PostRASchedulerList.cpp revision 0a4c09e724bd3ab7c9a1d3a1615894e7bf209179
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "ExactHazardRecognizer.h"
23#include "SimpleHazardRecognizer.h"
24#include "ScheduleDAGInstrs.h"
25#include "llvm/CodeGen/Passes.h"
26#include "llvm/CodeGen/LatencyPriorityQueue.h"
27#include "llvm/CodeGen/SchedulerRegistry.h"
28#include "llvm/CodeGen/MachineDominators.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunctionPass.h"
31#include "llvm/CodeGen/MachineLoopInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetSubtarget.h"
40#include "llvm/Support/Compiler.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/ADT/Statistic.h"
45#include <map>
46#include <set>
47using namespace llvm;
48
49STATISTIC(NumNoops, "Number of noops inserted");
50STATISTIC(NumStalls, "Number of pipeline stalls");
51
52// Post-RA scheduling is enabled with
53// TargetSubtarget.enablePostRAScheduler(). This flag can be used to
54// override the target.
55static cl::opt<bool>
56EnablePostRAScheduler("post-RA-scheduler",
57                       cl::desc("Enable scheduling after register allocation"),
58                       cl::init(false), cl::Hidden);
59static cl::opt<bool>
60EnableAntiDepBreaking("break-anti-dependencies",
61                      cl::desc("Break post-RA scheduling anti-dependencies"),
62                      cl::init(true), cl::Hidden);
63static cl::opt<bool>
64EnablePostRAHazardAvoidance("avoid-hazards",
65                      cl::desc("Enable exact hazard avoidance"),
66                      cl::init(true), cl::Hidden);
67
68// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
69static cl::opt<int>
70DebugDiv("postra-sched-debugdiv",
71                      cl::desc("Debug control MBBs that are scheduled"),
72                      cl::init(0), cl::Hidden);
73static cl::opt<int>
74DebugMod("postra-sched-debugmod",
75                      cl::desc("Debug control MBBs that are scheduled"),
76                      cl::init(0), cl::Hidden);
77
78namespace {
79  class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
80    AliasAnalysis *AA;
81
82  public:
83    static char ID;
84    PostRAScheduler() : MachineFunctionPass(&ID) {}
85
86    void getAnalysisUsage(AnalysisUsage &AU) const {
87      AU.setPreservesCFG();
88      AU.addRequired<AliasAnalysis>();
89      AU.addRequired<MachineDominatorTree>();
90      AU.addPreserved<MachineDominatorTree>();
91      AU.addRequired<MachineLoopInfo>();
92      AU.addPreserved<MachineLoopInfo>();
93      MachineFunctionPass::getAnalysisUsage(AU);
94    }
95
96    const char *getPassName() const {
97      return "Post RA top-down list latency scheduler";
98    }
99
100    bool runOnMachineFunction(MachineFunction &Fn);
101  };
102  char PostRAScheduler::ID = 0;
103
104  class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
105    /// AvailableQueue - The priority queue to use for the available SUnits.
106    ///
107    LatencyPriorityQueue AvailableQueue;
108
109    /// PendingQueue - This contains all of the instructions whose operands have
110    /// been issued, but their results are not ready yet (due to the latency of
111    /// the operation).  Once the operands becomes available, the instruction is
112    /// added to the AvailableQueue.
113    std::vector<SUnit*> PendingQueue;
114
115    /// Topo - A topological ordering for SUnits.
116    ScheduleDAGTopologicalSort Topo;
117
118    /// AllocatableSet - The set of allocatable registers.
119    /// We'll be ignoring anti-dependencies on non-allocatable registers,
120    /// because they may not be safe to break.
121    const BitVector AllocatableSet;
122
123    /// HazardRec - The hazard recognizer to use.
124    ScheduleHazardRecognizer *HazardRec;
125
126    /// AA - AliasAnalysis for making memory reference queries.
127    AliasAnalysis *AA;
128
129    /// Classes - For live regs that are only used in one register class in a
130    /// live range, the register class. If the register is not live, the
131    /// corresponding value is null. If the register is live but used in
132    /// multiple register classes, the corresponding value is -1 casted to a
133    /// pointer.
134    const TargetRegisterClass *
135      Classes[TargetRegisterInfo::FirstVirtualRegister];
136
137    /// RegRegs - Map registers to all their references within a live range.
138    std::multimap<unsigned, MachineOperand *> RegRefs;
139
140    /// KillIndices - The index of the most recent kill (proceding bottom-up),
141    /// or ~0u if the register is not live.
142    unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
143
144    /// DefIndices - The index of the most recent complete def (proceding bottom
145    /// up), or ~0u if the register is live.
146    unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
147
148    /// KeepRegs - A set of registers which are live and cannot be changed to
149    /// break anti-dependencies.
150    SmallSet<unsigned, 4> KeepRegs;
151
152  public:
153    SchedulePostRATDList(MachineFunction &MF,
154                         const MachineLoopInfo &MLI,
155                         const MachineDominatorTree &MDT,
156                         ScheduleHazardRecognizer *HR,
157                         AliasAnalysis *aa)
158      : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
159        AllocatableSet(TRI->getAllocatableSet(MF)),
160        HazardRec(HR), AA(aa) {}
161
162    ~SchedulePostRATDList() {
163      delete HazardRec;
164    }
165
166    /// StartBlock - Initialize register live-range state for scheduling in
167    /// this block.
168    ///
169    void StartBlock(MachineBasicBlock *BB);
170
171    /// Schedule - Schedule the instruction range using list scheduling.
172    ///
173    void Schedule();
174
175    /// FixupKills - Fix register kill flags that have been made
176    /// invalid due to scheduling
177    ///
178    void FixupKills(MachineBasicBlock *MBB);
179
180    /// Observe - Update liveness information to account for the current
181    /// instruction, which will not be scheduled.
182    ///
183    void Observe(MachineInstr *MI, unsigned Count);
184
185    /// FinishBlock - Clean up register live-range state.
186    ///
187    void FinishBlock();
188
189  private:
190    void PrescanInstruction(MachineInstr *MI);
191    void ScanInstruction(MachineInstr *MI, unsigned Count);
192    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
193    void ReleaseSuccessors(SUnit *SU);
194    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
195    void ListScheduleTopDown();
196    bool BreakAntiDependencies();
197    unsigned findSuitableFreeRegister(unsigned AntiDepReg,
198                                      unsigned LastNewReg,
199                                      const TargetRegisterClass *);
200    void StartBlockForKills(MachineBasicBlock *BB);
201
202    // ToggleKillFlag - Toggle a register operand kill flag. Other
203    // adjustments may be made to the instruction if necessary. Return
204    // true if the operand has been deleted, false if not.
205    bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
206  };
207}
208
209/// isSchedulingBoundary - Test if the given instruction should be
210/// considered a scheduling boundary. This primarily includes labels
211/// and terminators.
212///
213static bool isSchedulingBoundary(const MachineInstr *MI,
214                                 const MachineFunction &MF) {
215  // Terminators and labels can't be scheduled around.
216  if (MI->getDesc().isTerminator() || MI->isLabel())
217    return true;
218
219  // Don't attempt to schedule around any instruction that modifies
220  // a stack-oriented pointer, as it's unlikely to be profitable. This
221  // saves compile time, because it doesn't require every single
222  // stack slot reference to depend on the instruction that does the
223  // modification.
224  const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
225  if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore()))
226    return true;
227
228  return false;
229}
230
231bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
232  // Check for explicit enable/disable of post-ra scheduling.
233  if (EnablePostRAScheduler.getPosition() > 0) {
234    if (!EnablePostRAScheduler)
235      return true;
236  } else {
237    // Check that post-RA scheduling is enabled for this function
238    const TargetSubtarget &ST = Fn.getTarget().getSubtarget<TargetSubtarget>();
239    if (!ST.enablePostRAScheduler())
240      return true;
241  }
242
243  DEBUG(errs() << "PostRAScheduler\n");
244
245  const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
246  const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
247  const InstrItineraryData &InstrItins = Fn.getTarget().getInstrItineraryData();
248  ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ?
249    (ScheduleHazardRecognizer *)new ExactHazardRecognizer(InstrItins) :
250    (ScheduleHazardRecognizer *)new SimpleHazardRecognizer();
251
252  SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR, AA);
253
254  // Loop over all of the basic blocks
255  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
256       MBB != MBBe; ++MBB) {
257#ifndef NDEBUG
258    // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
259    if (DebugDiv > 0) {
260      static int bbcnt = 0;
261      if (bbcnt++ % DebugDiv != DebugMod)
262        continue;
263      errs() << "*** DEBUG scheduling " << Fn.getFunction()->getNameStr() <<
264        ":MBB ID#" << MBB->getNumber() << " ***\n";
265    }
266#endif
267
268    // Initialize register live-range state for scheduling in this block.
269    Scheduler.StartBlock(MBB);
270
271    // Schedule each sequence of instructions not interrupted by a label
272    // or anything else that effectively needs to shut down scheduling.
273    MachineBasicBlock::iterator Current = MBB->end();
274    unsigned Count = MBB->size(), CurrentCount = Count;
275    for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
276      MachineInstr *MI = prior(I);
277      if (isSchedulingBoundary(MI, Fn)) {
278        Scheduler.Run(MBB, I, Current, CurrentCount);
279        Scheduler.EmitSchedule(0);
280        Current = MI;
281        CurrentCount = Count - 1;
282        Scheduler.Observe(MI, CurrentCount);
283      }
284      I = MI;
285      --Count;
286    }
287    assert(Count == 0 && "Instruction count mismatch!");
288    assert((MBB->begin() == Current || CurrentCount != 0) &&
289           "Instruction count mismatch!");
290    Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
291    Scheduler.EmitSchedule(0);
292
293    // Clean up register live-range state.
294    Scheduler.FinishBlock();
295
296    // Update register kills
297    Scheduler.FixupKills(MBB);
298  }
299
300  return true;
301}
302
303/// StartBlock - Initialize register live-range state for scheduling in
304/// this block.
305///
306void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
307  // Call the superclass.
308  ScheduleDAGInstrs::StartBlock(BB);
309
310  // Reset the hazard recognizer.
311  HazardRec->Reset();
312
313  // Clear out the register class data.
314  std::fill(Classes, array_endof(Classes),
315            static_cast<const TargetRegisterClass *>(0));
316
317  // Initialize the indices to indicate that no registers are live.
318  std::fill(KillIndices, array_endof(KillIndices), ~0u);
319  std::fill(DefIndices, array_endof(DefIndices), BB->size());
320
321  // Clear "do not change" set.
322  KeepRegs.clear();
323
324  bool IsReturnBlock = (!BB->empty() && BB->back().getDesc().isReturn());
325
326  // Determine the live-out physregs for this block.
327  if (IsReturnBlock) {
328    // In a return block, examine the function live-out regs.
329    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
330         E = MRI.liveout_end(); I != E; ++I) {
331      unsigned Reg = *I;
332      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
333      KillIndices[Reg] = BB->size();
334      DefIndices[Reg] = ~0u;
335      // Repeat, for all aliases.
336      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
337        unsigned AliasReg = *Alias;
338        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
339        KillIndices[AliasReg] = BB->size();
340        DefIndices[AliasReg] = ~0u;
341      }
342    }
343  } else {
344    // In a non-return block, examine the live-in regs of all successors.
345    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
346         SE = BB->succ_end(); SI != SE; ++SI)
347      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
348           E = (*SI)->livein_end(); I != E; ++I) {
349        unsigned Reg = *I;
350        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
351        KillIndices[Reg] = BB->size();
352        DefIndices[Reg] = ~0u;
353        // Repeat, for all aliases.
354        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
355          unsigned AliasReg = *Alias;
356          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
357          KillIndices[AliasReg] = BB->size();
358          DefIndices[AliasReg] = ~0u;
359        }
360      }
361  }
362
363  // Mark live-out callee-saved registers. In a return block this is
364  // all callee-saved registers. In non-return this is any
365  // callee-saved register that is not saved in the prolog.
366  const MachineFrameInfo *MFI = MF.getFrameInfo();
367  BitVector Pristine = MFI->getPristineRegs(BB);
368  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
369    unsigned Reg = *I;
370    if (!IsReturnBlock && !Pristine.test(Reg)) continue;
371    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
372    KillIndices[Reg] = BB->size();
373    DefIndices[Reg] = ~0u;
374    // Repeat, for all aliases.
375    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
376      unsigned AliasReg = *Alias;
377      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
378      KillIndices[AliasReg] = BB->size();
379      DefIndices[AliasReg] = ~0u;
380    }
381  }
382}
383
384/// Schedule - Schedule the instruction range using list scheduling.
385///
386void SchedulePostRATDList::Schedule() {
387  DEBUG(errs() << "********** List Scheduling **********\n");
388
389  // Build the scheduling graph.
390  BuildSchedGraph(AA);
391
392  if (EnableAntiDepBreaking) {
393    if (BreakAntiDependencies()) {
394      // We made changes. Update the dependency graph.
395      // Theoretically we could update the graph in place:
396      // When a live range is changed to use a different register, remove
397      // the def's anti-dependence *and* output-dependence edges due to
398      // that register, and add new anti-dependence and output-dependence
399      // edges based on the next live range of the register.
400      SUnits.clear();
401      EntrySU = SUnit();
402      ExitSU = SUnit();
403      BuildSchedGraph(AA);
404    }
405  }
406
407  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
408          SUnits[su].dumpAll(this));
409
410  AvailableQueue.initNodes(SUnits);
411
412  ListScheduleTopDown();
413
414  AvailableQueue.releaseState();
415}
416
417/// Observe - Update liveness information to account for the current
418/// instruction, which will not be scheduled.
419///
420void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
421  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
422
423  // Any register which was defined within the previous scheduling region
424  // may have been rescheduled and its lifetime may overlap with registers
425  // in ways not reflected in our current liveness state. For each such
426  // register, adjust the liveness state to be conservatively correct.
427  for (unsigned Reg = 0; Reg != TargetRegisterInfo::FirstVirtualRegister; ++Reg)
428    if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
429      assert(KillIndices[Reg] == ~0u && "Clobbered register is live!");
430      // Mark this register to be non-renamable.
431      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
432      // Move the def index to the end of the previous region, to reflect
433      // that the def could theoretically have been scheduled at the end.
434      DefIndices[Reg] = InsertPosIndex;
435    }
436
437  PrescanInstruction(MI);
438  ScanInstruction(MI, Count);
439}
440
441/// FinishBlock - Clean up register live-range state.
442///
443void SchedulePostRATDList::FinishBlock() {
444  RegRefs.clear();
445
446  // Call the superclass.
447  ScheduleDAGInstrs::FinishBlock();
448}
449
450/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
451/// critical path.
452static SDep *CriticalPathStep(SUnit *SU) {
453  SDep *Next = 0;
454  unsigned NextDepth = 0;
455  // Find the predecessor edge with the greatest depth.
456  for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
457       P != PE; ++P) {
458    SUnit *PredSU = P->getSUnit();
459    unsigned PredLatency = P->getLatency();
460    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
461    // In the case of a latency tie, prefer an anti-dependency edge over
462    // other types of edges.
463    if (NextDepth < PredTotalLatency ||
464        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
465      NextDepth = PredTotalLatency;
466      Next = &*P;
467    }
468  }
469  return Next;
470}
471
472void SchedulePostRATDList::PrescanInstruction(MachineInstr *MI) {
473  // Scan the register operands for this instruction and update
474  // Classes and RegRefs.
475  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
476    MachineOperand &MO = MI->getOperand(i);
477    if (!MO.isReg()) continue;
478    unsigned Reg = MO.getReg();
479    if (Reg == 0) continue;
480    const TargetRegisterClass *NewRC = 0;
481
482    if (i < MI->getDesc().getNumOperands())
483      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
484
485    // For now, only allow the register to be changed if its register
486    // class is consistent across all uses.
487    if (!Classes[Reg] && NewRC)
488      Classes[Reg] = NewRC;
489    else if (!NewRC || Classes[Reg] != NewRC)
490      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
491
492    // Now check for aliases.
493    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
494      // If an alias of the reg is used during the live range, give up.
495      // Note that this allows us to skip checking if AntiDepReg
496      // overlaps with any of the aliases, among other things.
497      unsigned AliasReg = *Alias;
498      if (Classes[AliasReg]) {
499        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
500        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
501      }
502    }
503
504    // If we're still willing to consider this register, note the reference.
505    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
506      RegRefs.insert(std::make_pair(Reg, &MO));
507
508    // It's not safe to change register allocation for source operands of
509    // that have special allocation requirements.
510    if (MO.isUse() && MI->getDesc().hasExtraSrcRegAllocReq()) {
511      if (KeepRegs.insert(Reg)) {
512        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
513             *Subreg; ++Subreg)
514          KeepRegs.insert(*Subreg);
515      }
516    }
517  }
518}
519
520void SchedulePostRATDList::ScanInstruction(MachineInstr *MI,
521                                           unsigned Count) {
522  // Update liveness.
523  // Proceding upwards, registers that are defed but not used in this
524  // instruction are now dead.
525  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
526    MachineOperand &MO = MI->getOperand(i);
527    if (!MO.isReg()) continue;
528    unsigned Reg = MO.getReg();
529    if (Reg == 0) continue;
530    if (!MO.isDef()) continue;
531    // Ignore two-addr defs.
532    if (MI->isRegTiedToUseOperand(i)) continue;
533
534    DefIndices[Reg] = Count;
535    KillIndices[Reg] = ~0u;
536    assert(((KillIndices[Reg] == ~0u) !=
537            (DefIndices[Reg] == ~0u)) &&
538           "Kill and Def maps aren't consistent for Reg!");
539    KeepRegs.erase(Reg);
540    Classes[Reg] = 0;
541    RegRefs.erase(Reg);
542    // Repeat, for all subregs.
543    for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
544         *Subreg; ++Subreg) {
545      unsigned SubregReg = *Subreg;
546      DefIndices[SubregReg] = Count;
547      KillIndices[SubregReg] = ~0u;
548      KeepRegs.erase(SubregReg);
549      Classes[SubregReg] = 0;
550      RegRefs.erase(SubregReg);
551    }
552    // Conservatively mark super-registers as unusable.
553    for (const unsigned *Super = TRI->getSuperRegisters(Reg);
554         *Super; ++Super) {
555      unsigned SuperReg = *Super;
556      Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
557    }
558  }
559  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
560    MachineOperand &MO = MI->getOperand(i);
561    if (!MO.isReg()) continue;
562    unsigned Reg = MO.getReg();
563    if (Reg == 0) continue;
564    if (!MO.isUse()) continue;
565
566    const TargetRegisterClass *NewRC = 0;
567    if (i < MI->getDesc().getNumOperands())
568      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
569
570    // For now, only allow the register to be changed if its register
571    // class is consistent across all uses.
572    if (!Classes[Reg] && NewRC)
573      Classes[Reg] = NewRC;
574    else if (!NewRC || Classes[Reg] != NewRC)
575      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
576
577    RegRefs.insert(std::make_pair(Reg, &MO));
578
579    // It wasn't previously live but now it is, this is a kill.
580    if (KillIndices[Reg] == ~0u) {
581      KillIndices[Reg] = Count;
582      DefIndices[Reg] = ~0u;
583          assert(((KillIndices[Reg] == ~0u) !=
584                  (DefIndices[Reg] == ~0u)) &&
585               "Kill and Def maps aren't consistent for Reg!");
586    }
587    // Repeat, for all aliases.
588    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
589      unsigned AliasReg = *Alias;
590      if (KillIndices[AliasReg] == ~0u) {
591        KillIndices[AliasReg] = Count;
592        DefIndices[AliasReg] = ~0u;
593      }
594    }
595  }
596}
597
598unsigned
599SchedulePostRATDList::findSuitableFreeRegister(unsigned AntiDepReg,
600                                               unsigned LastNewReg,
601                                               const TargetRegisterClass *RC) {
602  for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
603       RE = RC->allocation_order_end(MF); R != RE; ++R) {
604    unsigned NewReg = *R;
605    // Don't replace a register with itself.
606    if (NewReg == AntiDepReg) continue;
607    // Don't replace a register with one that was recently used to repair
608    // an anti-dependence with this AntiDepReg, because that would
609    // re-introduce that anti-dependence.
610    if (NewReg == LastNewReg) continue;
611    // If NewReg is dead and NewReg's most recent def is not before
612    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
613    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
614           "Kill and Def maps aren't consistent for AntiDepReg!");
615    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
616           "Kill and Def maps aren't consistent for NewReg!");
617    if (KillIndices[NewReg] != ~0u ||
618        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
619        KillIndices[AntiDepReg] > DefIndices[NewReg])
620      continue;
621    return NewReg;
622  }
623
624  // No registers are free and available!
625  return 0;
626}
627
628/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
629/// of the ScheduleDAG and break them by renaming registers.
630///
631bool SchedulePostRATDList::BreakAntiDependencies() {
632  // The code below assumes that there is at least one instruction,
633  // so just duck out immediately if the block is empty.
634  if (SUnits.empty()) return false;
635
636  // Find the node at the bottom of the critical path.
637  SUnit *Max = 0;
638  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
639    SUnit *SU = &SUnits[i];
640    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
641      Max = SU;
642  }
643
644  DEBUG(errs() << "Critical path has total latency "
645        << (Max->getDepth() + Max->Latency) << "\n");
646
647  // Track progress along the critical path through the SUnit graph as we walk
648  // the instructions.
649  SUnit *CriticalPathSU = Max;
650  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
651
652  // Consider this pattern:
653  //   A = ...
654  //   ... = A
655  //   A = ...
656  //   ... = A
657  //   A = ...
658  //   ... = A
659  //   A = ...
660  //   ... = A
661  // There are three anti-dependencies here, and without special care,
662  // we'd break all of them using the same register:
663  //   A = ...
664  //   ... = A
665  //   B = ...
666  //   ... = B
667  //   B = ...
668  //   ... = B
669  //   B = ...
670  //   ... = B
671  // because at each anti-dependence, B is the first register that
672  // isn't A which is free.  This re-introduces anti-dependencies
673  // at all but one of the original anti-dependencies that we were
674  // trying to break.  To avoid this, keep track of the most recent
675  // register that each register was replaced with, avoid
676  // using it to repair an anti-dependence on the same register.
677  // This lets us produce this:
678  //   A = ...
679  //   ... = A
680  //   B = ...
681  //   ... = B
682  //   C = ...
683  //   ... = C
684  //   B = ...
685  //   ... = B
686  // This still has an anti-dependence on B, but at least it isn't on the
687  // original critical path.
688  //
689  // TODO: If we tracked more than one register here, we could potentially
690  // fix that remaining critical edge too. This is a little more involved,
691  // because unlike the most recent register, less recent registers should
692  // still be considered, though only if no other registers are available.
693  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
694
695  // Attempt to break anti-dependence edges on the critical path. Walk the
696  // instructions from the bottom up, tracking information about liveness
697  // as we go to help determine which registers are available.
698  bool Changed = false;
699  unsigned Count = InsertPosIndex - 1;
700  for (MachineBasicBlock::iterator I = InsertPos, E = Begin;
701       I != E; --Count) {
702    MachineInstr *MI = --I;
703
704    // Check if this instruction has a dependence on the critical path that
705    // is an anti-dependence that we may be able to break. If it is, set
706    // AntiDepReg to the non-zero register associated with the anti-dependence.
707    //
708    // We limit our attention to the critical path as a heuristic to avoid
709    // breaking anti-dependence edges that aren't going to significantly
710    // impact the overall schedule. There are a limited number of registers
711    // and we want to save them for the important edges.
712    //
713    // TODO: Instructions with multiple defs could have multiple
714    // anti-dependencies. The current code here only knows how to break one
715    // edge per instruction. Note that we'd have to be able to break all of
716    // the anti-dependencies in an instruction in order to be effective.
717    unsigned AntiDepReg = 0;
718    if (MI == CriticalPathMI) {
719      if (SDep *Edge = CriticalPathStep(CriticalPathSU)) {
720        SUnit *NextSU = Edge->getSUnit();
721
722        // Only consider anti-dependence edges.
723        if (Edge->getKind() == SDep::Anti) {
724          AntiDepReg = Edge->getReg();
725          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
726          if (!AllocatableSet.test(AntiDepReg))
727            // Don't break anti-dependencies on non-allocatable registers.
728            AntiDepReg = 0;
729          else if (KeepRegs.count(AntiDepReg))
730            // Don't break anti-dependencies if an use down below requires
731            // this exact register.
732            AntiDepReg = 0;
733          else {
734            // If the SUnit has other dependencies on the SUnit that it
735            // anti-depends on, don't bother breaking the anti-dependency
736            // since those edges would prevent such units from being
737            // scheduled past each other regardless.
738            //
739            // Also, if there are dependencies on other SUnits with the
740            // same register as the anti-dependency, don't attempt to
741            // break it.
742            for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(),
743                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
744              if (P->getSUnit() == NextSU ?
745                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
746                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
747                AntiDepReg = 0;
748                break;
749              }
750          }
751        }
752        CriticalPathSU = NextSU;
753        CriticalPathMI = CriticalPathSU->getInstr();
754      } else {
755        // We've reached the end of the critical path.
756        CriticalPathSU = 0;
757        CriticalPathMI = 0;
758      }
759    }
760
761    PrescanInstruction(MI);
762
763    if (MI->getDesc().hasExtraDefRegAllocReq())
764      // If this instruction's defs have special allocation requirement, don't
765      // break this anti-dependency.
766      AntiDepReg = 0;
767    else if (AntiDepReg) {
768      // If this instruction has a use of AntiDepReg, breaking it
769      // is invalid.
770      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
771        MachineOperand &MO = MI->getOperand(i);
772        if (!MO.isReg()) continue;
773        unsigned Reg = MO.getReg();
774        if (Reg == 0) continue;
775        if (MO.isUse() && AntiDepReg == Reg) {
776          AntiDepReg = 0;
777          break;
778        }
779      }
780    }
781
782    // Determine AntiDepReg's register class, if it is live and is
783    // consistently used within a single class.
784    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
785    assert((AntiDepReg == 0 || RC != NULL) &&
786           "Register should be live if it's causing an anti-dependence!");
787    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
788      AntiDepReg = 0;
789
790    // Look for a suitable register to use to break the anti-depenence.
791    //
792    // TODO: Instead of picking the first free register, consider which might
793    // be the best.
794    if (AntiDepReg != 0) {
795      if (unsigned NewReg = findSuitableFreeRegister(AntiDepReg,
796                                                     LastNewReg[AntiDepReg],
797                                                     RC)) {
798        DEBUG(errs() << "Breaking anti-dependence edge on "
799              << TRI->getName(AntiDepReg)
800              << " with " << RegRefs.count(AntiDepReg) << " references"
801              << " using " << TRI->getName(NewReg) << "!\n");
802
803        // Update the references to the old register to refer to the new
804        // register.
805        std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
806                  std::multimap<unsigned, MachineOperand *>::iterator>
807           Range = RegRefs.equal_range(AntiDepReg);
808        for (std::multimap<unsigned, MachineOperand *>::iterator
809             Q = Range.first, QE = Range.second; Q != QE; ++Q)
810          Q->second->setReg(NewReg);
811
812        // We just went back in time and modified history; the
813        // liveness information for the anti-depenence reg is now
814        // inconsistent. Set the state as if it were dead.
815        Classes[NewReg] = Classes[AntiDepReg];
816        DefIndices[NewReg] = DefIndices[AntiDepReg];
817        KillIndices[NewReg] = KillIndices[AntiDepReg];
818        assert(((KillIndices[NewReg] == ~0u) !=
819                (DefIndices[NewReg] == ~0u)) &&
820             "Kill and Def maps aren't consistent for NewReg!");
821
822        Classes[AntiDepReg] = 0;
823        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
824        KillIndices[AntiDepReg] = ~0u;
825        assert(((KillIndices[AntiDepReg] == ~0u) !=
826                (DefIndices[AntiDepReg] == ~0u)) &&
827             "Kill and Def maps aren't consistent for AntiDepReg!");
828
829        RegRefs.erase(AntiDepReg);
830        Changed = true;
831        LastNewReg[AntiDepReg] = NewReg;
832      }
833    }
834
835    ScanInstruction(MI, Count);
836  }
837
838  return Changed;
839}
840
841/// StartBlockForKills - Initialize register live-range state for updating kills
842///
843void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
844  // Initialize the indices to indicate that no registers are live.
845  std::fill(KillIndices, array_endof(KillIndices), ~0u);
846
847  // Determine the live-out physregs for this block.
848  if (!BB->empty() && BB->back().getDesc().isReturn()) {
849    // In a return block, examine the function live-out regs.
850    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
851           E = MRI.liveout_end(); I != E; ++I) {
852      unsigned Reg = *I;
853      KillIndices[Reg] = BB->size();
854      // Repeat, for all subregs.
855      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
856           *Subreg; ++Subreg) {
857        KillIndices[*Subreg] = BB->size();
858      }
859    }
860  }
861  else {
862    // In a non-return block, examine the live-in regs of all successors.
863    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
864           SE = BB->succ_end(); SI != SE; ++SI) {
865      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
866             E = (*SI)->livein_end(); I != E; ++I) {
867        unsigned Reg = *I;
868        KillIndices[Reg] = BB->size();
869        // Repeat, for all subregs.
870        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
871             *Subreg; ++Subreg) {
872          KillIndices[*Subreg] = BB->size();
873        }
874      }
875    }
876  }
877}
878
879bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
880                                          MachineOperand &MO) {
881  // Setting kill flag...
882  if (!MO.isKill()) {
883    MO.setIsKill(true);
884    return false;
885  }
886
887  // If MO itself is live, clear the kill flag...
888  if (KillIndices[MO.getReg()] != ~0u) {
889    MO.setIsKill(false);
890    return false;
891  }
892
893  // If any subreg of MO is live, then create an imp-def for that
894  // subreg and keep MO marked as killed.
895  MO.setIsKill(false);
896  bool AllDead = true;
897  const unsigned SuperReg = MO.getReg();
898  for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg);
899       *Subreg; ++Subreg) {
900    if (KillIndices[*Subreg] != ~0u) {
901      MI->addOperand(MachineOperand::CreateReg(*Subreg,
902                                               true  /*IsDef*/,
903                                               true  /*IsImp*/,
904                                               false /*IsKill*/,
905                                               false /*IsDead*/));
906      AllDead = false;
907    }
908  }
909
910  if(AllDead)
911    MO.setIsKill(true);
912  return false;
913}
914
915/// FixupKills - Fix the register kill flags, they may have been made
916/// incorrect by instruction reordering.
917///
918void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
919  DEBUG(errs() << "Fixup kills for BB ID#" << MBB->getNumber() << '\n');
920
921  std::set<unsigned> killedRegs;
922  BitVector ReservedRegs = TRI->getReservedRegs(MF);
923
924  StartBlockForKills(MBB);
925
926  // Examine block from end to start...
927  unsigned Count = MBB->size();
928  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
929       I != E; --Count) {
930    MachineInstr *MI = --I;
931
932    // Update liveness.  Registers that are defed but not used in this
933    // instruction are now dead. Mark register and all subregs as they
934    // are completely defined.
935    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
936      MachineOperand &MO = MI->getOperand(i);
937      if (!MO.isReg()) continue;
938      unsigned Reg = MO.getReg();
939      if (Reg == 0) continue;
940      if (!MO.isDef()) continue;
941      // Ignore two-addr defs.
942      if (MI->isRegTiedToUseOperand(i)) continue;
943
944      KillIndices[Reg] = ~0u;
945
946      // Repeat for all subregs.
947      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
948           *Subreg; ++Subreg) {
949        KillIndices[*Subreg] = ~0u;
950      }
951    }
952
953    // Examine all used registers and set/clear kill flag. When a
954    // register is used multiple times we only set the kill flag on
955    // the first use.
956    killedRegs.clear();
957    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
958      MachineOperand &MO = MI->getOperand(i);
959      if (!MO.isReg() || !MO.isUse()) continue;
960      unsigned Reg = MO.getReg();
961      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
962
963      bool kill = false;
964      if (killedRegs.find(Reg) == killedRegs.end()) {
965        kill = true;
966        // A register is not killed if any subregs are live...
967        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
968             *Subreg; ++Subreg) {
969          if (KillIndices[*Subreg] != ~0u) {
970            kill = false;
971            break;
972          }
973        }
974
975        // If subreg is not live, then register is killed if it became
976        // live in this instruction
977        if (kill)
978          kill = (KillIndices[Reg] == ~0u);
979      }
980
981      if (MO.isKill() != kill) {
982        bool removed = ToggleKillFlag(MI, MO);
983        if (removed) {
984          DEBUG(errs() << "Fixed <removed> in ");
985        } else {
986          DEBUG(errs() << "Fixed " << MO << " in ");
987        }
988        DEBUG(MI->dump());
989      }
990
991      killedRegs.insert(Reg);
992    }
993
994    // Mark any used register (that is not using undef) and subregs as
995    // now live...
996    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
997      MachineOperand &MO = MI->getOperand(i);
998      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
999      unsigned Reg = MO.getReg();
1000      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
1001
1002      KillIndices[Reg] = Count;
1003
1004      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
1005           *Subreg; ++Subreg) {
1006        KillIndices[*Subreg] = Count;
1007      }
1008    }
1009  }
1010}
1011
1012//===----------------------------------------------------------------------===//
1013//  Top-Down Scheduling
1014//===----------------------------------------------------------------------===//
1015
1016/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
1017/// the PendingQueue if the count reaches zero. Also update its cycle bound.
1018void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
1019  SUnit *SuccSU = SuccEdge->getSUnit();
1020
1021#ifndef NDEBUG
1022  if (SuccSU->NumPredsLeft == 0) {
1023    errs() << "*** Scheduling failed! ***\n";
1024    SuccSU->dump(this);
1025    errs() << " has been released too many times!\n";
1026    llvm_unreachable(0);
1027  }
1028#endif
1029  --SuccSU->NumPredsLeft;
1030
1031  // Compute how many cycles it will be before this actually becomes
1032  // available.  This is the max of the start time of all predecessors plus
1033  // their latencies.
1034  SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
1035
1036  // If all the node's predecessors are scheduled, this node is ready
1037  // to be scheduled. Ignore the special ExitSU node.
1038  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
1039    PendingQueue.push_back(SuccSU);
1040}
1041
1042/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
1043void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
1044  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1045       I != E; ++I)
1046    ReleaseSucc(SU, &*I);
1047}
1048
1049/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
1050/// count of its successors. If a successor pending count is zero, add it to
1051/// the Available queue.
1052void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
1053  DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: ");
1054  DEBUG(SU->dump(this));
1055
1056  Sequence.push_back(SU);
1057  assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
1058  SU->setDepthToAtLeast(CurCycle);
1059
1060  ReleaseSuccessors(SU);
1061  SU->isScheduled = true;
1062  AvailableQueue.ScheduledNode(SU);
1063}
1064
1065/// ListScheduleTopDown - The main loop of list scheduling for top-down
1066/// schedulers.
1067void SchedulePostRATDList::ListScheduleTopDown() {
1068  unsigned CurCycle = 0;
1069
1070  // Release any successors of the special Entry node.
1071  ReleaseSuccessors(&EntrySU);
1072
1073  // All leaves to Available queue.
1074  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1075    // It is available if it has no predecessors.
1076    if (SUnits[i].Preds.empty()) {
1077      AvailableQueue.push(&SUnits[i]);
1078      SUnits[i].isAvailable = true;
1079    }
1080  }
1081
1082  // In any cycle where we can't schedule any instructions, we must
1083  // stall or emit a noop, depending on the target.
1084  bool CycleHasInsts = false;
1085
1086  // While Available queue is not empty, grab the node with the highest
1087  // priority. If it is not ready put it back.  Schedule the node.
1088  std::vector<SUnit*> NotReady;
1089  Sequence.reserve(SUnits.size());
1090  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
1091    // Check to see if any of the pending instructions are ready to issue.  If
1092    // so, add them to the available queue.
1093    unsigned MinDepth = ~0u;
1094    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
1095      if (PendingQueue[i]->getDepth() <= CurCycle) {
1096        AvailableQueue.push(PendingQueue[i]);
1097        PendingQueue[i]->isAvailable = true;
1098        PendingQueue[i] = PendingQueue.back();
1099        PendingQueue.pop_back();
1100        --i; --e;
1101      } else if (PendingQueue[i]->getDepth() < MinDepth)
1102        MinDepth = PendingQueue[i]->getDepth();
1103    }
1104
1105    DEBUG(errs() << "\n*** Examining Available\n";
1106          LatencyPriorityQueue q = AvailableQueue;
1107          while (!q.empty()) {
1108            SUnit *su = q.pop();
1109            errs() << "Height " << su->getHeight() << ": ";
1110            su->dump(this);
1111          });
1112
1113    SUnit *FoundSUnit = 0;
1114
1115    bool HasNoopHazards = false;
1116    while (!AvailableQueue.empty()) {
1117      SUnit *CurSUnit = AvailableQueue.pop();
1118
1119      ScheduleHazardRecognizer::HazardType HT =
1120        HazardRec->getHazardType(CurSUnit);
1121      if (HT == ScheduleHazardRecognizer::NoHazard) {
1122        FoundSUnit = CurSUnit;
1123        break;
1124      }
1125
1126      // Remember if this is a noop hazard.
1127      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
1128
1129      NotReady.push_back(CurSUnit);
1130    }
1131
1132    // Add the nodes that aren't ready back onto the available list.
1133    if (!NotReady.empty()) {
1134      AvailableQueue.push_all(NotReady);
1135      NotReady.clear();
1136    }
1137
1138    // If we found a node to schedule, do it now.
1139    if (FoundSUnit) {
1140      ScheduleNodeTopDown(FoundSUnit, CurCycle);
1141      HazardRec->EmitInstruction(FoundSUnit);
1142      CycleHasInsts = true;
1143
1144      // If we are using the target-specific hazards, then don't
1145      // advance the cycle time just because we schedule a node. If
1146      // the target allows it we can schedule multiple nodes in the
1147      // same cycle.
1148      if (!EnablePostRAHazardAvoidance) {
1149        if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
1150          ++CurCycle;
1151      }
1152    } else {
1153      if (CycleHasInsts) {
1154        DEBUG(errs() << "*** Finished cycle " << CurCycle << '\n');
1155        HazardRec->AdvanceCycle();
1156      } else if (!HasNoopHazards) {
1157        // Otherwise, we have a pipeline stall, but no other problem,
1158        // just advance the current cycle and try again.
1159        DEBUG(errs() << "*** Stall in cycle " << CurCycle << '\n');
1160        HazardRec->AdvanceCycle();
1161        ++NumStalls;
1162      } else {
1163        // Otherwise, we have no instructions to issue and we have instructions
1164        // that will fault if we don't do this right.  This is the case for
1165        // processors without pipeline interlocks and other cases.
1166        DEBUG(errs() << "*** Emitting noop in cycle " << CurCycle << '\n');
1167        HazardRec->EmitNoop();
1168        Sequence.push_back(0);   // NULL here means noop
1169        ++NumNoops;
1170      }
1171
1172      ++CurCycle;
1173      CycleHasInsts = false;
1174    }
1175  }
1176
1177#ifndef NDEBUG
1178  VerifySchedule(/*isBottomUp=*/false);
1179#endif
1180}
1181
1182//===----------------------------------------------------------------------===//
1183//                         Public Constructor Functions
1184//===----------------------------------------------------------------------===//
1185
1186FunctionPass *llvm::createPostRAScheduler() {
1187  return new PostRAScheduler();
1188}
1189