PostRASchedulerList.cpp revision 1dd8c8560d45d36a8e507cd014352f1d313f9f9e
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "AntiDepBreaker.h"
23#include "AggressiveAntiDepBreaker.h"
24#include "CriticalAntiDepBreaker.h"
25#include "RegisterClassInfo.h"
26#include "ScheduleDAGInstrs.h"
27#include "llvm/CodeGen/Passes.h"
28#include "llvm/CodeGen/LatencyPriorityQueue.h"
29#include "llvm/CodeGen/SchedulerRegistry.h"
30#include "llvm/CodeGen/MachineDominators.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunctionPass.h"
33#include "llvm/CodeGen/MachineLoopInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/Target/TargetLowering.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetSubtargetInfo.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/ADT/BitVector.h"
47#include "llvm/ADT/Statistic.h"
48#include <set>
49using namespace llvm;
50
51STATISTIC(NumNoops, "Number of noops inserted");
52STATISTIC(NumStalls, "Number of pipeline stalls");
53STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
54
55// Post-RA scheduling is enabled with
56// TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
57// override the target.
58static cl::opt<bool>
59EnablePostRAScheduler("post-RA-scheduler",
60                       cl::desc("Enable scheduling after register allocation"),
61                       cl::init(false), cl::Hidden);
62static cl::opt<std::string>
63EnableAntiDepBreaking("break-anti-dependencies",
64                      cl::desc("Break post-RA scheduling anti-dependencies: "
65                               "\"critical\", \"all\", or \"none\""),
66                      cl::init("none"), cl::Hidden);
67
68// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
69static cl::opt<int>
70DebugDiv("postra-sched-debugdiv",
71                      cl::desc("Debug control MBBs that are scheduled"),
72                      cl::init(0), cl::Hidden);
73static cl::opt<int>
74DebugMod("postra-sched-debugmod",
75                      cl::desc("Debug control MBBs that are scheduled"),
76                      cl::init(0), cl::Hidden);
77
78AntiDepBreaker::~AntiDepBreaker() { }
79
80namespace {
81  class PostRAScheduler : public MachineFunctionPass {
82    AliasAnalysis *AA;
83    const TargetInstrInfo *TII;
84    RegisterClassInfo RegClassInfo;
85
86  public:
87    static char ID;
88    PostRAScheduler() : MachineFunctionPass(ID) {}
89
90    void getAnalysisUsage(AnalysisUsage &AU) const {
91      AU.setPreservesCFG();
92      AU.addRequired<AliasAnalysis>();
93      AU.addRequired<TargetPassConfig>();
94      AU.addRequired<MachineDominatorTree>();
95      AU.addPreserved<MachineDominatorTree>();
96      AU.addRequired<MachineLoopInfo>();
97      AU.addPreserved<MachineLoopInfo>();
98      MachineFunctionPass::getAnalysisUsage(AU);
99    }
100
101    bool runOnMachineFunction(MachineFunction &Fn);
102  };
103  char PostRAScheduler::ID = 0;
104
105  class SchedulePostRATDList : public ScheduleDAGInstrs {
106    /// AvailableQueue - The priority queue to use for the available SUnits.
107    ///
108    LatencyPriorityQueue AvailableQueue;
109
110    /// PendingQueue - This contains all of the instructions whose operands have
111    /// been issued, but their results are not ready yet (due to the latency of
112    /// the operation).  Once the operands becomes available, the instruction is
113    /// added to the AvailableQueue.
114    std::vector<SUnit*> PendingQueue;
115
116    /// Topo - A topological ordering for SUnits.
117    ScheduleDAGTopologicalSort Topo;
118
119    /// HazardRec - The hazard recognizer to use.
120    ScheduleHazardRecognizer *HazardRec;
121
122    /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
123    AntiDepBreaker *AntiDepBreak;
124
125    /// AA - AliasAnalysis for making memory reference queries.
126    AliasAnalysis *AA;
127
128    /// KillIndices - The index of the most recent kill (proceding bottom-up),
129    /// or ~0u if the register is not live.
130    std::vector<unsigned> KillIndices;
131
132  public:
133    SchedulePostRATDList(
134      MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
135      AliasAnalysis *AA, const RegisterClassInfo&,
136      TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
137      SmallVectorImpl<TargetRegisterClass*> &CriticalPathRCs);
138
139    ~SchedulePostRATDList();
140
141    /// StartBlock - Initialize register live-range state for scheduling in
142    /// this block.
143    ///
144    void StartBlock(MachineBasicBlock *BB);
145
146    /// Schedule - Schedule the instruction range using list scheduling.
147    ///
148    void Schedule();
149
150    /// Observe - Update liveness information to account for the current
151    /// instruction, which will not be scheduled.
152    ///
153    void Observe(MachineInstr *MI, unsigned Count);
154
155    /// FinishBlock - Clean up register live-range state.
156    ///
157    void FinishBlock();
158
159    /// FixupKills - Fix register kill flags that have been made
160    /// invalid due to scheduling
161    ///
162    void FixupKills(MachineBasicBlock *MBB);
163
164  private:
165    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
166    void ReleaseSuccessors(SUnit *SU);
167    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
168    void ListScheduleTopDown();
169    void StartBlockForKills(MachineBasicBlock *BB);
170
171    // ToggleKillFlag - Toggle a register operand kill flag. Other
172    // adjustments may be made to the instruction if necessary. Return
173    // true if the operand has been deleted, false if not.
174    bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
175  };
176}
177
178char &llvm::PostRASchedulerID = PostRAScheduler::ID;
179
180INITIALIZE_PASS(PostRAScheduler, "post-RA-sched",
181                "Post RA top-down list latency scheduler", false, false)
182
183SchedulePostRATDList::SchedulePostRATDList(
184  MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
185  AliasAnalysis *AA, const RegisterClassInfo &RCI,
186  TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
187  SmallVectorImpl<TargetRegisterClass*> &CriticalPathRCs)
188  : ScheduleDAGInstrs(MF, MLI, MDT, /*IsPostRA=*/true), Topo(SUnits), AA(AA),
189    KillIndices(TRI->getNumRegs())
190{
191  const TargetMachine &TM = MF.getTarget();
192  const InstrItineraryData *InstrItins = TM.getInstrItineraryData();
193  HazardRec =
194    TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins, this);
195  AntiDepBreak =
196    ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
197     (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
198     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
199      (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : NULL));
200}
201
202SchedulePostRATDList::~SchedulePostRATDList() {
203  delete HazardRec;
204  delete AntiDepBreak;
205}
206
207bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
208  TII = Fn.getTarget().getInstrInfo();
209  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
210  MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
211  AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
212  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
213
214  RegClassInfo.runOnMachineFunction(Fn);
215
216  // Check for explicit enable/disable of post-ra scheduling.
217  TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
218    TargetSubtargetInfo::ANTIDEP_NONE;
219  SmallVector<TargetRegisterClass*, 4> CriticalPathRCs;
220  if (EnablePostRAScheduler.getPosition() > 0) {
221    if (!EnablePostRAScheduler)
222      return false;
223  } else {
224    // Check that post-RA scheduling is enabled for this target.
225    // This may upgrade the AntiDepMode.
226    const TargetSubtargetInfo &ST = Fn.getTarget().getSubtarget<TargetSubtargetInfo>();
227    if (!ST.enablePostRAScheduler(PassConfig->getOptLevel(), AntiDepMode,
228                                  CriticalPathRCs))
229      return false;
230  }
231
232  // Check for antidep breaking override...
233  if (EnableAntiDepBreaking.getPosition() > 0) {
234    AntiDepMode = (EnableAntiDepBreaking == "all")
235      ? TargetSubtargetInfo::ANTIDEP_ALL
236      : ((EnableAntiDepBreaking == "critical")
237         ? TargetSubtargetInfo::ANTIDEP_CRITICAL
238         : TargetSubtargetInfo::ANTIDEP_NONE);
239  }
240
241  DEBUG(dbgs() << "PostRAScheduler\n");
242
243  SchedulePostRATDList Scheduler(Fn, MLI, MDT, AA, RegClassInfo, AntiDepMode,
244                                 CriticalPathRCs);
245
246  // Loop over all of the basic blocks
247  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
248       MBB != MBBe; ++MBB) {
249#ifndef NDEBUG
250    // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
251    if (DebugDiv > 0) {
252      static int bbcnt = 0;
253      if (bbcnt++ % DebugDiv != DebugMod)
254        continue;
255      dbgs() << "*** DEBUG scheduling " << Fn.getFunction()->getName()
256             << ":BB#" << MBB->getNumber() << " ***\n";
257    }
258#endif
259
260    // Initialize register live-range state for scheduling in this block.
261    Scheduler.StartBlock(MBB);
262
263    // Schedule each sequence of instructions not interrupted by a label
264    // or anything else that effectively needs to shut down scheduling.
265    MachineBasicBlock::iterator Current = MBB->end();
266    unsigned Count = MBB->size(), CurrentCount = Count;
267    for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
268      MachineInstr *MI = llvm::prior(I);
269      if (TII->isSchedulingBoundary(MI, MBB, Fn)) {
270        Scheduler.Run(MBB, I, Current, CurrentCount);
271        Scheduler.EmitSchedule();
272        Current = MI;
273        CurrentCount = Count - 1;
274        Scheduler.Observe(MI, CurrentCount);
275      }
276      I = MI;
277      --Count;
278      if (MI->isBundle())
279        Count -= MI->getBundleSize();
280    }
281    assert(Count == 0 && "Instruction count mismatch!");
282    assert((MBB->begin() == Current || CurrentCount != 0) &&
283           "Instruction count mismatch!");
284    Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
285    Scheduler.EmitSchedule();
286
287    // Clean up register live-range state.
288    Scheduler.FinishBlock();
289
290    // Update register kills
291    Scheduler.FixupKills(MBB);
292  }
293
294  return true;
295}
296
297/// StartBlock - Initialize register live-range state for scheduling in
298/// this block.
299///
300void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
301  // Call the superclass.
302  ScheduleDAGInstrs::StartBlock(BB);
303
304  // Reset the hazard recognizer and anti-dep breaker.
305  HazardRec->Reset();
306  if (AntiDepBreak != NULL)
307    AntiDepBreak->StartBlock(BB);
308}
309
310/// Schedule - Schedule the instruction range using list scheduling.
311///
312void SchedulePostRATDList::Schedule() {
313  // Build the scheduling graph.
314  BuildSchedGraph(AA);
315
316  if (AntiDepBreak != NULL) {
317    unsigned Broken =
318      AntiDepBreak->BreakAntiDependencies(SUnits, Begin, InsertPos,
319                                          InsertPosIndex, DbgValues);
320
321    if (Broken != 0) {
322      // We made changes. Update the dependency graph.
323      // Theoretically we could update the graph in place:
324      // When a live range is changed to use a different register, remove
325      // the def's anti-dependence *and* output-dependence edges due to
326      // that register, and add new anti-dependence and output-dependence
327      // edges based on the next live range of the register.
328      SUnits.clear();
329      Sequence.clear();
330      EntrySU = SUnit();
331      ExitSU = SUnit();
332      BuildSchedGraph(AA);
333
334      NumFixedAnti += Broken;
335    }
336  }
337
338  DEBUG(dbgs() << "********** List Scheduling **********\n");
339  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
340          SUnits[su].dumpAll(this));
341
342  AvailableQueue.initNodes(SUnits);
343  ListScheduleTopDown();
344  AvailableQueue.releaseState();
345}
346
347/// Observe - Update liveness information to account for the current
348/// instruction, which will not be scheduled.
349///
350void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
351  if (AntiDepBreak != NULL)
352    AntiDepBreak->Observe(MI, Count, InsertPosIndex);
353}
354
355/// FinishBlock - Clean up register live-range state.
356///
357void SchedulePostRATDList::FinishBlock() {
358  if (AntiDepBreak != NULL)
359    AntiDepBreak->FinishBlock();
360
361  // Call the superclass.
362  ScheduleDAGInstrs::FinishBlock();
363}
364
365/// StartBlockForKills - Initialize register live-range state for updating kills
366///
367void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
368  // Initialize the indices to indicate that no registers are live.
369  for (unsigned i = 0; i < TRI->getNumRegs(); ++i)
370    KillIndices[i] = ~0u;
371
372  // Determine the live-out physregs for this block.
373  if (!BB->empty() && BB->back().isReturn()) {
374    // In a return block, examine the function live-out regs.
375    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
376           E = MRI.liveout_end(); I != E; ++I) {
377      unsigned Reg = *I;
378      KillIndices[Reg] = BB->size();
379      // Repeat, for all subregs.
380      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
381           *Subreg; ++Subreg) {
382        KillIndices[*Subreg] = BB->size();
383      }
384    }
385  }
386  else {
387    // In a non-return block, examine the live-in regs of all successors.
388    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
389           SE = BB->succ_end(); SI != SE; ++SI) {
390      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
391             E = (*SI)->livein_end(); I != E; ++I) {
392        unsigned Reg = *I;
393        KillIndices[Reg] = BB->size();
394        // Repeat, for all subregs.
395        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
396             *Subreg; ++Subreg) {
397          KillIndices[*Subreg] = BB->size();
398        }
399      }
400    }
401  }
402}
403
404bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
405                                          MachineOperand &MO) {
406  // Setting kill flag...
407  if (!MO.isKill()) {
408    MO.setIsKill(true);
409    return false;
410  }
411
412  // If MO itself is live, clear the kill flag...
413  if (KillIndices[MO.getReg()] != ~0u) {
414    MO.setIsKill(false);
415    return false;
416  }
417
418  // If any subreg of MO is live, then create an imp-def for that
419  // subreg and keep MO marked as killed.
420  MO.setIsKill(false);
421  bool AllDead = true;
422  const unsigned SuperReg = MO.getReg();
423  for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg);
424       *Subreg; ++Subreg) {
425    if (KillIndices[*Subreg] != ~0u) {
426      MI->addOperand(MachineOperand::CreateReg(*Subreg,
427                                               true  /*IsDef*/,
428                                               true  /*IsImp*/,
429                                               false /*IsKill*/,
430                                               false /*IsDead*/));
431      AllDead = false;
432    }
433  }
434
435  if(AllDead)
436    MO.setIsKill(true);
437  return false;
438}
439
440/// FixupKills - Fix the register kill flags, they may have been made
441/// incorrect by instruction reordering.
442///
443void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
444  DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
445
446  std::set<unsigned> killedRegs;
447  BitVector ReservedRegs = TRI->getReservedRegs(MF);
448
449  StartBlockForKills(MBB);
450
451  // Examine block from end to start...
452  unsigned Count = MBB->size();
453  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
454       I != E; --Count) {
455    MachineInstr *MI = --I;
456    if (MI->isDebugValue())
457      continue;
458
459    // Update liveness.  Registers that are defed but not used in this
460    // instruction are now dead. Mark register and all subregs as they
461    // are completely defined.
462    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
463      MachineOperand &MO = MI->getOperand(i);
464      if (!MO.isReg()) continue;
465      unsigned Reg = MO.getReg();
466      if (Reg == 0) continue;
467      if (!MO.isDef()) continue;
468      // Ignore two-addr defs.
469      if (MI->isRegTiedToUseOperand(i)) continue;
470
471      KillIndices[Reg] = ~0u;
472
473      // Repeat for all subregs.
474      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
475           *Subreg; ++Subreg) {
476        KillIndices[*Subreg] = ~0u;
477      }
478    }
479
480    // Examine all used registers and set/clear kill flag. When a
481    // register is used multiple times we only set the kill flag on
482    // the first use.
483    killedRegs.clear();
484    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
485      MachineOperand &MO = MI->getOperand(i);
486      if (!MO.isReg() || !MO.isUse()) continue;
487      unsigned Reg = MO.getReg();
488      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
489
490      bool kill = false;
491      if (killedRegs.find(Reg) == killedRegs.end()) {
492        kill = true;
493        // A register is not killed if any subregs are live...
494        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
495             *Subreg; ++Subreg) {
496          if (KillIndices[*Subreg] != ~0u) {
497            kill = false;
498            break;
499          }
500        }
501
502        // If subreg is not live, then register is killed if it became
503        // live in this instruction
504        if (kill)
505          kill = (KillIndices[Reg] == ~0u);
506      }
507
508      if (MO.isKill() != kill) {
509        DEBUG(dbgs() << "Fixing " << MO << " in ");
510        // Warning: ToggleKillFlag may invalidate MO.
511        ToggleKillFlag(MI, MO);
512        DEBUG(MI->dump());
513      }
514
515      killedRegs.insert(Reg);
516    }
517
518    // Mark any used register (that is not using undef) and subregs as
519    // now live...
520    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
521      MachineOperand &MO = MI->getOperand(i);
522      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
523      unsigned Reg = MO.getReg();
524      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
525
526      KillIndices[Reg] = Count;
527
528      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
529           *Subreg; ++Subreg) {
530        KillIndices[*Subreg] = Count;
531      }
532    }
533  }
534}
535
536//===----------------------------------------------------------------------===//
537//  Top-Down Scheduling
538//===----------------------------------------------------------------------===//
539
540/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
541/// the PendingQueue if the count reaches zero. Also update its cycle bound.
542void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
543  SUnit *SuccSU = SuccEdge->getSUnit();
544
545#ifndef NDEBUG
546  if (SuccSU->NumPredsLeft == 0) {
547    dbgs() << "*** Scheduling failed! ***\n";
548    SuccSU->dump(this);
549    dbgs() << " has been released too many times!\n";
550    llvm_unreachable(0);
551  }
552#endif
553  --SuccSU->NumPredsLeft;
554
555  // Standard scheduler algorithms will recompute the depth of the successor
556  // here as such:
557  //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
558  //
559  // However, we lazily compute node depth instead. Note that
560  // ScheduleNodeTopDown has already updated the depth of this node which causes
561  // all descendents to be marked dirty. Setting the successor depth explicitly
562  // here would cause depth to be recomputed for all its ancestors. If the
563  // successor is not yet ready (because of a transitively redundant edge) then
564  // this causes depth computation to be quadratic in the size of the DAG.
565
566  // If all the node's predecessors are scheduled, this node is ready
567  // to be scheduled. Ignore the special ExitSU node.
568  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
569    PendingQueue.push_back(SuccSU);
570}
571
572/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
573void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
574  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
575       I != E; ++I) {
576    ReleaseSucc(SU, &*I);
577  }
578}
579
580/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
581/// count of its successors. If a successor pending count is zero, add it to
582/// the Available queue.
583void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
584  DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
585  DEBUG(SU->dump(this));
586
587  Sequence.push_back(SU);
588  assert(CurCycle >= SU->getDepth() &&
589         "Node scheduled above its depth!");
590  SU->setDepthToAtLeast(CurCycle);
591
592  ReleaseSuccessors(SU);
593  SU->isScheduled = true;
594  AvailableQueue.ScheduledNode(SU);
595}
596
597/// ListScheduleTopDown - The main loop of list scheduling for top-down
598/// schedulers.
599void SchedulePostRATDList::ListScheduleTopDown() {
600  unsigned CurCycle = 0;
601
602  // We're scheduling top-down but we're visiting the regions in
603  // bottom-up order, so we don't know the hazards at the start of a
604  // region. So assume no hazards (this should usually be ok as most
605  // blocks are a single region).
606  HazardRec->Reset();
607
608  // Release any successors of the special Entry node.
609  ReleaseSuccessors(&EntrySU);
610
611  // Add all leaves to Available queue.
612  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
613    // It is available if it has no predecessors.
614    bool available = SUnits[i].Preds.empty();
615    if (available) {
616      AvailableQueue.push(&SUnits[i]);
617      SUnits[i].isAvailable = true;
618    }
619  }
620
621  // In any cycle where we can't schedule any instructions, we must
622  // stall or emit a noop, depending on the target.
623  bool CycleHasInsts = false;
624
625  // While Available queue is not empty, grab the node with the highest
626  // priority. If it is not ready put it back.  Schedule the node.
627  std::vector<SUnit*> NotReady;
628  Sequence.reserve(SUnits.size());
629  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
630    // Check to see if any of the pending instructions are ready to issue.  If
631    // so, add them to the available queue.
632    unsigned MinDepth = ~0u;
633    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
634      if (PendingQueue[i]->getDepth() <= CurCycle) {
635        AvailableQueue.push(PendingQueue[i]);
636        PendingQueue[i]->isAvailable = true;
637        PendingQueue[i] = PendingQueue.back();
638        PendingQueue.pop_back();
639        --i; --e;
640      } else if (PendingQueue[i]->getDepth() < MinDepth)
641        MinDepth = PendingQueue[i]->getDepth();
642    }
643
644    DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));
645
646    SUnit *FoundSUnit = 0;
647    bool HasNoopHazards = false;
648    while (!AvailableQueue.empty()) {
649      SUnit *CurSUnit = AvailableQueue.pop();
650
651      ScheduleHazardRecognizer::HazardType HT =
652        HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
653      if (HT == ScheduleHazardRecognizer::NoHazard) {
654        FoundSUnit = CurSUnit;
655        break;
656      }
657
658      // Remember if this is a noop hazard.
659      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
660
661      NotReady.push_back(CurSUnit);
662    }
663
664    // Add the nodes that aren't ready back onto the available list.
665    if (!NotReady.empty()) {
666      AvailableQueue.push_all(NotReady);
667      NotReady.clear();
668    }
669
670    // If we found a node to schedule...
671    if (FoundSUnit) {
672      // ... schedule the node...
673      ScheduleNodeTopDown(FoundSUnit, CurCycle);
674      HazardRec->EmitInstruction(FoundSUnit);
675      CycleHasInsts = true;
676      if (HazardRec->atIssueLimit()) {
677        DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
678        HazardRec->AdvanceCycle();
679        ++CurCycle;
680        CycleHasInsts = false;
681      }
682    } else {
683      if (CycleHasInsts) {
684        DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
685        HazardRec->AdvanceCycle();
686      } else if (!HasNoopHazards) {
687        // Otherwise, we have a pipeline stall, but no other problem,
688        // just advance the current cycle and try again.
689        DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
690        HazardRec->AdvanceCycle();
691        ++NumStalls;
692      } else {
693        // Otherwise, we have no instructions to issue and we have instructions
694        // that will fault if we don't do this right.  This is the case for
695        // processors without pipeline interlocks and other cases.
696        DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
697        HazardRec->EmitNoop();
698        Sequence.push_back(0);   // NULL here means noop
699        ++NumNoops;
700      }
701
702      ++CurCycle;
703      CycleHasInsts = false;
704    }
705  }
706
707#ifndef NDEBUG
708  VerifySchedule(/*isBottomUp=*/false);
709#endif
710}
711