PostRASchedulerList.cpp revision 0dcda31cb40614d1adec10aad1a40a57ad581c69
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "llvm/CodeGen/Passes.h"
23#include "llvm/CodeGen/ScheduleDAGInstrs.h"
24#include "llvm/CodeGen/LatencyPriorityQueue.h"
25#include "llvm/CodeGen/SchedulerRegistry.h"
26#include "llvm/CodeGen/MachineDominators.h"
27#include "llvm/CodeGen/MachineFunctionPass.h"
28#include "llvm/CodeGen/MachineLoopInfo.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetRegisterInfo.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/ADT/Statistic.h"
37#include <map>
38using namespace llvm;
39
40STATISTIC(NumNoops, "Number of noops inserted");
41STATISTIC(NumStalls, "Number of pipeline stalls");
42
43static cl::opt<bool>
44EnableAntiDepBreaking("break-anti-dependencies",
45                      cl::desc("Break post-RA scheduling anti-dependencies"),
46                      cl::init(true), cl::Hidden);
47
48static cl::opt<bool>
49EnablePostRAHazardAvoidance("avoid-hazards",
50                      cl::desc("Enable simple hazard-avoidance"),
51                      cl::init(true), cl::Hidden);
52
53namespace {
54  class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
55  public:
56    static char ID;
57    PostRAScheduler() : MachineFunctionPass(&ID) {}
58
59    void getAnalysisUsage(AnalysisUsage &AU) const {
60      AU.addRequired<MachineDominatorTree>();
61      AU.addPreserved<MachineDominatorTree>();
62      AU.addRequired<MachineLoopInfo>();
63      AU.addPreserved<MachineLoopInfo>();
64      MachineFunctionPass::getAnalysisUsage(AU);
65    }
66
67    const char *getPassName() const {
68      return "Post RA top-down list latency scheduler";
69    }
70
71    bool runOnMachineFunction(MachineFunction &Fn);
72  };
73  char PostRAScheduler::ID = 0;
74
75  class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
76    /// AvailableQueue - The priority queue to use for the available SUnits.
77    ///
78    LatencyPriorityQueue AvailableQueue;
79
80    /// PendingQueue - This contains all of the instructions whose operands have
81    /// been issued, but their results are not ready yet (due to the latency of
82    /// the operation).  Once the operands becomes available, the instruction is
83    /// added to the AvailableQueue.
84    std::vector<SUnit*> PendingQueue;
85
86    /// Topo - A topological ordering for SUnits.
87    ScheduleDAGTopologicalSort Topo;
88
89    /// AllocatableSet - The set of allocatable registers.
90    /// We'll be ignoring anti-dependencies on non-allocatable registers,
91    /// because they may not be safe to break.
92    const BitVector AllocatableSet;
93
94    /// HazardRec - The hazard recognizer to use.
95    ScheduleHazardRecognizer *HazardRec;
96
97  public:
98    SchedulePostRATDList(MachineFunction &MF,
99                         const MachineLoopInfo &MLI,
100                         const MachineDominatorTree &MDT,
101                         ScheduleHazardRecognizer *HR)
102      : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
103        AllocatableSet(TRI->getAllocatableSet(MF)),
104        HazardRec(HR) {}
105
106    ~SchedulePostRATDList() {
107      delete HazardRec;
108    }
109
110    void Schedule();
111
112  private:
113    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
114    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
115    void ListScheduleTopDown();
116    bool BreakAntiDependencies();
117  };
118
119  /// SimpleHazardRecognizer - A *very* simple hazard recognizer. It uses
120  /// a coarse classification and attempts to avoid that instructions of
121  /// a given class aren't grouped too densely together.
122  class SimpleHazardRecognizer : public ScheduleHazardRecognizer {
123    /// Class - A simple classification for SUnits.
124    enum Class {
125      Other, Load, Store
126    };
127
128    /// Window - The Class values of the most recently issued
129    /// instructions.
130    Class Window[8];
131
132    /// getClass - Classify the given SUnit.
133    Class getClass(const SUnit *SU) {
134      const MachineInstr *MI = SU->getInstr();
135      const TargetInstrDesc &TID = MI->getDesc();
136      if (TID.mayLoad())
137        return Load;
138      if (TID.mayStore())
139        return Store;
140      return Other;
141    }
142
143    /// Step - Rotate the existing entries in Window and insert the
144    /// given class value in position as the most recent.
145    void Step(Class C) {
146      std::copy(Window+1, array_endof(Window), Window);
147      Window[array_lengthof(Window)-1] = C;
148    }
149
150  public:
151    SimpleHazardRecognizer() : Window() {}
152
153    virtual HazardType getHazardType(SUnit *SU) {
154      Class C = getClass(SU);
155      if (C == Other)
156        return NoHazard;
157      unsigned Score = 0;
158      for (unsigned i = 0; i != array_lengthof(Window); ++i)
159        if (Window[i] == C)
160          Score += i + 1;
161      if (Score > array_lengthof(Window) * 2)
162        return Hazard;
163      return NoHazard;
164    }
165
166    virtual void EmitInstruction(SUnit *SU) {
167      Step(getClass(SU));
168    }
169
170    virtual void AdvanceCycle() {
171      Step(Other);
172    }
173  };
174}
175
176bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
177  DOUT << "PostRAScheduler\n";
178
179  const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
180  const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
181  ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ?
182                                 new SimpleHazardRecognizer :
183                                 new ScheduleHazardRecognizer();
184
185  SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR);
186
187  // Loop over all of the basic blocks
188  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
189       MBB != MBBe; ++MBB) {
190    // Schedule each sequence of instructions not interrupted by a label
191    // or anything else that effectively needs to shut down scheduling.
192    MachineBasicBlock::iterator Current = MBB->end(), Top = MBB->begin();
193    for (MachineBasicBlock::iterator I = Current; I != Top; ) {
194      MachineInstr *MI = --I;
195      if (MI->getDesc().isTerminator() || MI->isLabel()) {
196        Scheduler.Run(0, MBB, next(I), Current);
197        Scheduler.EmitSchedule();
198        Current = I;
199      }
200    }
201
202    Scheduler.Run(0, MBB, Top, Current);
203    Scheduler.EmitSchedule();
204  }
205
206  return true;
207}
208
209/// Schedule - Schedule the DAG using list scheduling.
210void SchedulePostRATDList::Schedule() {
211  DOUT << "********** List Scheduling **********\n";
212
213  // Build the scheduling graph.
214  BuildSchedGraph();
215
216  if (EnableAntiDepBreaking) {
217    if (BreakAntiDependencies()) {
218      // We made changes. Update the dependency graph.
219      // Theoretically we could update the graph in place:
220      // When a live range is changed to use a different register, remove
221      // the def's anti-dependence *and* output-dependence edges due to
222      // that register, and add new anti-dependence and output-dependence
223      // edges based on the next live range of the register.
224      SUnits.clear();
225      BuildSchedGraph();
226    }
227  }
228
229  AvailableQueue.initNodes(SUnits);
230
231  ListScheduleTopDown();
232
233  AvailableQueue.releaseState();
234}
235
236/// getInstrOperandRegClass - Return register class of the operand of an
237/// instruction of the specified TargetInstrDesc.
238static const TargetRegisterClass*
239getInstrOperandRegClass(const TargetRegisterInfo *TRI,
240                        const TargetInstrInfo *TII, const TargetInstrDesc &II,
241                        unsigned Op) {
242  if (Op >= II.getNumOperands())
243    return NULL;
244  if (II.OpInfo[Op].isLookupPtrRegClass())
245    return TII->getPointerRegClass();
246  return TRI->getRegClass(II.OpInfo[Op].RegClass);
247}
248
249/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
250/// critical path.
251static SDep *CriticalPathStep(SUnit *SU) {
252  SDep *Next = 0;
253  unsigned NextDepth = 0;
254  // Find the predecessor edge with the greatest depth.
255  for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
256       P != PE; ++P) {
257    SUnit *PredSU = P->getSUnit();
258    unsigned PredLatency = P->getLatency();
259    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
260    // In the case of a latency tie, prefer an anti-dependency edge over
261    // other types of edges.
262    if (NextDepth < PredTotalLatency ||
263        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
264      NextDepth = PredTotalLatency;
265      Next = &*P;
266    }
267  }
268  return Next;
269}
270
271/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
272/// of the ScheduleDAG and break them by renaming registers.
273///
274bool SchedulePostRATDList::BreakAntiDependencies() {
275  // The code below assumes that there is at least one instruction,
276  // so just duck out immediately if the block is empty.
277  if (SUnits.empty()) return false;
278
279  // Find the node at the bottom of the critical path.
280  SUnit *Max = 0;
281  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
282    SUnit *SU = &SUnits[i];
283    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
284      Max = SU;
285  }
286
287  DOUT << "Critical path has total latency "
288       << (Max->getDepth() + Max->Latency) << "\n";
289
290  // Track progress along the critical path through the SUnit graph as we walk
291  // the instructions.
292  SUnit *CriticalPathSU = Max;
293  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
294
295  // For live regs that are only used in one register class in a live range,
296  // the register class. If the register is not live, the corresponding value
297  // is null. If the register is live but used in multiple register classes,
298  // the corresponding value is -1 casted to a pointer.
299  const TargetRegisterClass *
300    Classes[TargetRegisterInfo::FirstVirtualRegister] = {};
301
302  // Map registers to all their references within a live range.
303  std::multimap<unsigned, MachineOperand *> RegRefs;
304
305  // The index of the most recent kill (proceding bottom-up), or ~0u if
306  // the register is not live.
307  unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
308  std::fill(KillIndices, array_endof(KillIndices), ~0u);
309  // The index of the most recent complete def (proceding bottom up), or ~0u if
310  // the register is live.
311  unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
312  std::fill(DefIndices, array_endof(DefIndices), BB->size());
313
314  // Determine the live-out physregs for this block.
315  if (BB->back().getDesc().isReturn())
316    // In a return block, examine the function live-out regs.
317    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
318         E = MRI.liveout_end(); I != E; ++I) {
319      unsigned Reg = *I;
320      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
321      KillIndices[Reg] = BB->size();
322      DefIndices[Reg] = ~0u;
323      // Repeat, for all aliases.
324      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
325        unsigned AliasReg = *Alias;
326        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
327        KillIndices[AliasReg] = BB->size();
328        DefIndices[AliasReg] = ~0u;
329      }
330    }
331  else
332    // In a non-return block, examine the live-in regs of all successors.
333    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
334         SE = BB->succ_end(); SI != SE; ++SI)
335      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
336           E = (*SI)->livein_end(); I != E; ++I) {
337        unsigned Reg = *I;
338        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
339        KillIndices[Reg] = BB->size();
340        DefIndices[Reg] = ~0u;
341        // Repeat, for all aliases.
342        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
343          unsigned AliasReg = *Alias;
344          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
345          KillIndices[AliasReg] = BB->size();
346          DefIndices[AliasReg] = ~0u;
347        }
348      }
349
350  // Consider callee-saved registers as live-out, since we're running after
351  // prologue/epilogue insertion so there's no way to add additional
352  // saved registers.
353  //
354  // TODO: If the callee saves and restores these, then we can potentially
355  // use them between the save and the restore. To do that, we could scan
356  // the exit blocks to see which of these registers are defined.
357  // Alternatively, callee-saved registers that aren't saved and restored
358  // could be marked live-in in every block.
359  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
360    unsigned Reg = *I;
361    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
362    KillIndices[Reg] = BB->size();
363    DefIndices[Reg] = ~0u;
364    // Repeat, for all aliases.
365    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
366      unsigned AliasReg = *Alias;
367      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
368      KillIndices[AliasReg] = BB->size();
369      DefIndices[AliasReg] = ~0u;
370    }
371  }
372
373  // Consider this pattern:
374  //   A = ...
375  //   ... = A
376  //   A = ...
377  //   ... = A
378  //   A = ...
379  //   ... = A
380  //   A = ...
381  //   ... = A
382  // There are three anti-dependencies here, and without special care,
383  // we'd break all of them using the same register:
384  //   A = ...
385  //   ... = A
386  //   B = ...
387  //   ... = B
388  //   B = ...
389  //   ... = B
390  //   B = ...
391  //   ... = B
392  // because at each anti-dependence, B is the first register that
393  // isn't A which is free.  This re-introduces anti-dependencies
394  // at all but one of the original anti-dependencies that we were
395  // trying to break.  To avoid this, keep track of the most recent
396  // register that each register was replaced with, avoid avoid
397  // using it to repair an anti-dependence on the same register.
398  // This lets us produce this:
399  //   A = ...
400  //   ... = A
401  //   B = ...
402  //   ... = B
403  //   C = ...
404  //   ... = C
405  //   B = ...
406  //   ... = B
407  // This still has an anti-dependence on B, but at least it isn't on the
408  // original critical path.
409  //
410  // TODO: If we tracked more than one register here, we could potentially
411  // fix that remaining critical edge too. This is a little more involved,
412  // because unlike the most recent register, less recent registers should
413  // still be considered, though only if no other registers are available.
414  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
415
416  // Attempt to break anti-dependence edges on the critical path. Walk the
417  // instructions from the bottom up, tracking information about liveness
418  // as we go to help determine which registers are available.
419  bool Changed = false;
420  unsigned Count = SUnits.size() - 1;
421  for (MachineBasicBlock::iterator I = End, E = Begin;
422       I != E; --Count) {
423    MachineInstr *MI = --I;
424
425    // After regalloc, IMPLICIT_DEF instructions aren't safe to treat as
426    // dependence-breaking. In the case of an INSERT_SUBREG, the IMPLICIT_DEF
427    // is left behind appearing to clobber the super-register, while the
428    // subregister needs to remain live. So we just ignore them.
429    if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
430      continue;
431
432    // Check if this instruction has a dependence on the critical path that
433    // is an anti-dependence that we may be able to break. If it is, set
434    // AntiDepReg to the non-zero register associated with the anti-dependence.
435    //
436    // We limit our attention to the critical path as a heuristic to avoid
437    // breaking anti-dependence edges that aren't going to significantly
438    // impact the overall schedule. There are a limited number of registers
439    // and we want to save them for the important edges.
440    //
441    // TODO: Instructions with multiple defs could have multiple
442    // anti-dependencies. The current code here only knows how to break one
443    // edge per instruction. Note that we'd have to be able to break all of
444    // the anti-dependencies in an instruction in order to be effective.
445    unsigned AntiDepReg = 0;
446    if (MI == CriticalPathMI) {
447      if (SDep *Edge = CriticalPathStep(CriticalPathSU)) {
448        SUnit *NextSU = Edge->getSUnit();
449
450        // Only consider anti-dependence edges.
451        if (Edge->getKind() == SDep::Anti) {
452          AntiDepReg = Edge->getReg();
453          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
454          // Don't break anti-dependencies on non-allocatable registers.
455          if (!AllocatableSet.test(AntiDepReg))
456            AntiDepReg = 0;
457          else {
458            // If the SUnit has other dependencies on the SUnit that it
459            // anti-depends on, don't bother breaking the anti-dependency
460            // since those edges would prevent such units from being
461            // scheduled past each other regardless.
462            //
463            // Also, if there are dependencies on other SUnits with the
464            // same register as the anti-dependency, don't attempt to
465            // break it.
466            for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(),
467                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
468              if (P->getSUnit() == NextSU ?
469                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
470                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
471                AntiDepReg = 0;
472                break;
473              }
474          }
475        }
476        CriticalPathSU = NextSU;
477        CriticalPathMI = CriticalPathSU->getInstr();
478      } else {
479        // We've reached the end of the critical path.
480        CriticalPathSU = 0;
481        CriticalPathMI = 0;
482      }
483    }
484
485    // Scan the register operands for this instruction and update
486    // Classes and RegRefs.
487    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
488      MachineOperand &MO = MI->getOperand(i);
489      if (!MO.isReg()) continue;
490      unsigned Reg = MO.getReg();
491      if (Reg == 0) continue;
492      const TargetRegisterClass *NewRC =
493        getInstrOperandRegClass(TRI, TII, MI->getDesc(), i);
494
495      // If this instruction has a use of AntiDepReg, breaking it
496      // is invalid.
497      if (MO.isUse() && AntiDepReg == Reg)
498        AntiDepReg = 0;
499
500      // For now, only allow the register to be changed if its register
501      // class is consistent across all uses.
502      if (!Classes[Reg] && NewRC)
503        Classes[Reg] = NewRC;
504      else if (!NewRC || Classes[Reg] != NewRC)
505        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
506
507      // Now check for aliases.
508      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
509        // If an alias of the reg is used during the live range, give up.
510        // Note that this allows us to skip checking if AntiDepReg
511        // overlaps with any of the aliases, among other things.
512        unsigned AliasReg = *Alias;
513        if (Classes[AliasReg]) {
514          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
515          Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
516        }
517      }
518
519      // If we're still willing to consider this register, note the reference.
520      if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
521        RegRefs.insert(std::make_pair(Reg, &MO));
522    }
523
524    // Determine AntiDepReg's register class, if it is live and is
525    // consistently used within a single class.
526    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
527    assert((AntiDepReg == 0 || RC != NULL) &&
528           "Register should be live if it's causing an anti-dependence!");
529    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
530      AntiDepReg = 0;
531
532    // Look for a suitable register to use to break the anti-depenence.
533    //
534    // TODO: Instead of picking the first free register, consider which might
535    // be the best.
536    if (AntiDepReg != 0) {
537      for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
538           RE = RC->allocation_order_end(MF); R != RE; ++R) {
539        unsigned NewReg = *R;
540        // Don't replace a register with itself.
541        if (NewReg == AntiDepReg) continue;
542        // Don't replace a register with one that was recently used to repair
543        // an anti-dependence with this AntiDepReg, because that would
544        // re-introduce that anti-dependence.
545        if (NewReg == LastNewReg[AntiDepReg]) continue;
546        // If NewReg is dead and NewReg's most recent def is not before
547        // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
548        assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
549               "Kill and Def maps aren't consistent for AntiDepReg!");
550        assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
551               "Kill and Def maps aren't consistent for NewReg!");
552        if (KillIndices[NewReg] == ~0u &&
553            Classes[NewReg] != reinterpret_cast<TargetRegisterClass *>(-1) &&
554            KillIndices[AntiDepReg] <= DefIndices[NewReg]) {
555          DOUT << "Breaking anti-dependence edge on "
556               << TRI->getName(AntiDepReg)
557               << " with " << RegRefs.count(AntiDepReg) << " references"
558               << " using " << TRI->getName(NewReg) << "!\n";
559
560          // Update the references to the old register to refer to the new
561          // register.
562          std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
563                    std::multimap<unsigned, MachineOperand *>::iterator>
564             Range = RegRefs.equal_range(AntiDepReg);
565          for (std::multimap<unsigned, MachineOperand *>::iterator
566               Q = Range.first, QE = Range.second; Q != QE; ++Q)
567            Q->second->setReg(NewReg);
568
569          // We just went back in time and modified history; the
570          // liveness information for the anti-depenence reg is now
571          // inconsistent. Set the state as if it were dead.
572          Classes[NewReg] = Classes[AntiDepReg];
573          DefIndices[NewReg] = DefIndices[AntiDepReg];
574          KillIndices[NewReg] = KillIndices[AntiDepReg];
575
576          Classes[AntiDepReg] = 0;
577          DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
578          KillIndices[AntiDepReg] = ~0u;
579
580          RegRefs.erase(AntiDepReg);
581          Changed = true;
582          LastNewReg[AntiDepReg] = NewReg;
583          break;
584        }
585      }
586    }
587
588    // Update liveness.
589    // Proceding upwards, registers that are defed but not used in this
590    // instruction are now dead.
591    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
592      MachineOperand &MO = MI->getOperand(i);
593      if (!MO.isReg()) continue;
594      unsigned Reg = MO.getReg();
595      if (Reg == 0) continue;
596      if (!MO.isDef()) continue;
597      // Ignore two-addr defs.
598      if (MI->isRegReDefinedByTwoAddr(i)) continue;
599
600      DefIndices[Reg] = Count;
601      KillIndices[Reg] = ~0u;
602      Classes[Reg] = 0;
603      RegRefs.erase(Reg);
604      // Repeat, for all subregs.
605      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
606           *Subreg; ++Subreg) {
607        unsigned SubregReg = *Subreg;
608        DefIndices[SubregReg] = Count;
609        KillIndices[SubregReg] = ~0u;
610        Classes[SubregReg] = 0;
611        RegRefs.erase(SubregReg);
612      }
613      // Conservatively mark super-registers as unusable.
614      for (const unsigned *Super = TRI->getSuperRegisters(Reg);
615           *Super; ++Super) {
616        unsigned SuperReg = *Super;
617        Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
618      }
619    }
620    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
621      MachineOperand &MO = MI->getOperand(i);
622      if (!MO.isReg()) continue;
623      unsigned Reg = MO.getReg();
624      if (Reg == 0) continue;
625      if (!MO.isUse()) continue;
626
627      const TargetRegisterClass *NewRC =
628        getInstrOperandRegClass(TRI, TII, MI->getDesc(), i);
629
630      // For now, only allow the register to be changed if its register
631      // class is consistent across all uses.
632      if (!Classes[Reg] && NewRC)
633        Classes[Reg] = NewRC;
634      else if (!NewRC || Classes[Reg] != NewRC)
635        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
636
637      RegRefs.insert(std::make_pair(Reg, &MO));
638
639      // It wasn't previously live but now it is, this is a kill.
640      if (KillIndices[Reg] == ~0u) {
641        KillIndices[Reg] = Count;
642        DefIndices[Reg] = ~0u;
643      }
644      // Repeat, for all aliases.
645      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
646        unsigned AliasReg = *Alias;
647        if (KillIndices[AliasReg] == ~0u) {
648          KillIndices[AliasReg] = Count;
649          DefIndices[AliasReg] = ~0u;
650        }
651      }
652    }
653  }
654  assert(Count == ~0u && "Count mismatch!");
655
656  return Changed;
657}
658
659//===----------------------------------------------------------------------===//
660//  Top-Down Scheduling
661//===----------------------------------------------------------------------===//
662
663/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
664/// the PendingQueue if the count reaches zero. Also update its cycle bound.
665void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
666  SUnit *SuccSU = SuccEdge->getSUnit();
667  --SuccSU->NumPredsLeft;
668
669#ifndef NDEBUG
670  if (SuccSU->NumPredsLeft < 0) {
671    cerr << "*** Scheduling failed! ***\n";
672    SuccSU->dump(this);
673    cerr << " has been released too many times!\n";
674    assert(0);
675  }
676#endif
677
678  // Compute how many cycles it will be before this actually becomes
679  // available.  This is the max of the start time of all predecessors plus
680  // their latencies.
681  SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
682
683  if (SuccSU->NumPredsLeft == 0) {
684    PendingQueue.push_back(SuccSU);
685  }
686}
687
688/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
689/// count of its successors. If a successor pending count is zero, add it to
690/// the Available queue.
691void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
692  DOUT << "*** Scheduling [" << CurCycle << "]: ";
693  DEBUG(SU->dump(this));
694
695  Sequence.push_back(SU);
696  assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
697  SU->setDepthToAtLeast(CurCycle);
698
699  // Top down: release successors.
700  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
701       I != E; ++I)
702    ReleaseSucc(SU, &*I);
703
704  SU->isScheduled = true;
705  AvailableQueue.ScheduledNode(SU);
706}
707
708/// ListScheduleTopDown - The main loop of list scheduling for top-down
709/// schedulers.
710void SchedulePostRATDList::ListScheduleTopDown() {
711  unsigned CurCycle = 0;
712
713  // All leaves to Available queue.
714  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
715    // It is available if it has no predecessors.
716    if (SUnits[i].Preds.empty()) {
717      AvailableQueue.push(&SUnits[i]);
718      SUnits[i].isAvailable = true;
719    }
720  }
721
722  // While Available queue is not empty, grab the node with the highest
723  // priority. If it is not ready put it back.  Schedule the node.
724  std::vector<SUnit*> NotReady;
725  Sequence.reserve(SUnits.size());
726  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
727    // Check to see if any of the pending instructions are ready to issue.  If
728    // so, add them to the available queue.
729    unsigned MinDepth = ~0u;
730    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
731      if (PendingQueue[i]->getDepth() <= CurCycle) {
732        AvailableQueue.push(PendingQueue[i]);
733        PendingQueue[i]->isAvailable = true;
734        PendingQueue[i] = PendingQueue.back();
735        PendingQueue.pop_back();
736        --i; --e;
737      } else if (PendingQueue[i]->getDepth() < MinDepth)
738        MinDepth = PendingQueue[i]->getDepth();
739    }
740
741    // If there are no instructions available, don't try to issue anything, and
742    // don't advance the hazard recognizer.
743    if (AvailableQueue.empty()) {
744      CurCycle = MinDepth != ~0u ? MinDepth : CurCycle + 1;
745      continue;
746    }
747
748    SUnit *FoundSUnit = 0;
749
750    bool HasNoopHazards = false;
751    while (!AvailableQueue.empty()) {
752      SUnit *CurSUnit = AvailableQueue.pop();
753
754      ScheduleHazardRecognizer::HazardType HT =
755        HazardRec->getHazardType(CurSUnit);
756      if (HT == ScheduleHazardRecognizer::NoHazard) {
757        FoundSUnit = CurSUnit;
758        break;
759      }
760
761      // Remember if this is a noop hazard.
762      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
763
764      NotReady.push_back(CurSUnit);
765    }
766
767    // Add the nodes that aren't ready back onto the available list.
768    if (!NotReady.empty()) {
769      AvailableQueue.push_all(NotReady);
770      NotReady.clear();
771    }
772
773    // If we found a node to schedule, do it now.
774    if (FoundSUnit) {
775      ScheduleNodeTopDown(FoundSUnit, CurCycle);
776      HazardRec->EmitInstruction(FoundSUnit);
777
778      // If this is a pseudo-op node, we don't want to increment the current
779      // cycle.
780      if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
781        ++CurCycle;
782    } else if (!HasNoopHazards) {
783      // Otherwise, we have a pipeline stall, but no other problem, just advance
784      // the current cycle and try again.
785      DOUT << "*** Advancing cycle, no work to do\n";
786      HazardRec->AdvanceCycle();
787      ++NumStalls;
788      ++CurCycle;
789    } else {
790      // Otherwise, we have no instructions to issue and we have instructions
791      // that will fault if we don't do this right.  This is the case for
792      // processors without pipeline interlocks and other cases.
793      DOUT << "*** Emitting noop\n";
794      HazardRec->EmitNoop();
795      Sequence.push_back(0);   // NULL here means noop
796      ++NumNoops;
797      ++CurCycle;
798    }
799  }
800
801#ifndef NDEBUG
802  VerifySchedule(/*isBottomUp=*/false);
803#endif
804}
805
806//===----------------------------------------------------------------------===//
807//                         Public Constructor Functions
808//===----------------------------------------------------------------------===//
809
810FunctionPass *llvm::createPostRAScheduler() {
811  return new PostRAScheduler();
812}
813