PostRASchedulerList.cpp revision 1274ced8a3f0fd1e9a6f7c7e17d69368c4f78b90
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "ScheduleDAGInstrs.h"
23#include "llvm/CodeGen/Passes.h"
24#include "llvm/CodeGen/LatencyPriorityQueue.h"
25#include "llvm/CodeGen/SchedulerRegistry.h"
26#include "llvm/CodeGen/MachineDominators.h"
27#include "llvm/CodeGen/MachineFunctionPass.h"
28#include "llvm/CodeGen/MachineLoopInfo.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
31#include "llvm/Target/TargetLowering.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include "llvm/Target/TargetRegisterInfo.h"
35#include "llvm/Support/Compiler.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/ADT/Statistic.h"
38#include <map>
39using namespace llvm;
40
41STATISTIC(NumNoops, "Number of noops inserted");
42STATISTIC(NumStalls, "Number of pipeline stalls");
43
44static cl::opt<bool>
45EnableAntiDepBreaking("break-anti-dependencies",
46                      cl::desc("Break post-RA scheduling anti-dependencies"),
47                      cl::init(true), cl::Hidden);
48
49static cl::opt<bool>
50EnablePostRAHazardAvoidance("avoid-hazards",
51                      cl::desc("Enable simple hazard-avoidance"),
52                      cl::init(true), cl::Hidden);
53
54namespace {
55  class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
56  public:
57    static char ID;
58    PostRAScheduler() : MachineFunctionPass(&ID) {}
59
60    void getAnalysisUsage(AnalysisUsage &AU) const {
61      AU.addRequired<MachineDominatorTree>();
62      AU.addPreserved<MachineDominatorTree>();
63      AU.addRequired<MachineLoopInfo>();
64      AU.addPreserved<MachineLoopInfo>();
65      MachineFunctionPass::getAnalysisUsage(AU);
66    }
67
68    const char *getPassName() const {
69      return "Post RA top-down list latency scheduler";
70    }
71
72    bool runOnMachineFunction(MachineFunction &Fn);
73  };
74  char PostRAScheduler::ID = 0;
75
76  class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
77    /// AvailableQueue - The priority queue to use for the available SUnits.
78    ///
79    LatencyPriorityQueue AvailableQueue;
80
81    /// PendingQueue - This contains all of the instructions whose operands have
82    /// been issued, but their results are not ready yet (due to the latency of
83    /// the operation).  Once the operands becomes available, the instruction is
84    /// added to the AvailableQueue.
85    std::vector<SUnit*> PendingQueue;
86
87    /// Topo - A topological ordering for SUnits.
88    ScheduleDAGTopologicalSort Topo;
89
90    /// AllocatableSet - The set of allocatable registers.
91    /// We'll be ignoring anti-dependencies on non-allocatable registers,
92    /// because they may not be safe to break.
93    const BitVector AllocatableSet;
94
95    /// HazardRec - The hazard recognizer to use.
96    ScheduleHazardRecognizer *HazardRec;
97
98    /// Classes - For live regs that are only used in one register class in a
99    /// live range, the register class. If the register is not live, the
100    /// corresponding value is null. If the register is live but used in
101    /// multiple register classes, the corresponding value is -1 casted to a
102    /// pointer.
103    const TargetRegisterClass *
104      Classes[TargetRegisterInfo::FirstVirtualRegister];
105
106    /// RegRegs - Map registers to all their references within a live range.
107    std::multimap<unsigned, MachineOperand *> RegRefs;
108
109    /// The index of the most recent kill (proceding bottom-up), or ~0u if
110    /// the register is not live.
111    unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
112
113    /// The index of the most recent complete def (proceding bottom up), or ~0u
114    /// if the register is live.
115    unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
116
117  public:
118    SchedulePostRATDList(MachineFunction &MF,
119                         const MachineLoopInfo &MLI,
120                         const MachineDominatorTree &MDT,
121                         ScheduleHazardRecognizer *HR)
122      : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
123        AllocatableSet(TRI->getAllocatableSet(MF)),
124        HazardRec(HR) {}
125
126    ~SchedulePostRATDList() {
127      delete HazardRec;
128    }
129
130    /// StartBlock - Initialize register live-range state for scheduling in
131    /// this block.
132    ///
133    void StartBlock(MachineBasicBlock *BB);
134
135    /// Schedule - Schedule the instruction range using list scheduling.
136    ///
137    void Schedule();
138
139    /// Observe - Update liveness information to account for the current
140    /// instruction, which will not be scheduled.
141    ///
142    void Observe(MachineInstr *MI, unsigned Count);
143
144    /// FinishBlock - Clean up register live-range state.
145    ///
146    void FinishBlock();
147
148  private:
149    void PrescanInstruction(MachineInstr *MI);
150    void ScanInstruction(MachineInstr *MI, unsigned Count);
151    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
152    void ReleaseSuccessors(SUnit *SU);
153    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
154    void ListScheduleTopDown();
155    bool BreakAntiDependencies();
156  };
157
158  /// SimpleHazardRecognizer - A *very* simple hazard recognizer. It uses
159  /// a coarse classification and attempts to avoid that instructions of
160  /// a given class aren't grouped too densely together.
161  class SimpleHazardRecognizer : public ScheduleHazardRecognizer {
162    /// Class - A simple classification for SUnits.
163    enum Class {
164      Other, Load, Store
165    };
166
167    /// Window - The Class values of the most recently issued
168    /// instructions.
169    Class Window[8];
170
171    /// getClass - Classify the given SUnit.
172    Class getClass(const SUnit *SU) {
173      const MachineInstr *MI = SU->getInstr();
174      const TargetInstrDesc &TID = MI->getDesc();
175      if (TID.mayLoad())
176        return Load;
177      if (TID.mayStore())
178        return Store;
179      return Other;
180    }
181
182    /// Step - Rotate the existing entries in Window and insert the
183    /// given class value in position as the most recent.
184    void Step(Class C) {
185      std::copy(Window+1, array_endof(Window), Window);
186      Window[array_lengthof(Window)-1] = C;
187    }
188
189  public:
190    SimpleHazardRecognizer() : Window() {}
191
192    virtual HazardType getHazardType(SUnit *SU) {
193      Class C = getClass(SU);
194      if (C == Other)
195        return NoHazard;
196      unsigned Score = 0;
197      for (unsigned i = 0; i != array_lengthof(Window); ++i)
198        if (Window[i] == C)
199          Score += i + 1;
200      if (Score > array_lengthof(Window) * 2)
201        return Hazard;
202      return NoHazard;
203    }
204
205    virtual void EmitInstruction(SUnit *SU) {
206      Step(getClass(SU));
207    }
208
209    virtual void AdvanceCycle() {
210      Step(Other);
211    }
212  };
213}
214
215/// isSchedulingBoundary - Test if the given instruction should be
216/// considered a scheduling boundary. This primarily includes labels
217/// and terminators.
218///
219static bool isSchedulingBoundary(const MachineInstr *MI,
220                                 const MachineFunction &MF) {
221  // Terminators and labels can't be scheduled around.
222  if (MI->getDesc().isTerminator() || MI->isLabel())
223    return true;
224
225  // Don't attempt to schedule around any instruction that modifies
226  // a stack-oriented pointer, as it's unlikely to be profitable. This
227  // saves compile time, because it doesn't require every single
228  // stack slot reference to depend on the instruction that does the
229  // modification.
230  const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
231  if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore()))
232    return true;
233
234  return false;
235}
236
237bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
238  DOUT << "PostRAScheduler\n";
239
240  const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
241  const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
242  ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ?
243                                 new SimpleHazardRecognizer :
244                                 new ScheduleHazardRecognizer();
245
246  SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR);
247
248  // Loop over all of the basic blocks
249  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
250       MBB != MBBe; ++MBB) {
251    // Initialize register live-range state for scheduling in this block.
252    Scheduler.StartBlock(MBB);
253
254    // Schedule each sequence of instructions not interrupted by a label
255    // or anything else that effectively needs to shut down scheduling.
256    MachineBasicBlock::iterator Current = MBB->end();
257    unsigned Count = MBB->size(), CurrentCount = Count;
258    for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
259      MachineInstr *MI = prior(I);
260      if (isSchedulingBoundary(MI, Fn)) {
261        Scheduler.Run(MBB, I, Current, CurrentCount);
262        Scheduler.EmitSchedule();
263        Current = MI;
264        CurrentCount = Count - 1;
265        Scheduler.Observe(MI, CurrentCount);
266      }
267      I = MI;
268      --Count;
269    }
270    assert(Count == 0 && "Instruction count mismatch!");
271    assert(MBB->begin() == Current || CurrentCount != 0 &&
272           "Instruction count mismatch!");
273    Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
274    Scheduler.EmitSchedule();
275
276    // Clean up register live-range state.
277    Scheduler.FinishBlock();
278  }
279
280  return true;
281}
282
283/// StartBlock - Initialize register live-range state for scheduling in
284/// this block.
285///
286void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
287  // Call the superclass.
288  ScheduleDAGInstrs::StartBlock(BB);
289
290  // Clear out the register class data.
291  std::fill(Classes, array_endof(Classes),
292            static_cast<const TargetRegisterClass *>(0));
293
294  // Initialize the indices to indicate that no registers are live.
295  std::fill(KillIndices, array_endof(KillIndices), ~0u);
296  std::fill(DefIndices, array_endof(DefIndices), BB->size());
297
298  // Determine the live-out physregs for this block.
299  if (!BB->empty() && BB->back().getDesc().isReturn())
300    // In a return block, examine the function live-out regs.
301    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
302         E = MRI.liveout_end(); I != E; ++I) {
303      unsigned Reg = *I;
304      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
305      KillIndices[Reg] = BB->size();
306      DefIndices[Reg] = ~0u;
307      // Repeat, for all aliases.
308      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
309        unsigned AliasReg = *Alias;
310        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
311        KillIndices[AliasReg] = BB->size();
312        DefIndices[AliasReg] = ~0u;
313      }
314    }
315  else
316    // In a non-return block, examine the live-in regs of all successors.
317    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
318         SE = BB->succ_end(); SI != SE; ++SI)
319      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
320           E = (*SI)->livein_end(); I != E; ++I) {
321        unsigned Reg = *I;
322        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
323        KillIndices[Reg] = BB->size();
324        DefIndices[Reg] = ~0u;
325        // Repeat, for all aliases.
326        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
327          unsigned AliasReg = *Alias;
328          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
329          KillIndices[AliasReg] = BB->size();
330          DefIndices[AliasReg] = ~0u;
331        }
332      }
333
334  // Consider callee-saved registers as live-out, since we're running after
335  // prologue/epilogue insertion so there's no way to add additional
336  // saved registers.
337  //
338  // TODO: If the callee saves and restores these, then we can potentially
339  // use them between the save and the restore. To do that, we could scan
340  // the exit blocks to see which of these registers are defined.
341  // Alternatively, callee-saved registers that aren't saved and restored
342  // could be marked live-in in every block.
343  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
344    unsigned Reg = *I;
345    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
346    KillIndices[Reg] = BB->size();
347    DefIndices[Reg] = ~0u;
348    // Repeat, for all aliases.
349    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
350      unsigned AliasReg = *Alias;
351      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
352      KillIndices[AliasReg] = BB->size();
353      DefIndices[AliasReg] = ~0u;
354    }
355  }
356}
357
358/// Schedule - Schedule the instruction range using list scheduling.
359///
360void SchedulePostRATDList::Schedule() {
361  DOUT << "********** List Scheduling **********\n";
362
363  // Build the scheduling graph.
364  BuildSchedGraph();
365
366  if (EnableAntiDepBreaking) {
367    if (BreakAntiDependencies()) {
368      // We made changes. Update the dependency graph.
369      // Theoretically we could update the graph in place:
370      // When a live range is changed to use a different register, remove
371      // the def's anti-dependence *and* output-dependence edges due to
372      // that register, and add new anti-dependence and output-dependence
373      // edges based on the next live range of the register.
374      SUnits.clear();
375      EntrySU = SUnit();
376      ExitSU = SUnit();
377      BuildSchedGraph();
378    }
379  }
380
381  AvailableQueue.initNodes(SUnits);
382
383  ListScheduleTopDown();
384
385  AvailableQueue.releaseState();
386}
387
388/// Observe - Update liveness information to account for the current
389/// instruction, which will not be scheduled.
390///
391void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
392  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
393
394  // Any register which was defined within the previous scheduling region
395  // may have been rescheduled and its lifetime may overlap with registers
396  // in ways not reflected in our current liveness state. For each such
397  // register, adjust the liveness state to be conservatively correct.
398  for (unsigned Reg = 0; Reg != TargetRegisterInfo::FirstVirtualRegister; ++Reg)
399    if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
400      assert(KillIndices[Reg] == ~0u && "Clobbered register is live!");
401      // Mark this register to be non-renamable.
402      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
403      // Move the def index to the end of the previous region, to reflect
404      // that the def could theoretically have been scheduled at the end.
405      DefIndices[Reg] = InsertPosIndex;
406    }
407
408  PrescanInstruction(MI);
409  ScanInstruction(MI, Count);
410}
411
412/// FinishBlock - Clean up register live-range state.
413///
414void SchedulePostRATDList::FinishBlock() {
415  RegRefs.clear();
416
417  // Call the superclass.
418  ScheduleDAGInstrs::FinishBlock();
419}
420
421/// getInstrOperandRegClass - Return register class of the operand of an
422/// instruction of the specified TargetInstrDesc.
423static const TargetRegisterClass*
424getInstrOperandRegClass(const TargetRegisterInfo *TRI,
425                         const TargetInstrDesc &II, unsigned Op) {
426  if (Op >= II.getNumOperands())
427    return NULL;
428  if (II.OpInfo[Op].isLookupPtrRegClass())
429    return TRI->getPointerRegClass();
430  return TRI->getRegClass(II.OpInfo[Op].RegClass);
431}
432
433/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
434/// critical path.
435static SDep *CriticalPathStep(SUnit *SU) {
436  SDep *Next = 0;
437  unsigned NextDepth = 0;
438  // Find the predecessor edge with the greatest depth.
439  for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
440       P != PE; ++P) {
441    SUnit *PredSU = P->getSUnit();
442    unsigned PredLatency = P->getLatency();
443    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
444    // In the case of a latency tie, prefer an anti-dependency edge over
445    // other types of edges.
446    if (NextDepth < PredTotalLatency ||
447        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
448      NextDepth = PredTotalLatency;
449      Next = &*P;
450    }
451  }
452  return Next;
453}
454
455void SchedulePostRATDList::PrescanInstruction(MachineInstr *MI) {
456  // Scan the register operands for this instruction and update
457  // Classes and RegRefs.
458  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
459    MachineOperand &MO = MI->getOperand(i);
460    if (!MO.isReg()) continue;
461    unsigned Reg = MO.getReg();
462    if (Reg == 0) continue;
463    const TargetRegisterClass *NewRC =
464      getInstrOperandRegClass(TRI, MI->getDesc(), i);
465
466    // For now, only allow the register to be changed if its register
467    // class is consistent across all uses.
468    if (!Classes[Reg] && NewRC)
469      Classes[Reg] = NewRC;
470    else if (!NewRC || Classes[Reg] != NewRC)
471      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
472
473    // Now check for aliases.
474    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
475      // If an alias of the reg is used during the live range, give up.
476      // Note that this allows us to skip checking if AntiDepReg
477      // overlaps with any of the aliases, among other things.
478      unsigned AliasReg = *Alias;
479      if (Classes[AliasReg]) {
480        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
481        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
482      }
483    }
484
485    // If we're still willing to consider this register, note the reference.
486    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
487      RegRefs.insert(std::make_pair(Reg, &MO));
488  }
489}
490
491void SchedulePostRATDList::ScanInstruction(MachineInstr *MI,
492                                           unsigned Count) {
493  // Update liveness.
494  // Proceding upwards, registers that are defed but not used in this
495  // instruction are now dead.
496  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
497    MachineOperand &MO = MI->getOperand(i);
498    if (!MO.isReg()) continue;
499    unsigned Reg = MO.getReg();
500    if (Reg == 0) continue;
501    if (!MO.isDef()) continue;
502    // Ignore two-addr defs.
503    if (MI->isRegReDefinedByTwoAddr(i)) continue;
504
505    DefIndices[Reg] = Count;
506    KillIndices[Reg] = ~0u;
507          assert(((KillIndices[Reg] == ~0u) !=
508                  (DefIndices[Reg] == ~0u)) &&
509               "Kill and Def maps aren't consistent for Reg!");
510    Classes[Reg] = 0;
511    RegRefs.erase(Reg);
512    // Repeat, for all subregs.
513    for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
514         *Subreg; ++Subreg) {
515      unsigned SubregReg = *Subreg;
516      DefIndices[SubregReg] = Count;
517      KillIndices[SubregReg] = ~0u;
518      Classes[SubregReg] = 0;
519      RegRefs.erase(SubregReg);
520    }
521    // Conservatively mark super-registers as unusable.
522    for (const unsigned *Super = TRI->getSuperRegisters(Reg);
523         *Super; ++Super) {
524      unsigned SuperReg = *Super;
525      Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
526    }
527  }
528  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
529    MachineOperand &MO = MI->getOperand(i);
530    if (!MO.isReg()) continue;
531    unsigned Reg = MO.getReg();
532    if (Reg == 0) continue;
533    if (!MO.isUse()) continue;
534
535    const TargetRegisterClass *NewRC =
536      getInstrOperandRegClass(TRI, MI->getDesc(), i);
537
538    // For now, only allow the register to be changed if its register
539    // class is consistent across all uses.
540    if (!Classes[Reg] && NewRC)
541      Classes[Reg] = NewRC;
542    else if (!NewRC || Classes[Reg] != NewRC)
543      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
544
545    RegRefs.insert(std::make_pair(Reg, &MO));
546
547    // It wasn't previously live but now it is, this is a kill.
548    if (KillIndices[Reg] == ~0u) {
549      KillIndices[Reg] = Count;
550      DefIndices[Reg] = ~0u;
551          assert(((KillIndices[Reg] == ~0u) !=
552                  (DefIndices[Reg] == ~0u)) &&
553               "Kill and Def maps aren't consistent for Reg!");
554    }
555    // Repeat, for all aliases.
556    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
557      unsigned AliasReg = *Alias;
558      if (KillIndices[AliasReg] == ~0u) {
559        KillIndices[AliasReg] = Count;
560        DefIndices[AliasReg] = ~0u;
561      }
562    }
563  }
564}
565
566/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
567/// of the ScheduleDAG and break them by renaming registers.
568///
569bool SchedulePostRATDList::BreakAntiDependencies() {
570  // The code below assumes that there is at least one instruction,
571  // so just duck out immediately if the block is empty.
572  if (SUnits.empty()) return false;
573
574  // Find the node at the bottom of the critical path.
575  SUnit *Max = 0;
576  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
577    SUnit *SU = &SUnits[i];
578    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
579      Max = SU;
580  }
581
582  DOUT << "Critical path has total latency "
583       << (Max->getDepth() + Max->Latency) << "\n";
584
585  // Track progress along the critical path through the SUnit graph as we walk
586  // the instructions.
587  SUnit *CriticalPathSU = Max;
588  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
589
590  // Consider this pattern:
591  //   A = ...
592  //   ... = A
593  //   A = ...
594  //   ... = A
595  //   A = ...
596  //   ... = A
597  //   A = ...
598  //   ... = A
599  // There are three anti-dependencies here, and without special care,
600  // we'd break all of them using the same register:
601  //   A = ...
602  //   ... = A
603  //   B = ...
604  //   ... = B
605  //   B = ...
606  //   ... = B
607  //   B = ...
608  //   ... = B
609  // because at each anti-dependence, B is the first register that
610  // isn't A which is free.  This re-introduces anti-dependencies
611  // at all but one of the original anti-dependencies that we were
612  // trying to break.  To avoid this, keep track of the most recent
613  // register that each register was replaced with, avoid avoid
614  // using it to repair an anti-dependence on the same register.
615  // This lets us produce this:
616  //   A = ...
617  //   ... = A
618  //   B = ...
619  //   ... = B
620  //   C = ...
621  //   ... = C
622  //   B = ...
623  //   ... = B
624  // This still has an anti-dependence on B, but at least it isn't on the
625  // original critical path.
626  //
627  // TODO: If we tracked more than one register here, we could potentially
628  // fix that remaining critical edge too. This is a little more involved,
629  // because unlike the most recent register, less recent registers should
630  // still be considered, though only if no other registers are available.
631  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
632
633  // Attempt to break anti-dependence edges on the critical path. Walk the
634  // instructions from the bottom up, tracking information about liveness
635  // as we go to help determine which registers are available.
636  bool Changed = false;
637  unsigned Count = InsertPosIndex - 1;
638  for (MachineBasicBlock::iterator I = InsertPos, E = Begin;
639       I != E; --Count) {
640    MachineInstr *MI = --I;
641
642    // After regalloc, IMPLICIT_DEF instructions aren't safe to treat as
643    // dependence-breaking. In the case of an INSERT_SUBREG, the IMPLICIT_DEF
644    // is left behind appearing to clobber the super-register, while the
645    // subregister needs to remain live. So we just ignore them.
646    if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
647      continue;
648
649    // Check if this instruction has a dependence on the critical path that
650    // is an anti-dependence that we may be able to break. If it is, set
651    // AntiDepReg to the non-zero register associated with the anti-dependence.
652    //
653    // We limit our attention to the critical path as a heuristic to avoid
654    // breaking anti-dependence edges that aren't going to significantly
655    // impact the overall schedule. There are a limited number of registers
656    // and we want to save them for the important edges.
657    //
658    // TODO: Instructions with multiple defs could have multiple
659    // anti-dependencies. The current code here only knows how to break one
660    // edge per instruction. Note that we'd have to be able to break all of
661    // the anti-dependencies in an instruction in order to be effective.
662    unsigned AntiDepReg = 0;
663    if (MI == CriticalPathMI) {
664      if (SDep *Edge = CriticalPathStep(CriticalPathSU)) {
665        SUnit *NextSU = Edge->getSUnit();
666
667        // Only consider anti-dependence edges.
668        if (Edge->getKind() == SDep::Anti) {
669          AntiDepReg = Edge->getReg();
670          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
671          // Don't break anti-dependencies on non-allocatable registers.
672          if (!AllocatableSet.test(AntiDepReg))
673            AntiDepReg = 0;
674          else {
675            // If the SUnit has other dependencies on the SUnit that it
676            // anti-depends on, don't bother breaking the anti-dependency
677            // since those edges would prevent such units from being
678            // scheduled past each other regardless.
679            //
680            // Also, if there are dependencies on other SUnits with the
681            // same register as the anti-dependency, don't attempt to
682            // break it.
683            for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(),
684                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
685              if (P->getSUnit() == NextSU ?
686                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
687                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
688                AntiDepReg = 0;
689                break;
690              }
691          }
692        }
693        CriticalPathSU = NextSU;
694        CriticalPathMI = CriticalPathSU->getInstr();
695      } else {
696        // We've reached the end of the critical path.
697        CriticalPathSU = 0;
698        CriticalPathMI = 0;
699      }
700    }
701
702    PrescanInstruction(MI);
703
704    // If this instruction has a use of AntiDepReg, breaking it
705    // is invalid.
706    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
707      MachineOperand &MO = MI->getOperand(i);
708      if (!MO.isReg()) continue;
709      unsigned Reg = MO.getReg();
710      if (Reg == 0) continue;
711      if (MO.isUse() && AntiDepReg == Reg) {
712        AntiDepReg = 0;
713        break;
714      }
715    }
716
717    // Determine AntiDepReg's register class, if it is live and is
718    // consistently used within a single class.
719    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
720    assert((AntiDepReg == 0 || RC != NULL) &&
721           "Register should be live if it's causing an anti-dependence!");
722    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
723      AntiDepReg = 0;
724
725    // Look for a suitable register to use to break the anti-depenence.
726    //
727    // TODO: Instead of picking the first free register, consider which might
728    // be the best.
729    if (AntiDepReg != 0) {
730      for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
731           RE = RC->allocation_order_end(MF); R != RE; ++R) {
732        unsigned NewReg = *R;
733        // Don't replace a register with itself.
734        if (NewReg == AntiDepReg) continue;
735        // Don't replace a register with one that was recently used to repair
736        // an anti-dependence with this AntiDepReg, because that would
737        // re-introduce that anti-dependence.
738        if (NewReg == LastNewReg[AntiDepReg]) continue;
739        // If NewReg is dead and NewReg's most recent def is not before
740        // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
741        assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
742               "Kill and Def maps aren't consistent for AntiDepReg!");
743        assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
744               "Kill and Def maps aren't consistent for NewReg!");
745        if (KillIndices[NewReg] == ~0u &&
746            Classes[NewReg] != reinterpret_cast<TargetRegisterClass *>(-1) &&
747            KillIndices[AntiDepReg] <= DefIndices[NewReg]) {
748          DOUT << "Breaking anti-dependence edge on "
749               << TRI->getName(AntiDepReg)
750               << " with " << RegRefs.count(AntiDepReg) << " references"
751               << " using " << TRI->getName(NewReg) << "!\n";
752
753          // Update the references to the old register to refer to the new
754          // register.
755          std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
756                    std::multimap<unsigned, MachineOperand *>::iterator>
757             Range = RegRefs.equal_range(AntiDepReg);
758          for (std::multimap<unsigned, MachineOperand *>::iterator
759               Q = Range.first, QE = Range.second; Q != QE; ++Q)
760            Q->second->setReg(NewReg);
761
762          // We just went back in time and modified history; the
763          // liveness information for the anti-depenence reg is now
764          // inconsistent. Set the state as if it were dead.
765          Classes[NewReg] = Classes[AntiDepReg];
766          DefIndices[NewReg] = DefIndices[AntiDepReg];
767          KillIndices[NewReg] = KillIndices[AntiDepReg];
768          assert(((KillIndices[NewReg] == ~0u) !=
769                  (DefIndices[NewReg] == ~0u)) &&
770               "Kill and Def maps aren't consistent for NewReg!");
771
772          Classes[AntiDepReg] = 0;
773          DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
774          KillIndices[AntiDepReg] = ~0u;
775          assert(((KillIndices[AntiDepReg] == ~0u) !=
776                  (DefIndices[AntiDepReg] == ~0u)) &&
777               "Kill and Def maps aren't consistent for AntiDepReg!");
778
779          RegRefs.erase(AntiDepReg);
780          Changed = true;
781          LastNewReg[AntiDepReg] = NewReg;
782          break;
783        }
784      }
785    }
786
787    ScanInstruction(MI, Count);
788  }
789
790  return Changed;
791}
792
793//===----------------------------------------------------------------------===//
794//  Top-Down Scheduling
795//===----------------------------------------------------------------------===//
796
797/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
798/// the PendingQueue if the count reaches zero. Also update its cycle bound.
799void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
800  SUnit *SuccSU = SuccEdge->getSUnit();
801  --SuccSU->NumPredsLeft;
802
803#ifndef NDEBUG
804  if (SuccSU->NumPredsLeft < 0) {
805    cerr << "*** Scheduling failed! ***\n";
806    SuccSU->dump(this);
807    cerr << " has been released too many times!\n";
808    assert(0);
809  }
810#endif
811
812  // Compute how many cycles it will be before this actually becomes
813  // available.  This is the max of the start time of all predecessors plus
814  // their latencies.
815  SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
816
817  // If all the node's predecessors are scheduled, this node is ready
818  // to be scheduled. Ignore the special ExitSU node.
819  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
820    PendingQueue.push_back(SuccSU);
821}
822
823/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
824void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
825  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
826       I != E; ++I)
827    ReleaseSucc(SU, &*I);
828}
829
830/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
831/// count of its successors. If a successor pending count is zero, add it to
832/// the Available queue.
833void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
834  DOUT << "*** Scheduling [" << CurCycle << "]: ";
835  DEBUG(SU->dump(this));
836
837  Sequence.push_back(SU);
838  assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
839  SU->setDepthToAtLeast(CurCycle);
840
841  ReleaseSuccessors(SU);
842  SU->isScheduled = true;
843  AvailableQueue.ScheduledNode(SU);
844}
845
846/// ListScheduleTopDown - The main loop of list scheduling for top-down
847/// schedulers.
848void SchedulePostRATDList::ListScheduleTopDown() {
849  unsigned CurCycle = 0;
850
851  // Release any successors of the special Entry node.
852  ReleaseSuccessors(&EntrySU);
853
854  // All leaves to Available queue.
855  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
856    // It is available if it has no predecessors.
857    if (SUnits[i].Preds.empty()) {
858      AvailableQueue.push(&SUnits[i]);
859      SUnits[i].isAvailable = true;
860    }
861  }
862
863  // While Available queue is not empty, grab the node with the highest
864  // priority. If it is not ready put it back.  Schedule the node.
865  std::vector<SUnit*> NotReady;
866  Sequence.reserve(SUnits.size());
867  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
868    // Check to see if any of the pending instructions are ready to issue.  If
869    // so, add them to the available queue.
870    unsigned MinDepth = ~0u;
871    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
872      if (PendingQueue[i]->getDepth() <= CurCycle) {
873        AvailableQueue.push(PendingQueue[i]);
874        PendingQueue[i]->isAvailable = true;
875        PendingQueue[i] = PendingQueue.back();
876        PendingQueue.pop_back();
877        --i; --e;
878      } else if (PendingQueue[i]->getDepth() < MinDepth)
879        MinDepth = PendingQueue[i]->getDepth();
880    }
881
882    // If there are no instructions available, don't try to issue anything, and
883    // don't advance the hazard recognizer.
884    if (AvailableQueue.empty()) {
885      CurCycle = MinDepth != ~0u ? MinDepth : CurCycle + 1;
886      continue;
887    }
888
889    SUnit *FoundSUnit = 0;
890
891    bool HasNoopHazards = false;
892    while (!AvailableQueue.empty()) {
893      SUnit *CurSUnit = AvailableQueue.pop();
894
895      ScheduleHazardRecognizer::HazardType HT =
896        HazardRec->getHazardType(CurSUnit);
897      if (HT == ScheduleHazardRecognizer::NoHazard) {
898        FoundSUnit = CurSUnit;
899        break;
900      }
901
902      // Remember if this is a noop hazard.
903      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
904
905      NotReady.push_back(CurSUnit);
906    }
907
908    // Add the nodes that aren't ready back onto the available list.
909    if (!NotReady.empty()) {
910      AvailableQueue.push_all(NotReady);
911      NotReady.clear();
912    }
913
914    // If we found a node to schedule, do it now.
915    if (FoundSUnit) {
916      ScheduleNodeTopDown(FoundSUnit, CurCycle);
917      HazardRec->EmitInstruction(FoundSUnit);
918
919      // If this is a pseudo-op node, we don't want to increment the current
920      // cycle.
921      if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
922        ++CurCycle;
923    } else if (!HasNoopHazards) {
924      // Otherwise, we have a pipeline stall, but no other problem, just advance
925      // the current cycle and try again.
926      DOUT << "*** Advancing cycle, no work to do\n";
927      HazardRec->AdvanceCycle();
928      ++NumStalls;
929      ++CurCycle;
930    } else {
931      // Otherwise, we have no instructions to issue and we have instructions
932      // that will fault if we don't do this right.  This is the case for
933      // processors without pipeline interlocks and other cases.
934      DOUT << "*** Emitting noop\n";
935      HazardRec->EmitNoop();
936      Sequence.push_back(0);   // NULL here means noop
937      ++NumNoops;
938      ++CurCycle;
939    }
940  }
941
942#ifndef NDEBUG
943  VerifySchedule(/*isBottomUp=*/false);
944#endif
945}
946
947//===----------------------------------------------------------------------===//
948//                         Public Constructor Functions
949//===----------------------------------------------------------------------===//
950
951FunctionPass *llvm::createPostRAScheduler() {
952  return new PostRAScheduler();
953}
954