298      isImplicitlyDefined(SrcReg, MRI);
299    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
300           "Machine PHI Operands must all be virtual registers!");
301
302    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
303    // path the PHI.
304    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
305
306    // Check to make sure we haven't already emitted the copy for this block.
307    // This can happen because PHI nodes may have multiple entries for the same
308    // basic block.
309    if (!MBBsInsertedInto.insert(&opBlock))
310      continue;  // If the copy has already been emitted, we're done.
311
312    // Find a safe location to insert the copy, this may be the first terminator
313    // in the block (or end()).
314    MachineBasicBlock::iterator InsertPos =
315      findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
316
317    // Insert the copy.
318    if (!reusedIncoming && IncomingReg) {
319      if (SrcUndef) {
320        // The source register is undefined, so there is no need for a real
321        // COPY, but we still need to ensure joint dominance by defs.
322        // Insert an IMPLICIT_DEF instruction.
323        BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
324                TII->get(TargetOpcode::IMPLICIT_DEF), IncomingReg);
325
326        // Clean up the old implicit-def, if there even was one.
327        if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
328          if (DefMI->isImplicitDef())
329            ImpDefs.insert(DefMI);
330      } else {
331        BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
332                TII->get(TargetOpcode::COPY), IncomingReg)
333          .addReg(SrcReg, 0, SrcSubReg);
334      }
335    }
336
337    // Now update live variable information if we have it.  Otherwise we're done
338    if (SrcUndef || !LV) continue;
339
340    // We want to be able to insert a kill of the register if this PHI (aka, the
341    // copy we just inserted) is the last use of the source value.  Live
342    // variable analysis conservatively handles this by saying that the value is
343    // live until the end of the block the PHI entry lives in.  If the value
344    // really is dead at the PHI copy, there will be no successor blocks which
345    // have the value live-in.
346
347    // Also check to see if this register is in use by another PHI node which
348    // has not yet been eliminated.  If so, it will be killed at an appropriate
349    // point later.
350
351    // Is it used by any PHI instructions in this block?
352    bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
353
354    // Okay, if we now know that the value is not live out of the block, we can
355    // add a kill marker in this block saying that it kills the incoming value!
356    if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
357      // In our final twist, we have to decide which instruction kills the
358      // register.  In most cases this is the copy, however, terminator
359      // instructions at the end of the block may also use the value. In this
360      // case, we should mark the last such terminator as being the killing
361      // block, not the copy.
362      MachineBasicBlock::iterator KillInst = opBlock.end();
363      MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
364      for (MachineBasicBlock::iterator Term = FirstTerm;
365          Term != opBlock.end(); ++Term) {
366        if (Term->readsRegister(SrcReg))
367          KillInst = Term;
368      }
369
370      if (KillInst == opBlock.end()) {
371        // No terminator uses the register.
372
373        if (reusedIncoming || !IncomingReg) {
374          // We may have to rewind a bit if we didn't insert a copy this time.
375          KillInst = FirstTerm;
376          while (KillInst != opBlock.begin()) {
377            --KillInst;
378            if (KillInst->isDebugValue())
379              continue;
380            if (KillInst->readsRegister(SrcReg))
381              break;
382          }
383        } else {
384          // We just inserted this copy.
385          KillInst = prior(InsertPos);
386        }
387      }
388      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
389
390      // Finally, mark it killed.
391      LV->addVirtualRegisterKilled(SrcReg, KillInst);
392
393      // This vreg no longer lives all of the way through opBlock.
394      unsigned opBlockNum = opBlock.getNumber();
395      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
396    }
397  }
398
399  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
400  if (reusedIncoming || !IncomingReg)
401    MF.DeleteMachineInstr(MPhi);
402}
403
404/// analyzePHINodes - Gather information about the PHI nodes in here. In
405/// particular, we want to map the number of uses of a virtual register which is
406/// used in a PHI node. We map that to the BB the vreg is coming from. This is
407/// used later to determine when the vreg is killed in the BB.
408///
409void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
410  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
411       I != E; ++I)
412    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
413         BBI != BBE && BBI->isPHI(); ++BBI)
414      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
415        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
416                                     BBI->getOperand(i).getReg())];
417}
418
419bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
420                                   MachineBasicBlock &MBB,
421                                   LiveVariables &LV,
422                                   MachineLoopInfo *MLI) {
423  if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
424    return false;   // Quick exit for basic blocks without PHIs.
425
426  const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : 0;
427  bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
428
429  bool Changed = false;
430  for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
431       BBI != BBE && BBI->isPHI(); ++BBI) {
432    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
433      unsigned Reg = BBI->getOperand(i).getReg();
434      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
435      // Is there a critical edge from PreMBB to MBB?
436      if (PreMBB->succ_size() == 1)
437        continue;
438
439      // Avoid splitting backedges of loops. It would introduce small
440      // out-of-line blocks into the loop which is very bad for code placement.
441      if (PreMBB == &MBB)
442        continue;
443      const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : 0;
444      if (IsLoopHeader && PreLoop == CurLoop)
445        continue;
446
447      // LV doesn't consider a phi use live-out, so isLiveOut only returns true
448      // when the source register is live-out for some other reason than a phi
449      // use. That means the copy we will insert in PreMBB won't be a kill, and
450      // there is a risk it may not be coalesced away.
451      //
452      // If the copy would be a kill, there is no need to split the edge.
453      if (!LV.isLiveOut(Reg, *PreMBB))
454        continue;
455
456      DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
457                   << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
458                   << ": " << *BBI);
459
460      // If Reg is not live-in to MBB, it means it must be live-in to some
461      // other PreMBB successor, and we can avoid the interference by splitting
462      // the edge.
463      //
464      // If Reg *is* live-in to MBB, the interference is inevitable and a copy
465      // is likely to be left after coalescing. If we are looking at a loop
466      // exiting edge, split it so we won't insert code in the loop, otherwise
467      // don't bother.
468      bool ShouldSplit = !LV.isLiveIn(Reg, MBB);
469
470      // Check for a loop exiting edge.
471      if (!ShouldSplit && CurLoop != PreLoop) {
472        DEBUG({
473          dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
474          if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
475          if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
476        });
477        // This edge could be entering a loop, exiting a loop, or it could be
478        // both: Jumping directly form one loop to the header of a sibling
479        // loop.
480        // Split unless this edge is entering CurLoop from an outer loop.
481        ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
482      }
483      if (!ShouldSplit)
484        continue;
485      if (!PreMBB->SplitCriticalEdge(&MBB, this)) {
486        DEBUG(dbgs() << "Failed to split ciritcal edge.\n");
487        continue;
488      }
489      Changed = true;
490      ++NumCriticalEdgesSplit;
491    }
492  }
493  return Changed;
494}
495