PHIElimination.cpp revision f895dbeb29b63f775e341f53ab92609c8da25392
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "PHIElimination.h"
18#include "llvm/CodeGen/LiveVariables.h"
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/CodeGen/MachineDominators.h"
21#include "llvm/CodeGen/MachineInstr.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Function.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Compiler.h"
32#include "llvm/Support/Debug.h"
33#include <algorithm>
34#include <map>
35using namespace llvm;
36
37STATISTIC(NumAtomic, "Number of atomic phis lowered");
38STATISTIC(NumSplits, "Number of critical edges split on demand");
39STATISTIC(NumReused, "Number of reused lowered phis");
40
41char PHIElimination::ID = 0;
42static RegisterPass<PHIElimination>
43X("phi-node-elimination", "Eliminate PHI nodes for register allocation");
44
45const PassInfo *const llvm::PHIEliminationID = &X;
46
47void llvm::PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
48  AU.addPreserved<LiveVariables>();
49  AU.addPreserved<MachineDominatorTree>();
50  // rdar://7401784 This would be nice:
51  // AU.addPreservedID(MachineLoopInfoID);
52  MachineFunctionPass::getAnalysisUsage(AU);
53}
54
55bool llvm::PHIElimination::runOnMachineFunction(MachineFunction &Fn) {
56  MRI = &Fn.getRegInfo();
57
58  bool Changed = false;
59
60  // Split critical edges to help the coalescer
61  if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>())
62    for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
63      Changed |= SplitPHIEdges(Fn, *I, *LV);
64
65  // Populate VRegPHIUseCount
66  analyzePHINodes(Fn);
67
68  // Eliminate PHI instructions by inserting copies into predecessor blocks.
69  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
70    Changed |= EliminatePHINodes(Fn, *I);
71
72  // Remove dead IMPLICIT_DEF instructions.
73  for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
74         E = ImpDefs.end(); I != E; ++I) {
75    MachineInstr *DefMI = *I;
76    unsigned DefReg = DefMI->getOperand(0).getReg();
77    if (MRI->use_empty(DefReg))
78      DefMI->eraseFromParent();
79  }
80
81  // Clean up the lowered PHI instructions.
82  for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
83       I != E; ++I)
84    Fn.DeleteMachineInstr(I->first);
85
86  LoweredPHIs.clear();
87  ImpDefs.clear();
88  VRegPHIUseCount.clear();
89  return Changed;
90}
91
92/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
93/// predecessor basic blocks.
94///
95bool llvm::PHIElimination::EliminatePHINodes(MachineFunction &MF,
96                                             MachineBasicBlock &MBB) {
97  if (MBB.empty() || !MBB.front().isPHI())
98    return false;   // Quick exit for basic blocks without PHIs.
99
100  // Get an iterator to the first instruction after the last PHI node (this may
101  // also be the end of the basic block).
102  MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin());
103
104  while (MBB.front().isPHI())
105    LowerAtomicPHINode(MBB, AfterPHIsIt);
106
107  return true;
108}
109
110/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
111/// are implicit_def's.
112static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
113                                         const MachineRegisterInfo *MRI) {
114  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
115    unsigned SrcReg = MPhi->getOperand(i).getReg();
116    const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
117    if (!DefMI || !DefMI->isImplicitDef())
118      return false;
119  }
120  return true;
121}
122
123// FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg
124// when following the CFG edge to SuccMBB. This needs to be after any def of
125// SrcReg, but before any subsequent point where control flow might jump out of
126// the basic block.
127MachineBasicBlock::iterator
128llvm::PHIElimination::FindCopyInsertPoint(MachineBasicBlock &MBB,
129                                          MachineBasicBlock &SuccMBB,
130                                          unsigned SrcReg) {
131  // Handle the trivial case trivially.
132  if (MBB.empty())
133    return MBB.begin();
134
135  // Usually, we just want to insert the copy before the first terminator
136  // instruction. However, for the edge going to a landing pad, we must insert
137  // the copy before the call/invoke instruction.
138  if (!SuccMBB.isLandingPad())
139    return MBB.getFirstTerminator();
140
141  // Discover any defs/uses in this basic block.
142  SmallPtrSet<MachineInstr*, 8> DefUsesInMBB;
143  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
144         RE = MRI->reg_end(); RI != RE; ++RI) {
145    MachineInstr *DefUseMI = &*RI;
146    if (DefUseMI->getParent() == &MBB)
147      DefUsesInMBB.insert(DefUseMI);
148  }
149
150  MachineBasicBlock::iterator InsertPoint;
151  if (DefUsesInMBB.empty()) {
152    // No defs.  Insert the copy at the start of the basic block.
153    InsertPoint = MBB.begin();
154  } else if (DefUsesInMBB.size() == 1) {
155    // Insert the copy immediately after the def/use.
156    InsertPoint = *DefUsesInMBB.begin();
157    ++InsertPoint;
158  } else {
159    // Insert the copy immediately after the last def/use.
160    InsertPoint = MBB.end();
161    while (!DefUsesInMBB.count(&*--InsertPoint)) {}
162    ++InsertPoint;
163  }
164
165  // Make sure the copy goes after any phi nodes however.
166  return SkipPHIsAndLabels(MBB, InsertPoint);
167}
168
169/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
170/// under the assuption that it needs to be lowered in a way that supports
171/// atomic execution of PHIs.  This lowering method is always correct all of the
172/// time.
173///
174void llvm::PHIElimination::LowerAtomicPHINode(
175                                      MachineBasicBlock &MBB,
176                                      MachineBasicBlock::iterator AfterPHIsIt) {
177  ++NumAtomic;
178  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
179  MachineInstr *MPhi = MBB.remove(MBB.begin());
180
181  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
182  unsigned DestReg = MPhi->getOperand(0).getReg();
183  bool isDead = MPhi->getOperand(0).isDead();
184
185  // Create a new register for the incoming PHI arguments.
186  MachineFunction &MF = *MBB.getParent();
187  const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
188  unsigned IncomingReg = 0;
189  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
190
191  // Insert a register to register copy at the top of the current block (but
192  // after any remaining phi nodes) which copies the new incoming register
193  // into the phi node destination.
194  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
195  if (isSourceDefinedByImplicitDef(MPhi, MRI))
196    // If all sources of a PHI node are implicit_def, just emit an
197    // implicit_def instead of a copy.
198    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
199            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
200  else {
201    // Can we reuse an earlier PHI node? This only happens for critical edges,
202    // typically those created by tail duplication.
203    unsigned &entry = LoweredPHIs[MPhi];
204    if (entry) {
205      // An identical PHI node was already lowered. Reuse the incoming register.
206      IncomingReg = entry;
207      reusedIncoming = true;
208      ++NumReused;
209      DEBUG(dbgs() << "Reusing %reg" << IncomingReg << " for " << *MPhi);
210    } else {
211      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
212    }
213    TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
214  }
215
216  // Update live variable information if there is any.
217  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
218  if (LV) {
219    MachineInstr *PHICopy = prior(AfterPHIsIt);
220
221    if (IncomingReg) {
222      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
223
224      // Increment use count of the newly created virtual register.
225      VI.NumUses++;
226
227      // When we are reusing the incoming register, it may already have been
228      // killed in this block. The old kill will also have been inserted at
229      // AfterPHIsIt, so it appears before the current PHICopy.
230      if (reusedIncoming)
231        if (MachineInstr *OldKill = VI.findKill(&MBB)) {
232          DEBUG(dbgs() << "Remove old kill from " << *OldKill);
233          LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
234          DEBUG(MBB.dump());
235        }
236
237      // Add information to LiveVariables to know that the incoming value is
238      // killed.  Note that because the value is defined in several places (once
239      // each for each incoming block), the "def" block and instruction fields
240      // for the VarInfo is not filled in.
241      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
242    }
243
244    // Since we are going to be deleting the PHI node, if it is the last use of
245    // any registers, or if the value itself is dead, we need to move this
246    // information over to the new copy we just inserted.
247    LV->removeVirtualRegistersKilled(MPhi);
248
249    // If the result is dead, update LV.
250    if (isDead) {
251      LV->addVirtualRegisterDead(DestReg, PHICopy);
252      LV->removeVirtualRegisterDead(DestReg, MPhi);
253    }
254  }
255
256  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
257  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
258    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
259                                 MPhi->getOperand(i).getReg())];
260
261  // Now loop over all of the incoming arguments, changing them to copy into the
262  // IncomingReg register in the corresponding predecessor basic block.
263  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
264  for (int i = NumSrcs - 1; i >= 0; --i) {
265    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
266    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
267           "Machine PHI Operands must all be virtual registers!");
268
269    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
270    // path the PHI.
271    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
272
273    // If source is defined by an implicit def, there is no need to insert a
274    // copy.
275    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
276    if (DefMI->isImplicitDef()) {
277      ImpDefs.insert(DefMI);
278      continue;
279    }
280
281    // Check to make sure we haven't already emitted the copy for this block.
282    // This can happen because PHI nodes may have multiple entries for the same
283    // basic block.
284    if (!MBBsInsertedInto.insert(&opBlock))
285      continue;  // If the copy has already been emitted, we're done.
286
287    // Find a safe location to insert the copy, this may be the first terminator
288    // in the block (or end()).
289    MachineBasicBlock::iterator InsertPos =
290      FindCopyInsertPoint(opBlock, MBB, SrcReg);
291
292    // Insert the copy.
293    if (!reusedIncoming && IncomingReg)
294      TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC);
295
296    // Now update live variable information if we have it.  Otherwise we're done
297    if (!LV) continue;
298
299    // We want to be able to insert a kill of the register if this PHI (aka, the
300    // copy we just inserted) is the last use of the source value.  Live
301    // variable analysis conservatively handles this by saying that the value is
302    // live until the end of the block the PHI entry lives in.  If the value
303    // really is dead at the PHI copy, there will be no successor blocks which
304    // have the value live-in.
305
306    // Also check to see if this register is in use by another PHI node which
307    // has not yet been eliminated.  If so, it will be killed at an appropriate
308    // point later.
309
310    // Is it used by any PHI instructions in this block?
311    bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
312
313    // Okay, if we now know that the value is not live out of the block, we can
314    // add a kill marker in this block saying that it kills the incoming value!
315    if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
316      // In our final twist, we have to decide which instruction kills the
317      // register.  In most cases this is the copy, however, the first
318      // terminator instruction at the end of the block may also use the value.
319      // In this case, we should mark *it* as being the killing block, not the
320      // copy.
321      MachineBasicBlock::iterator KillInst;
322      MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
323      if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
324        KillInst = Term;
325
326        // Check that no other terminators use values.
327#ifndef NDEBUG
328        for (MachineBasicBlock::iterator TI = llvm::next(Term);
329             TI != opBlock.end(); ++TI) {
330          assert(!TI->readsRegister(SrcReg) &&
331                 "Terminator instructions cannot use virtual registers unless"
332                 "they are the first terminator in a block!");
333        }
334#endif
335      } else if (reusedIncoming || !IncomingReg) {
336        // We may have to rewind a bit if we didn't insert a copy this time.
337        KillInst = Term;
338        while (KillInst != opBlock.begin())
339          if ((--KillInst)->readsRegister(SrcReg))
340            break;
341      } else {
342        // We just inserted this copy.
343        KillInst = prior(InsertPos);
344      }
345      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
346
347      // Finally, mark it killed.
348      LV->addVirtualRegisterKilled(SrcReg, KillInst);
349
350      // This vreg no longer lives all of the way through opBlock.
351      unsigned opBlockNum = opBlock.getNumber();
352      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
353    }
354  }
355
356  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
357  if (reusedIncoming || !IncomingReg)
358    MF.DeleteMachineInstr(MPhi);
359}
360
361/// analyzePHINodes - Gather information about the PHI nodes in here. In
362/// particular, we want to map the number of uses of a virtual register which is
363/// used in a PHI node. We map that to the BB the vreg is coming from. This is
364/// used later to determine when the vreg is killed in the BB.
365///
366void llvm::PHIElimination::analyzePHINodes(const MachineFunction& Fn) {
367  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
368       I != E; ++I)
369    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
370         BBI != BBE && BBI->isPHI(); ++BBI)
371      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
372        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
373                                     BBI->getOperand(i).getReg())];
374}
375
376bool llvm::PHIElimination::SplitPHIEdges(MachineFunction &MF,
377                                         MachineBasicBlock &MBB,
378                                         LiveVariables &LV) {
379  if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
380    return false;   // Quick exit for basic blocks without PHIs.
381
382  for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
383       BBI != BBE && BBI->isPHI(); ++BBI) {
384    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
385      unsigned Reg = BBI->getOperand(i).getReg();
386      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
387      // We break edges when registers are live out from the predecessor block
388      // (not considering PHI nodes). If the register is live in to this block
389      // anyway, we would gain nothing from splitting.
390      if (!LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB))
391        SplitCriticalEdge(PreMBB, &MBB);
392    }
393  }
394  return true;
395}
396
397MachineBasicBlock *PHIElimination::SplitCriticalEdge(MachineBasicBlock *A,
398                                                     MachineBasicBlock *B) {
399  assert(A && B && "Missing MBB end point");
400
401  MachineFunction *MF = A->getParent();
402
403  // We may need to update A's terminator, but we can't do that if AnalyzeBranch
404  // fails. If A uses a jump table, we won't touch it.
405  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
406  MachineBasicBlock *TBB = 0, *FBB = 0;
407  SmallVector<MachineOperand, 4> Cond;
408  if (TII->AnalyzeBranch(*A, TBB, FBB, Cond))
409    return NULL;
410
411  ++NumSplits;
412
413  MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
414  MF->insert(llvm::next(MachineFunction::iterator(A)), NMBB);
415  DEBUG(dbgs() << "PHIElimination splitting critical edge:"
416        " BB#" << A->getNumber()
417        << " -- BB#" << NMBB->getNumber()
418        << " -- BB#" << B->getNumber() << '\n');
419
420  A->ReplaceUsesOfBlockWith(B, NMBB);
421  A->updateTerminator();
422
423  // Insert unconditional "jump B" instruction in NMBB if necessary.
424  NMBB->addSuccessor(B);
425  if (!NMBB->isLayoutSuccessor(B)) {
426    Cond.clear();
427    MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, B, NULL, Cond);
428  }
429
430  // Fix PHI nodes in B so they refer to NMBB instead of A
431  for (MachineBasicBlock::iterator i = B->begin(), e = B->end();
432       i != e && i->isPHI(); ++i)
433    for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
434      if (i->getOperand(ni+1).getMBB() == A)
435        i->getOperand(ni+1).setMBB(NMBB);
436
437  if (LiveVariables *LV=getAnalysisIfAvailable<LiveVariables>())
438    LV->addNewBlock(NMBB, A, B);
439
440  if (MachineDominatorTree *MDT=getAnalysisIfAvailable<MachineDominatorTree>())
441    MDT->addNewBlock(NMBB, A);
442
443  return NMBB;
444}
445
446unsigned
447PHIElimination::PHINodeTraits::getHashValue(const MachineInstr *MI) {
448  if (!MI || MI==getEmptyKey() || MI==getTombstoneKey())
449    return DenseMapInfo<MachineInstr*>::getHashValue(MI);
450  unsigned hash = 0;
451  for (unsigned ni = 1, ne = MI->getNumOperands(); ni != ne; ni += 2)
452    hash = hash*37 + DenseMapInfo<BBVRegPair>::
453      getHashValue(BBVRegPair(MI->getOperand(ni+1).getMBB()->getNumber(),
454                              MI->getOperand(ni).getReg()));
455  return hash;
456}
457
458bool PHIElimination::PHINodeTraits::isEqual(const MachineInstr *LHS,
459                                            const MachineInstr *RHS) {
460  const MachineInstr *EmptyKey = getEmptyKey();
461  const MachineInstr *TombstoneKey = getTombstoneKey();
462  if (!LHS || !RHS || LHS==EmptyKey || RHS==EmptyKey ||
463      LHS==TombstoneKey || RHS==TombstoneKey)
464    return LHS==RHS;
465
466  unsigned ne = LHS->getNumOperands();
467  if (ne != RHS->getNumOperands())
468      return false;
469  // Ignore operand 0, the defined register.
470  for (unsigned ni = 1; ni != ne; ni += 2)
471    if (LHS->getOperand(ni).getReg() != RHS->getOperand(ni).getReg() ||
472        LHS->getOperand(ni+1).getMBB() != RHS->getOperand(ni+1).getMBB())
473      return false;
474  return true;
475}
476