PostRASchedulerList.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "llvm/CodeGen/Passes.h"
23#include "AggressiveAntiDepBreaker.h"
24#include "AntiDepBreaker.h"
25#include "CriticalAntiDepBreaker.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/Analysis/AliasAnalysis.h"
29#include "llvm/CodeGen/LatencyPriorityQueue.h"
30#include "llvm/CodeGen/MachineDominators.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunctionPass.h"
33#include "llvm/CodeGen/MachineLoopInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/RegisterClassInfo.h"
36#include "llvm/CodeGen/ScheduleDAGInstrs.h"
37#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetLowering.h"
45#include "llvm/Target/TargetMachine.h"
46#include "llvm/Target/TargetRegisterInfo.h"
47#include "llvm/Target/TargetSubtargetInfo.h"
48using namespace llvm;
49
50STATISTIC(NumNoops, "Number of noops inserted");
51STATISTIC(NumStalls, "Number of pipeline stalls");
52STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
53
54// Post-RA scheduling is enabled with
55// TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
56// override the target.
57static cl::opt<bool>
58EnablePostRAScheduler("post-RA-scheduler",
59                       cl::desc("Enable scheduling after register allocation"),
60                       cl::init(false), cl::Hidden);
61static cl::opt<std::string>
62EnableAntiDepBreaking("break-anti-dependencies",
63                      cl::desc("Break post-RA scheduling anti-dependencies: "
64                               "\"critical\", \"all\", or \"none\""),
65                      cl::init("none"), cl::Hidden);
66
67// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
68static cl::opt<int>
69DebugDiv("postra-sched-debugdiv",
70                      cl::desc("Debug control MBBs that are scheduled"),
71                      cl::init(0), cl::Hidden);
72static cl::opt<int>
73DebugMod("postra-sched-debugmod",
74                      cl::desc("Debug control MBBs that are scheduled"),
75                      cl::init(0), cl::Hidden);
76
77AntiDepBreaker::~AntiDepBreaker() { }
78
79namespace {
80  class PostRAScheduler : public MachineFunctionPass {
81    const TargetInstrInfo *TII;
82    RegisterClassInfo RegClassInfo;
83
84  public:
85    static char ID;
86    PostRAScheduler() : MachineFunctionPass(ID) {}
87
88    void getAnalysisUsage(AnalysisUsage &AU) const override {
89      AU.setPreservesCFG();
90      AU.addRequired<AliasAnalysis>();
91      AU.addRequired<TargetPassConfig>();
92      AU.addRequired<MachineDominatorTree>();
93      AU.addPreserved<MachineDominatorTree>();
94      AU.addRequired<MachineLoopInfo>();
95      AU.addPreserved<MachineLoopInfo>();
96      MachineFunctionPass::getAnalysisUsage(AU);
97    }
98
99    bool runOnMachineFunction(MachineFunction &Fn) override;
100  };
101  char PostRAScheduler::ID = 0;
102
103  class SchedulePostRATDList : public ScheduleDAGInstrs {
104    /// AvailableQueue - The priority queue to use for the available SUnits.
105    ///
106    LatencyPriorityQueue AvailableQueue;
107
108    /// PendingQueue - This contains all of the instructions whose operands have
109    /// been issued, but their results are not ready yet (due to the latency of
110    /// the operation).  Once the operands becomes available, the instruction is
111    /// added to the AvailableQueue.
112    std::vector<SUnit*> PendingQueue;
113
114    /// HazardRec - The hazard recognizer to use.
115    ScheduleHazardRecognizer *HazardRec;
116
117    /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
118    AntiDepBreaker *AntiDepBreak;
119
120    /// AA - AliasAnalysis for making memory reference queries.
121    AliasAnalysis *AA;
122
123    /// The schedule. Null SUnit*'s represent noop instructions.
124    std::vector<SUnit*> Sequence;
125
126    /// The index in BB of RegionEnd.
127    ///
128    /// This is the instruction number from the top of the current block, not
129    /// the SlotIndex. It is only used by the AntiDepBreaker.
130    unsigned EndIndex;
131
132  public:
133    SchedulePostRATDList(
134      MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
135      AliasAnalysis *AA, const RegisterClassInfo&,
136      TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
137      SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs);
138
139    ~SchedulePostRATDList();
140
141    /// startBlock - Initialize register live-range state for scheduling in
142    /// this block.
143    ///
144    void startBlock(MachineBasicBlock *BB) override;
145
146    // Set the index of RegionEnd within the current BB.
147    void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; }
148
149    /// Initialize the scheduler state for the next scheduling region.
150    void enterRegion(MachineBasicBlock *bb,
151                     MachineBasicBlock::iterator begin,
152                     MachineBasicBlock::iterator end,
153                     unsigned regioninstrs) override;
154
155    /// Notify that the scheduler has finished scheduling the current region.
156    void exitRegion() override;
157
158    /// Schedule - Schedule the instruction range using list scheduling.
159    ///
160    void schedule() override;
161
162    void EmitSchedule();
163
164    /// Observe - Update liveness information to account for the current
165    /// instruction, which will not be scheduled.
166    ///
167    void Observe(MachineInstr *MI, unsigned Count);
168
169    /// finishBlock - Clean up register live-range state.
170    ///
171    void finishBlock() override;
172
173  private:
174    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
175    void ReleaseSuccessors(SUnit *SU);
176    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
177    void ListScheduleTopDown();
178
179    void dumpSchedule() const;
180    void emitNoop(unsigned CurCycle);
181  };
182}
183
184char &llvm::PostRASchedulerID = PostRAScheduler::ID;
185
186INITIALIZE_PASS(PostRAScheduler, "post-RA-sched",
187                "Post RA top-down list latency scheduler", false, false)
188
189SchedulePostRATDList::SchedulePostRATDList(
190  MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
191  AliasAnalysis *AA, const RegisterClassInfo &RCI,
192  TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
193  SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs)
194  : ScheduleDAGInstrs(MF, MLI, MDT, /*IsPostRA=*/true), AA(AA), EndIndex(0) {
195
196  const TargetMachine &TM = MF.getTarget();
197  const InstrItineraryData *InstrItins = TM.getInstrItineraryData();
198  HazardRec =
199    TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins, this);
200
201  assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
202          MRI.tracksLiveness()) &&
203         "Live-ins must be accurate for anti-dependency breaking");
204  AntiDepBreak =
205    ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
206     (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
207     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
208      (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : NULL));
209}
210
211SchedulePostRATDList::~SchedulePostRATDList() {
212  delete HazardRec;
213  delete AntiDepBreak;
214}
215
216/// Initialize state associated with the next scheduling region.
217void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
218                 MachineBasicBlock::iterator begin,
219                 MachineBasicBlock::iterator end,
220                 unsigned regioninstrs) {
221  ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
222  Sequence.clear();
223}
224
225/// Print the schedule before exiting the region.
226void SchedulePostRATDList::exitRegion() {
227  DEBUG({
228      dbgs() << "*** Final schedule ***\n";
229      dumpSchedule();
230      dbgs() << '\n';
231    });
232  ScheduleDAGInstrs::exitRegion();
233}
234
235#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
236/// dumpSchedule - dump the scheduled Sequence.
237void SchedulePostRATDList::dumpSchedule() const {
238  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
239    if (SUnit *SU = Sequence[i])
240      SU->dump(this);
241    else
242      dbgs() << "**** NOOP ****\n";
243  }
244}
245#endif
246
247bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
248  if (skipOptnoneFunction(*Fn.getFunction()))
249    return false;
250
251  TII = Fn.getTarget().getInstrInfo();
252  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
253  MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
254  AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
255  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
256
257  RegClassInfo.runOnMachineFunction(Fn);
258
259  // Check for explicit enable/disable of post-ra scheduling.
260  TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
261    TargetSubtargetInfo::ANTIDEP_NONE;
262  SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
263  if (EnablePostRAScheduler.getPosition() > 0) {
264    if (!EnablePostRAScheduler)
265      return false;
266  } else {
267    // Check that post-RA scheduling is enabled for this target.
268    // This may upgrade the AntiDepMode.
269    const TargetSubtargetInfo &ST = Fn.getTarget().getSubtarget<TargetSubtargetInfo>();
270    if (!ST.enablePostRAScheduler(PassConfig->getOptLevel(), AntiDepMode,
271                                  CriticalPathRCs))
272      return false;
273  }
274
275  // Check for antidep breaking override...
276  if (EnableAntiDepBreaking.getPosition() > 0) {
277    AntiDepMode = (EnableAntiDepBreaking == "all")
278      ? TargetSubtargetInfo::ANTIDEP_ALL
279      : ((EnableAntiDepBreaking == "critical")
280         ? TargetSubtargetInfo::ANTIDEP_CRITICAL
281         : TargetSubtargetInfo::ANTIDEP_NONE);
282  }
283
284  DEBUG(dbgs() << "PostRAScheduler\n");
285
286  SchedulePostRATDList Scheduler(Fn, MLI, MDT, AA, RegClassInfo, AntiDepMode,
287                                 CriticalPathRCs);
288
289  // Loop over all of the basic blocks
290  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
291       MBB != MBBe; ++MBB) {
292#ifndef NDEBUG
293    // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
294    if (DebugDiv > 0) {
295      static int bbcnt = 0;
296      if (bbcnt++ % DebugDiv != DebugMod)
297        continue;
298      dbgs() << "*** DEBUG scheduling " << Fn.getName()
299             << ":BB#" << MBB->getNumber() << " ***\n";
300    }
301#endif
302
303    // Initialize register live-range state for scheduling in this block.
304    Scheduler.startBlock(MBB);
305
306    // Schedule each sequence of instructions not interrupted by a label
307    // or anything else that effectively needs to shut down scheduling.
308    MachineBasicBlock::iterator Current = MBB->end();
309    unsigned Count = MBB->size(), CurrentCount = Count;
310    for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
311      MachineInstr *MI = std::prev(I);
312      --Count;
313      // Calls are not scheduling boundaries before register allocation, but
314      // post-ra we don't gain anything by scheduling across calls since we
315      // don't need to worry about register pressure.
316      if (MI->isCall() || TII->isSchedulingBoundary(MI, MBB, Fn)) {
317        Scheduler.enterRegion(MBB, I, Current, CurrentCount - Count);
318        Scheduler.setEndIndex(CurrentCount);
319        Scheduler.schedule();
320        Scheduler.exitRegion();
321        Scheduler.EmitSchedule();
322        Current = MI;
323        CurrentCount = Count;
324        Scheduler.Observe(MI, CurrentCount);
325      }
326      I = MI;
327      if (MI->isBundle())
328        Count -= MI->getBundleSize();
329    }
330    assert(Count == 0 && "Instruction count mismatch!");
331    assert((MBB->begin() == Current || CurrentCount != 0) &&
332           "Instruction count mismatch!");
333    Scheduler.enterRegion(MBB, MBB->begin(), Current, CurrentCount);
334    Scheduler.setEndIndex(CurrentCount);
335    Scheduler.schedule();
336    Scheduler.exitRegion();
337    Scheduler.EmitSchedule();
338
339    // Clean up register live-range state.
340    Scheduler.finishBlock();
341
342    // Update register kills
343    Scheduler.fixupKills(MBB);
344  }
345
346  return true;
347}
348
349/// StartBlock - Initialize register live-range state for scheduling in
350/// this block.
351///
352void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
353  // Call the superclass.
354  ScheduleDAGInstrs::startBlock(BB);
355
356  // Reset the hazard recognizer and anti-dep breaker.
357  HazardRec->Reset();
358  if (AntiDepBreak != NULL)
359    AntiDepBreak->StartBlock(BB);
360}
361
362/// Schedule - Schedule the instruction range using list scheduling.
363///
364void SchedulePostRATDList::schedule() {
365  // Build the scheduling graph.
366  buildSchedGraph(AA);
367
368  if (AntiDepBreak != NULL) {
369    unsigned Broken =
370      AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd,
371                                          EndIndex, DbgValues);
372
373    if (Broken != 0) {
374      // We made changes. Update the dependency graph.
375      // Theoretically we could update the graph in place:
376      // When a live range is changed to use a different register, remove
377      // the def's anti-dependence *and* output-dependence edges due to
378      // that register, and add new anti-dependence and output-dependence
379      // edges based on the next live range of the register.
380      ScheduleDAG::clearDAG();
381      buildSchedGraph(AA);
382
383      NumFixedAnti += Broken;
384    }
385  }
386
387  DEBUG(dbgs() << "********** List Scheduling **********\n");
388  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
389          SUnits[su].dumpAll(this));
390
391  AvailableQueue.initNodes(SUnits);
392  ListScheduleTopDown();
393  AvailableQueue.releaseState();
394}
395
396/// Observe - Update liveness information to account for the current
397/// instruction, which will not be scheduled.
398///
399void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
400  if (AntiDepBreak != NULL)
401    AntiDepBreak->Observe(MI, Count, EndIndex);
402}
403
404/// FinishBlock - Clean up register live-range state.
405///
406void SchedulePostRATDList::finishBlock() {
407  if (AntiDepBreak != NULL)
408    AntiDepBreak->FinishBlock();
409
410  // Call the superclass.
411  ScheduleDAGInstrs::finishBlock();
412}
413
414//===----------------------------------------------------------------------===//
415//  Top-Down Scheduling
416//===----------------------------------------------------------------------===//
417
418/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
419/// the PendingQueue if the count reaches zero.
420void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
421  SUnit *SuccSU = SuccEdge->getSUnit();
422
423  if (SuccEdge->isWeak()) {
424    --SuccSU->WeakPredsLeft;
425    return;
426  }
427#ifndef NDEBUG
428  if (SuccSU->NumPredsLeft == 0) {
429    dbgs() << "*** Scheduling failed! ***\n";
430    SuccSU->dump(this);
431    dbgs() << " has been released too many times!\n";
432    llvm_unreachable(0);
433  }
434#endif
435  --SuccSU->NumPredsLeft;
436
437  // Standard scheduler algorithms will recompute the depth of the successor
438  // here as such:
439  //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
440  //
441  // However, we lazily compute node depth instead. Note that
442  // ScheduleNodeTopDown has already updated the depth of this node which causes
443  // all descendents to be marked dirty. Setting the successor depth explicitly
444  // here would cause depth to be recomputed for all its ancestors. If the
445  // successor is not yet ready (because of a transitively redundant edge) then
446  // this causes depth computation to be quadratic in the size of the DAG.
447
448  // If all the node's predecessors are scheduled, this node is ready
449  // to be scheduled. Ignore the special ExitSU node.
450  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
451    PendingQueue.push_back(SuccSU);
452}
453
454/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
455void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
456  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
457       I != E; ++I) {
458    ReleaseSucc(SU, &*I);
459  }
460}
461
462/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
463/// count of its successors. If a successor pending count is zero, add it to
464/// the Available queue.
465void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
466  DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
467  DEBUG(SU->dump(this));
468
469  Sequence.push_back(SU);
470  assert(CurCycle >= SU->getDepth() &&
471         "Node scheduled above its depth!");
472  SU->setDepthToAtLeast(CurCycle);
473
474  ReleaseSuccessors(SU);
475  SU->isScheduled = true;
476  AvailableQueue.scheduledNode(SU);
477}
478
479/// emitNoop - Add a noop to the current instruction sequence.
480void SchedulePostRATDList::emitNoop(unsigned CurCycle) {
481  DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
482  HazardRec->EmitNoop();
483  Sequence.push_back(0);   // NULL here means noop
484  ++NumNoops;
485}
486
487/// ListScheduleTopDown - The main loop of list scheduling for top-down
488/// schedulers.
489void SchedulePostRATDList::ListScheduleTopDown() {
490  unsigned CurCycle = 0;
491
492  // We're scheduling top-down but we're visiting the regions in
493  // bottom-up order, so we don't know the hazards at the start of a
494  // region. So assume no hazards (this should usually be ok as most
495  // blocks are a single region).
496  HazardRec->Reset();
497
498  // Release any successors of the special Entry node.
499  ReleaseSuccessors(&EntrySU);
500
501  // Add all leaves to Available queue.
502  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
503    // It is available if it has no predecessors.
504    if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) {
505      AvailableQueue.push(&SUnits[i]);
506      SUnits[i].isAvailable = true;
507    }
508  }
509
510  // In any cycle where we can't schedule any instructions, we must
511  // stall or emit a noop, depending on the target.
512  bool CycleHasInsts = false;
513
514  // While Available queue is not empty, grab the node with the highest
515  // priority. If it is not ready put it back.  Schedule the node.
516  std::vector<SUnit*> NotReady;
517  Sequence.reserve(SUnits.size());
518  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
519    // Check to see if any of the pending instructions are ready to issue.  If
520    // so, add them to the available queue.
521    unsigned MinDepth = ~0u;
522    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
523      if (PendingQueue[i]->getDepth() <= CurCycle) {
524        AvailableQueue.push(PendingQueue[i]);
525        PendingQueue[i]->isAvailable = true;
526        PendingQueue[i] = PendingQueue.back();
527        PendingQueue.pop_back();
528        --i; --e;
529      } else if (PendingQueue[i]->getDepth() < MinDepth)
530        MinDepth = PendingQueue[i]->getDepth();
531    }
532
533    DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));
534
535    SUnit *FoundSUnit = 0, *NotPreferredSUnit = 0;
536    bool HasNoopHazards = false;
537    while (!AvailableQueue.empty()) {
538      SUnit *CurSUnit = AvailableQueue.pop();
539
540      ScheduleHazardRecognizer::HazardType HT =
541        HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
542      if (HT == ScheduleHazardRecognizer::NoHazard) {
543        if (HazardRec->ShouldPreferAnother(CurSUnit)) {
544          if (!NotPreferredSUnit) {
545	    // If this is the first non-preferred node for this cycle, then
546	    // record it and continue searching for a preferred node. If this
547	    // is not the first non-preferred node, then treat it as though
548	    // there had been a hazard.
549            NotPreferredSUnit = CurSUnit;
550            continue;
551          }
552        } else {
553          FoundSUnit = CurSUnit;
554          break;
555        }
556      }
557
558      // Remember if this is a noop hazard.
559      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
560
561      NotReady.push_back(CurSUnit);
562    }
563
564    // If we have a non-preferred node, push it back onto the available list.
565    // If we did not find a preferred node, then schedule this first
566    // non-preferred node.
567    if (NotPreferredSUnit) {
568      if (!FoundSUnit) {
569        DEBUG(dbgs() << "*** Will schedule a non-preferred instruction...\n");
570        FoundSUnit = NotPreferredSUnit;
571      } else {
572        AvailableQueue.push(NotPreferredSUnit);
573      }
574
575      NotPreferredSUnit = 0;
576    }
577
578    // Add the nodes that aren't ready back onto the available list.
579    if (!NotReady.empty()) {
580      AvailableQueue.push_all(NotReady);
581      NotReady.clear();
582    }
583
584    // If we found a node to schedule...
585    if (FoundSUnit) {
586      // If we need to emit noops prior to this instruction, then do so.
587      unsigned NumPreNoops = HazardRec->PreEmitNoops(FoundSUnit);
588      for (unsigned i = 0; i != NumPreNoops; ++i)
589        emitNoop(CurCycle);
590
591      // ... schedule the node...
592      ScheduleNodeTopDown(FoundSUnit, CurCycle);
593      HazardRec->EmitInstruction(FoundSUnit);
594      CycleHasInsts = true;
595      if (HazardRec->atIssueLimit()) {
596        DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
597        HazardRec->AdvanceCycle();
598        ++CurCycle;
599        CycleHasInsts = false;
600      }
601    } else {
602      if (CycleHasInsts) {
603        DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
604        HazardRec->AdvanceCycle();
605      } else if (!HasNoopHazards) {
606        // Otherwise, we have a pipeline stall, but no other problem,
607        // just advance the current cycle and try again.
608        DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
609        HazardRec->AdvanceCycle();
610        ++NumStalls;
611      } else {
612        // Otherwise, we have no instructions to issue and we have instructions
613        // that will fault if we don't do this right.  This is the case for
614        // processors without pipeline interlocks and other cases.
615        emitNoop(CurCycle);
616      }
617
618      ++CurCycle;
619      CycleHasInsts = false;
620    }
621  }
622
623#ifndef NDEBUG
624  unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
625  unsigned Noops = 0;
626  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
627    if (!Sequence[i])
628      ++Noops;
629  assert(Sequence.size() - Noops == ScheduledNodes &&
630         "The number of nodes scheduled doesn't match the expected number!");
631#endif // NDEBUG
632}
633
634// EmitSchedule - Emit the machine code in scheduled order.
635void SchedulePostRATDList::EmitSchedule() {
636  RegionBegin = RegionEnd;
637
638  // If first instruction was a DBG_VALUE then put it back.
639  if (FirstDbgValue)
640    BB->splice(RegionEnd, BB, FirstDbgValue);
641
642  // Then re-insert them according to the given schedule.
643  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
644    if (SUnit *SU = Sequence[i])
645      BB->splice(RegionEnd, BB, SU->getInstr());
646    else
647      // Null SUnit* is a noop.
648      TII->insertNoop(*BB, RegionEnd);
649
650    // Update the Begin iterator, as the first instruction in the block
651    // may have been scheduled later.
652    if (i == 0)
653      RegionBegin = std::prev(RegionEnd);
654  }
655
656  // Reinsert any remaining debug_values.
657  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
658         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
659    std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
660    MachineInstr *DbgValue = P.first;
661    MachineBasicBlock::iterator OrigPrivMI = P.second;
662    BB->splice(++OrigPrivMI, BB, DbgValue);
663  }
664  DbgValues.clear();
665  FirstDbgValue = NULL;
666}
667