PostRASchedulerList.cpp revision 0eeb45137a84aaa4dd22567dddce6bb07f487941
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "ExactHazardRecognizer.h"
23#include "SimpleHazardRecognizer.h"
24#include "ScheduleDAGInstrs.h"
25#include "llvm/CodeGen/Passes.h"
26#include "llvm/CodeGen/LatencyPriorityQueue.h"
27#include "llvm/CodeGen/SchedulerRegistry.h"
28#include "llvm/CodeGen/MachineDominators.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineLoopInfo.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
33#include "llvm/Target/TargetLowering.h"
34#include "llvm/Target/TargetMachine.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetRegisterInfo.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Support/raw_ostream.h"
41#include "llvm/ADT/Statistic.h"
42#include <map>
43using namespace llvm;
44
45STATISTIC(NumNoops, "Number of noops inserted");
46STATISTIC(NumStalls, "Number of pipeline stalls");
47
48static cl::opt<bool>
49EnableAntiDepBreaking("break-anti-dependencies",
50                      cl::desc("Break post-RA scheduling anti-dependencies"),
51                      cl::init(true), cl::Hidden);
52
53static cl::opt<bool>
54EnablePostRAHazardAvoidance("avoid-hazards",
55                      cl::desc("Enable exact hazard avoidance"),
56                      cl::init(false), cl::Hidden);
57
58namespace {
59  class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
60  public:
61    static char ID;
62    PostRAScheduler() : MachineFunctionPass(&ID) {}
63
64    void getAnalysisUsage(AnalysisUsage &AU) const {
65      AU.setPreservesCFG();
66      AU.addRequired<MachineDominatorTree>();
67      AU.addPreserved<MachineDominatorTree>();
68      AU.addRequired<MachineLoopInfo>();
69      AU.addPreserved<MachineLoopInfo>();
70      MachineFunctionPass::getAnalysisUsage(AU);
71    }
72
73    const char *getPassName() const {
74      return "Post RA top-down list latency scheduler";
75    }
76
77    bool runOnMachineFunction(MachineFunction &Fn);
78  };
79  char PostRAScheduler::ID = 0;
80
81  class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
82    /// AvailableQueue - The priority queue to use for the available SUnits.
83    ///
84    LatencyPriorityQueue AvailableQueue;
85
86    /// PendingQueue - This contains all of the instructions whose operands have
87    /// been issued, but their results are not ready yet (due to the latency of
88    /// the operation).  Once the operands becomes available, the instruction is
89    /// added to the AvailableQueue.
90    std::vector<SUnit*> PendingQueue;
91
92    /// Topo - A topological ordering for SUnits.
93    ScheduleDAGTopologicalSort Topo;
94
95    /// AllocatableSet - The set of allocatable registers.
96    /// We'll be ignoring anti-dependencies on non-allocatable registers,
97    /// because they may not be safe to break.
98    const BitVector AllocatableSet;
99
100    /// HazardRec - The hazard recognizer to use.
101    ScheduleHazardRecognizer *HazardRec;
102
103    /// Classes - For live regs that are only used in one register class in a
104    /// live range, the register class. If the register is not live, the
105    /// corresponding value is null. If the register is live but used in
106    /// multiple register classes, the corresponding value is -1 casted to a
107    /// pointer.
108    const TargetRegisterClass *
109      Classes[TargetRegisterInfo::FirstVirtualRegister];
110
111    /// RegRegs - Map registers to all their references within a live range.
112    std::multimap<unsigned, MachineOperand *> RegRefs;
113
114    /// The index of the most recent kill (proceding bottom-up), or ~0u if
115    /// the register is not live.
116    unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
117
118    /// The index of the most recent complete def (proceding bottom up), or ~0u
119    /// if the register is live.
120    unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
121
122  public:
123    SchedulePostRATDList(MachineFunction &MF,
124                         const MachineLoopInfo &MLI,
125                         const MachineDominatorTree &MDT,
126                         ScheduleHazardRecognizer *HR)
127      : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
128        AllocatableSet(TRI->getAllocatableSet(MF)),
129        HazardRec(HR) {}
130
131    ~SchedulePostRATDList() {
132      delete HazardRec;
133    }
134
135    /// StartBlock - Initialize register live-range state for scheduling in
136    /// this block.
137    ///
138    void StartBlock(MachineBasicBlock *BB);
139
140    /// Schedule - Schedule the instruction range using list scheduling.
141    ///
142    void Schedule();
143
144    /// Observe - Update liveness information to account for the current
145    /// instruction, which will not be scheduled.
146    ///
147    void Observe(MachineInstr *MI, unsigned Count);
148
149    /// FinishBlock - Clean up register live-range state.
150    ///
151    void FinishBlock();
152
153  private:
154    void PrescanInstruction(MachineInstr *MI);
155    void ScanInstruction(MachineInstr *MI, unsigned Count);
156    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
157    void ReleaseSuccessors(SUnit *SU);
158    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
159    void ListScheduleTopDown();
160    bool BreakAntiDependencies();
161  };
162}
163
164/// isSchedulingBoundary - Test if the given instruction should be
165/// considered a scheduling boundary. This primarily includes labels
166/// and terminators.
167///
168static bool isSchedulingBoundary(const MachineInstr *MI,
169                                 const MachineFunction &MF) {
170  // Terminators and labels can't be scheduled around.
171  if (MI->getDesc().isTerminator() || MI->isLabel())
172    return true;
173
174  // Don't attempt to schedule around any instruction that modifies
175  // a stack-oriented pointer, as it's unlikely to be profitable. This
176  // saves compile time, because it doesn't require every single
177  // stack slot reference to depend on the instruction that does the
178  // modification.
179  const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
180  if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore()))
181    return true;
182
183  return false;
184}
185
186bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
187  DEBUG(errs() << "PostRAScheduler\n");
188
189  const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
190  const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
191  const InstrItineraryData &InstrItins = Fn.getTarget().getInstrItineraryData();
192  ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ?
193    (ScheduleHazardRecognizer *)new ExactHazardRecognizer(InstrItins) :
194    (ScheduleHazardRecognizer *)new SimpleHazardRecognizer();
195
196  SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR);
197
198  // Loop over all of the basic blocks
199  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
200       MBB != MBBe; ++MBB) {
201    // Initialize register live-range state for scheduling in this block.
202    Scheduler.StartBlock(MBB);
203
204    // Schedule each sequence of instructions not interrupted by a label
205    // or anything else that effectively needs to shut down scheduling.
206    MachineBasicBlock::iterator Current = MBB->end();
207    unsigned Count = MBB->size(), CurrentCount = Count;
208    for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
209      MachineInstr *MI = prior(I);
210      if (isSchedulingBoundary(MI, Fn)) {
211        Scheduler.Run(MBB, I, Current, CurrentCount);
212        Scheduler.EmitSchedule();
213        Current = MI;
214        CurrentCount = Count - 1;
215        Scheduler.Observe(MI, CurrentCount);
216      }
217      I = MI;
218      --Count;
219    }
220    assert(Count == 0 && "Instruction count mismatch!");
221    assert((MBB->begin() == Current || CurrentCount != 0) &&
222           "Instruction count mismatch!");
223    Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
224    Scheduler.EmitSchedule();
225
226    // Clean up register live-range state.
227    Scheduler.FinishBlock();
228  }
229
230  return true;
231}
232
233/// StartBlock - Initialize register live-range state for scheduling in
234/// this block.
235///
236void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
237  // Call the superclass.
238  ScheduleDAGInstrs::StartBlock(BB);
239
240  // Reset the hazard recognizer.
241  HazardRec->Reset();
242
243  // Clear out the register class data.
244  std::fill(Classes, array_endof(Classes),
245            static_cast<const TargetRegisterClass *>(0));
246
247  // Initialize the indices to indicate that no registers are live.
248  std::fill(KillIndices, array_endof(KillIndices), ~0u);
249  std::fill(DefIndices, array_endof(DefIndices), BB->size());
250
251  // Determine the live-out physregs for this block.
252  if (!BB->empty() && BB->back().getDesc().isReturn())
253    // In a return block, examine the function live-out regs.
254    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
255         E = MRI.liveout_end(); I != E; ++I) {
256      unsigned Reg = *I;
257      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
258      KillIndices[Reg] = BB->size();
259      DefIndices[Reg] = ~0u;
260      // Repeat, for all aliases.
261      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
262        unsigned AliasReg = *Alias;
263        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
264        KillIndices[AliasReg] = BB->size();
265        DefIndices[AliasReg] = ~0u;
266      }
267    }
268  else
269    // In a non-return block, examine the live-in regs of all successors.
270    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
271         SE = BB->succ_end(); SI != SE; ++SI)
272      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
273           E = (*SI)->livein_end(); I != E; ++I) {
274        unsigned Reg = *I;
275        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
276        KillIndices[Reg] = BB->size();
277        DefIndices[Reg] = ~0u;
278        // Repeat, for all aliases.
279        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
280          unsigned AliasReg = *Alias;
281          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
282          KillIndices[AliasReg] = BB->size();
283          DefIndices[AliasReg] = ~0u;
284        }
285      }
286
287  // Consider callee-saved registers as live-out, since we're running after
288  // prologue/epilogue insertion so there's no way to add additional
289  // saved registers.
290  //
291  // TODO: If the callee saves and restores these, then we can potentially
292  // use them between the save and the restore. To do that, we could scan
293  // the exit blocks to see which of these registers are defined.
294  // Alternatively, callee-saved registers that aren't saved and restored
295  // could be marked live-in in every block.
296  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
297    unsigned Reg = *I;
298    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
299    KillIndices[Reg] = BB->size();
300    DefIndices[Reg] = ~0u;
301    // Repeat, for all aliases.
302    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
303      unsigned AliasReg = *Alias;
304      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
305      KillIndices[AliasReg] = BB->size();
306      DefIndices[AliasReg] = ~0u;
307    }
308  }
309}
310
311/// Schedule - Schedule the instruction range using list scheduling.
312///
313void SchedulePostRATDList::Schedule() {
314  DEBUG(errs() << "********** List Scheduling **********\n");
315
316  // Build the scheduling graph.
317  BuildSchedGraph();
318
319  if (EnableAntiDepBreaking) {
320    if (BreakAntiDependencies()) {
321      // We made changes. Update the dependency graph.
322      // Theoretically we could update the graph in place:
323      // When a live range is changed to use a different register, remove
324      // the def's anti-dependence *and* output-dependence edges due to
325      // that register, and add new anti-dependence and output-dependence
326      // edges based on the next live range of the register.
327      SUnits.clear();
328      EntrySU = SUnit();
329      ExitSU = SUnit();
330      BuildSchedGraph();
331    }
332  }
333
334  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
335          SUnits[su].dumpAll(this));
336
337  AvailableQueue.initNodes(SUnits);
338
339  ListScheduleTopDown();
340
341  AvailableQueue.releaseState();
342}
343
344/// Observe - Update liveness information to account for the current
345/// instruction, which will not be scheduled.
346///
347void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
348  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
349
350  // Any register which was defined within the previous scheduling region
351  // may have been rescheduled and its lifetime may overlap with registers
352  // in ways not reflected in our current liveness state. For each such
353  // register, adjust the liveness state to be conservatively correct.
354  for (unsigned Reg = 0; Reg != TargetRegisterInfo::FirstVirtualRegister; ++Reg)
355    if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
356      assert(KillIndices[Reg] == ~0u && "Clobbered register is live!");
357      // Mark this register to be non-renamable.
358      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
359      // Move the def index to the end of the previous region, to reflect
360      // that the def could theoretically have been scheduled at the end.
361      DefIndices[Reg] = InsertPosIndex;
362    }
363
364  PrescanInstruction(MI);
365  ScanInstruction(MI, Count);
366}
367
368/// FinishBlock - Clean up register live-range state.
369///
370void SchedulePostRATDList::FinishBlock() {
371  RegRefs.clear();
372
373  // Call the superclass.
374  ScheduleDAGInstrs::FinishBlock();
375}
376
377/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
378/// critical path.
379static SDep *CriticalPathStep(SUnit *SU) {
380  SDep *Next = 0;
381  unsigned NextDepth = 0;
382  // Find the predecessor edge with the greatest depth.
383  for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
384       P != PE; ++P) {
385    SUnit *PredSU = P->getSUnit();
386    unsigned PredLatency = P->getLatency();
387    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
388    // In the case of a latency tie, prefer an anti-dependency edge over
389    // other types of edges.
390    if (NextDepth < PredTotalLatency ||
391        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
392      NextDepth = PredTotalLatency;
393      Next = &*P;
394    }
395  }
396  return Next;
397}
398
399void SchedulePostRATDList::PrescanInstruction(MachineInstr *MI) {
400  // Scan the register operands for this instruction and update
401  // Classes and RegRefs.
402  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
403    MachineOperand &MO = MI->getOperand(i);
404    if (!MO.isReg()) continue;
405    unsigned Reg = MO.getReg();
406    if (Reg == 0) continue;
407    const TargetRegisterClass *NewRC = 0;
408
409    if (i < MI->getDesc().getNumOperands())
410      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
411
412    // For now, only allow the register to be changed if its register
413    // class is consistent across all uses.
414    if (!Classes[Reg] && NewRC)
415      Classes[Reg] = NewRC;
416    else if (!NewRC || Classes[Reg] != NewRC)
417      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
418
419    // Now check for aliases.
420    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
421      // If an alias of the reg is used during the live range, give up.
422      // Note that this allows us to skip checking if AntiDepReg
423      // overlaps with any of the aliases, among other things.
424      unsigned AliasReg = *Alias;
425      if (Classes[AliasReg]) {
426        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
427        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
428      }
429    }
430
431    // If we're still willing to consider this register, note the reference.
432    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
433      RegRefs.insert(std::make_pair(Reg, &MO));
434  }
435}
436
437void SchedulePostRATDList::ScanInstruction(MachineInstr *MI,
438                                           unsigned Count) {
439  // Update liveness.
440  // Proceding upwards, registers that are defed but not used in this
441  // instruction are now dead.
442  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
443    MachineOperand &MO = MI->getOperand(i);
444    if (!MO.isReg()) continue;
445    unsigned Reg = MO.getReg();
446    if (Reg == 0) continue;
447    if (!MO.isDef()) continue;
448    // Ignore two-addr defs.
449    if (MI->isRegTiedToUseOperand(i)) continue;
450
451    DefIndices[Reg] = Count;
452    KillIndices[Reg] = ~0u;
453          assert(((KillIndices[Reg] == ~0u) !=
454                  (DefIndices[Reg] == ~0u)) &&
455               "Kill and Def maps aren't consistent for Reg!");
456    Classes[Reg] = 0;
457    RegRefs.erase(Reg);
458    // Repeat, for all subregs.
459    for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
460         *Subreg; ++Subreg) {
461      unsigned SubregReg = *Subreg;
462      DefIndices[SubregReg] = Count;
463      KillIndices[SubregReg] = ~0u;
464      Classes[SubregReg] = 0;
465      RegRefs.erase(SubregReg);
466    }
467    // Conservatively mark super-registers as unusable.
468    for (const unsigned *Super = TRI->getSuperRegisters(Reg);
469         *Super; ++Super) {
470      unsigned SuperReg = *Super;
471      Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
472    }
473  }
474  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
475    MachineOperand &MO = MI->getOperand(i);
476    if (!MO.isReg()) continue;
477    unsigned Reg = MO.getReg();
478    if (Reg == 0) continue;
479    if (!MO.isUse()) continue;
480
481    const TargetRegisterClass *NewRC = 0;
482    if (i < MI->getDesc().getNumOperands())
483      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
484
485    // For now, only allow the register to be changed if its register
486    // class is consistent across all uses.
487    if (!Classes[Reg] && NewRC)
488      Classes[Reg] = NewRC;
489    else if (!NewRC || Classes[Reg] != NewRC)
490      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
491
492    RegRefs.insert(std::make_pair(Reg, &MO));
493
494    // It wasn't previously live but now it is, this is a kill.
495    if (KillIndices[Reg] == ~0u) {
496      KillIndices[Reg] = Count;
497      DefIndices[Reg] = ~0u;
498          assert(((KillIndices[Reg] == ~0u) !=
499                  (DefIndices[Reg] == ~0u)) &&
500               "Kill and Def maps aren't consistent for Reg!");
501    }
502    // Repeat, for all aliases.
503    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
504      unsigned AliasReg = *Alias;
505      if (KillIndices[AliasReg] == ~0u) {
506        KillIndices[AliasReg] = Count;
507        DefIndices[AliasReg] = ~0u;
508      }
509    }
510  }
511}
512
513/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
514/// of the ScheduleDAG and break them by renaming registers.
515///
516bool SchedulePostRATDList::BreakAntiDependencies() {
517  // The code below assumes that there is at least one instruction,
518  // so just duck out immediately if the block is empty.
519  if (SUnits.empty()) return false;
520
521  // Find the node at the bottom of the critical path.
522  SUnit *Max = 0;
523  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
524    SUnit *SU = &SUnits[i];
525    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
526      Max = SU;
527  }
528
529  DEBUG(errs() << "Critical path has total latency "
530        << (Max->getDepth() + Max->Latency) << "\n");
531
532  // Track progress along the critical path through the SUnit graph as we walk
533  // the instructions.
534  SUnit *CriticalPathSU = Max;
535  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
536
537  // Consider this pattern:
538  //   A = ...
539  //   ... = A
540  //   A = ...
541  //   ... = A
542  //   A = ...
543  //   ... = A
544  //   A = ...
545  //   ... = A
546  // There are three anti-dependencies here, and without special care,
547  // we'd break all of them using the same register:
548  //   A = ...
549  //   ... = A
550  //   B = ...
551  //   ... = B
552  //   B = ...
553  //   ... = B
554  //   B = ...
555  //   ... = B
556  // because at each anti-dependence, B is the first register that
557  // isn't A which is free.  This re-introduces anti-dependencies
558  // at all but one of the original anti-dependencies that we were
559  // trying to break.  To avoid this, keep track of the most recent
560  // register that each register was replaced with, avoid avoid
561  // using it to repair an anti-dependence on the same register.
562  // This lets us produce this:
563  //   A = ...
564  //   ... = A
565  //   B = ...
566  //   ... = B
567  //   C = ...
568  //   ... = C
569  //   B = ...
570  //   ... = B
571  // This still has an anti-dependence on B, but at least it isn't on the
572  // original critical path.
573  //
574  // TODO: If we tracked more than one register here, we could potentially
575  // fix that remaining critical edge too. This is a little more involved,
576  // because unlike the most recent register, less recent registers should
577  // still be considered, though only if no other registers are available.
578  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
579
580  // Attempt to break anti-dependence edges on the critical path. Walk the
581  // instructions from the bottom up, tracking information about liveness
582  // as we go to help determine which registers are available.
583  bool Changed = false;
584  unsigned Count = InsertPosIndex - 1;
585  for (MachineBasicBlock::iterator I = InsertPos, E = Begin;
586       I != E; --Count) {
587    MachineInstr *MI = --I;
588
589    // After regalloc, IMPLICIT_DEF instructions aren't safe to treat as
590    // dependence-breaking. In the case of an INSERT_SUBREG, the IMPLICIT_DEF
591    // is left behind appearing to clobber the super-register, while the
592    // subregister needs to remain live. So we just ignore them.
593    if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
594      continue;
595
596    // Check if this instruction has a dependence on the critical path that
597    // is an anti-dependence that we may be able to break. If it is, set
598    // AntiDepReg to the non-zero register associated with the anti-dependence.
599    //
600    // We limit our attention to the critical path as a heuristic to avoid
601    // breaking anti-dependence edges that aren't going to significantly
602    // impact the overall schedule. There are a limited number of registers
603    // and we want to save them for the important edges.
604    //
605    // TODO: Instructions with multiple defs could have multiple
606    // anti-dependencies. The current code here only knows how to break one
607    // edge per instruction. Note that we'd have to be able to break all of
608    // the anti-dependencies in an instruction in order to be effective.
609    unsigned AntiDepReg = 0;
610    if (MI == CriticalPathMI) {
611      if (SDep *Edge = CriticalPathStep(CriticalPathSU)) {
612        SUnit *NextSU = Edge->getSUnit();
613
614        // Only consider anti-dependence edges.
615        if (Edge->getKind() == SDep::Anti) {
616          AntiDepReg = Edge->getReg();
617          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
618          // Don't break anti-dependencies on non-allocatable registers.
619          if (!AllocatableSet.test(AntiDepReg))
620            AntiDepReg = 0;
621          else {
622            // If the SUnit has other dependencies on the SUnit that it
623            // anti-depends on, don't bother breaking the anti-dependency
624            // since those edges would prevent such units from being
625            // scheduled past each other regardless.
626            //
627            // Also, if there are dependencies on other SUnits with the
628            // same register as the anti-dependency, don't attempt to
629            // break it.
630            for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(),
631                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
632              if (P->getSUnit() == NextSU ?
633                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
634                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
635                AntiDepReg = 0;
636                break;
637              }
638          }
639        }
640        CriticalPathSU = NextSU;
641        CriticalPathMI = CriticalPathSU->getInstr();
642      } else {
643        // We've reached the end of the critical path.
644        CriticalPathSU = 0;
645        CriticalPathMI = 0;
646      }
647    }
648
649    PrescanInstruction(MI);
650
651    // If this instruction has a use of AntiDepReg, breaking it
652    // is invalid.
653    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
654      MachineOperand &MO = MI->getOperand(i);
655      if (!MO.isReg()) continue;
656      unsigned Reg = MO.getReg();
657      if (Reg == 0) continue;
658      if (MO.isUse() && AntiDepReg == Reg) {
659        AntiDepReg = 0;
660        break;
661      }
662    }
663
664    // Determine AntiDepReg's register class, if it is live and is
665    // consistently used within a single class.
666    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
667    assert((AntiDepReg == 0 || RC != NULL) &&
668           "Register should be live if it's causing an anti-dependence!");
669    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
670      AntiDepReg = 0;
671
672    // Look for a suitable register to use to break the anti-depenence.
673    //
674    // TODO: Instead of picking the first free register, consider which might
675    // be the best.
676    if (AntiDepReg != 0) {
677      for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
678           RE = RC->allocation_order_end(MF); R != RE; ++R) {
679        unsigned NewReg = *R;
680        // Don't replace a register with itself.
681        if (NewReg == AntiDepReg) continue;
682        // Don't replace a register with one that was recently used to repair
683        // an anti-dependence with this AntiDepReg, because that would
684        // re-introduce that anti-dependence.
685        if (NewReg == LastNewReg[AntiDepReg]) continue;
686        // If NewReg is dead and NewReg's most recent def is not before
687        // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
688        assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
689               "Kill and Def maps aren't consistent for AntiDepReg!");
690        assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
691               "Kill and Def maps aren't consistent for NewReg!");
692        if (KillIndices[NewReg] == ~0u &&
693            Classes[NewReg] != reinterpret_cast<TargetRegisterClass *>(-1) &&
694            KillIndices[AntiDepReg] <= DefIndices[NewReg]) {
695          DEBUG(errs() << "Breaking anti-dependence edge on "
696                << TRI->getName(AntiDepReg)
697                << " with " << RegRefs.count(AntiDepReg) << " references"
698                << " using " << TRI->getName(NewReg) << "!\n");
699
700          // Update the references to the old register to refer to the new
701          // register.
702          std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
703                    std::multimap<unsigned, MachineOperand *>::iterator>
704             Range = RegRefs.equal_range(AntiDepReg);
705          for (std::multimap<unsigned, MachineOperand *>::iterator
706               Q = Range.first, QE = Range.second; Q != QE; ++Q)
707            Q->second->setReg(NewReg);
708
709          // We just went back in time and modified history; the
710          // liveness information for the anti-depenence reg is now
711          // inconsistent. Set the state as if it were dead.
712          Classes[NewReg] = Classes[AntiDepReg];
713          DefIndices[NewReg] = DefIndices[AntiDepReg];
714          KillIndices[NewReg] = KillIndices[AntiDepReg];
715          assert(((KillIndices[NewReg] == ~0u) !=
716                  (DefIndices[NewReg] == ~0u)) &&
717               "Kill and Def maps aren't consistent for NewReg!");
718
719          Classes[AntiDepReg] = 0;
720          DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
721          KillIndices[AntiDepReg] = ~0u;
722          assert(((KillIndices[AntiDepReg] == ~0u) !=
723                  (DefIndices[AntiDepReg] == ~0u)) &&
724               "Kill and Def maps aren't consistent for AntiDepReg!");
725
726          RegRefs.erase(AntiDepReg);
727          Changed = true;
728          LastNewReg[AntiDepReg] = NewReg;
729          break;
730        }
731      }
732    }
733
734    ScanInstruction(MI, Count);
735  }
736
737  return Changed;
738}
739
740//===----------------------------------------------------------------------===//
741//  Top-Down Scheduling
742//===----------------------------------------------------------------------===//
743
744/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
745/// the PendingQueue if the count reaches zero. Also update its cycle bound.
746void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
747  SUnit *SuccSU = SuccEdge->getSUnit();
748  --SuccSU->NumPredsLeft;
749
750#ifndef NDEBUG
751  if (SuccSU->NumPredsLeft < 0) {
752    cerr << "*** Scheduling failed! ***\n";
753    SuccSU->dump(this);
754    cerr << " has been released too many times!\n";
755    llvm_unreachable(0);
756  }
757#endif
758
759  // Compute how many cycles it will be before this actually becomes
760  // available.  This is the max of the start time of all predecessors plus
761  // their latencies.
762  SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
763
764  // If all the node's predecessors are scheduled, this node is ready
765  // to be scheduled. Ignore the special ExitSU node.
766  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
767    PendingQueue.push_back(SuccSU);
768}
769
770/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
771void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
772  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
773       I != E; ++I)
774    ReleaseSucc(SU, &*I);
775}
776
777/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
778/// count of its successors. If a successor pending count is zero, add it to
779/// the Available queue.
780void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
781  DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: ");
782  DEBUG(SU->dump(this));
783
784  Sequence.push_back(SU);
785  assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
786  SU->setDepthToAtLeast(CurCycle);
787
788  ReleaseSuccessors(SU);
789  SU->isScheduled = true;
790  AvailableQueue.ScheduledNode(SU);
791}
792
793/// ListScheduleTopDown - The main loop of list scheduling for top-down
794/// schedulers.
795void SchedulePostRATDList::ListScheduleTopDown() {
796  unsigned CurCycle = 0;
797
798  // Release any successors of the special Entry node.
799  ReleaseSuccessors(&EntrySU);
800
801  // All leaves to Available queue.
802  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
803    // It is available if it has no predecessors.
804    if (SUnits[i].Preds.empty()) {
805      AvailableQueue.push(&SUnits[i]);
806      SUnits[i].isAvailable = true;
807    }
808  }
809
810  // While Available queue is not empty, grab the node with the highest
811  // priority. If it is not ready put it back.  Schedule the node.
812  std::vector<SUnit*> NotReady;
813  Sequence.reserve(SUnits.size());
814  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
815    // Check to see if any of the pending instructions are ready to issue.  If
816    // so, add them to the available queue.
817    unsigned MinDepth = ~0u;
818    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
819      if (PendingQueue[i]->getDepth() <= CurCycle) {
820        AvailableQueue.push(PendingQueue[i]);
821        PendingQueue[i]->isAvailable = true;
822        PendingQueue[i] = PendingQueue.back();
823        PendingQueue.pop_back();
824        --i; --e;
825      } else if (PendingQueue[i]->getDepth() < MinDepth)
826        MinDepth = PendingQueue[i]->getDepth();
827    }
828
829    SUnit *FoundSUnit = 0;
830
831    bool HasNoopHazards = false;
832    while (!AvailableQueue.empty()) {
833      SUnit *CurSUnit = AvailableQueue.pop();
834
835      ScheduleHazardRecognizer::HazardType HT =
836        HazardRec->getHazardType(CurSUnit);
837      if (HT == ScheduleHazardRecognizer::NoHazard) {
838        FoundSUnit = CurSUnit;
839        break;
840      }
841
842      // Remember if this is a noop hazard.
843      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
844
845      NotReady.push_back(CurSUnit);
846    }
847
848    // Add the nodes that aren't ready back onto the available list.
849    if (!NotReady.empty()) {
850      AvailableQueue.push_all(NotReady);
851      NotReady.clear();
852    }
853
854    // If we found a node to schedule, do it now.
855    if (FoundSUnit) {
856      ScheduleNodeTopDown(FoundSUnit, CurCycle);
857      HazardRec->EmitInstruction(FoundSUnit);
858
859      // If we are using the target-specific hazards, then don't
860      // advance the cycle time just because we schedule a node. If
861      // the target allows it we can schedule multiple nodes in the
862      // same cycle.
863      if (!EnablePostRAHazardAvoidance) {
864        if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
865          ++CurCycle;
866      }
867    } else if (!HasNoopHazards) {
868      // Otherwise, we have a pipeline stall, but no other problem, just advance
869      // the current cycle and try again.
870      DEBUG(errs() << "*** Advancing cycle, no work to do\n");
871      HazardRec->AdvanceCycle();
872      ++NumStalls;
873      ++CurCycle;
874    } else {
875      // Otherwise, we have no instructions to issue and we have instructions
876      // that will fault if we don't do this right.  This is the case for
877      // processors without pipeline interlocks and other cases.
878      DEBUG(errs() << "*** Emitting noop\n");
879      HazardRec->EmitNoop();
880      Sequence.push_back(0);   // NULL here means noop
881      ++NumNoops;
882      ++CurCycle;
883    }
884  }
885
886#ifndef NDEBUG
887  VerifySchedule(/*isBottomUp=*/false);
888#endif
889}
890
891//===----------------------------------------------------------------------===//
892//                         Public Constructor Functions
893//===----------------------------------------------------------------------===//
894
895FunctionPass *llvm::createPostRAScheduler() {
896  return new PostRAScheduler();
897}
898