PostRASchedulerList.cpp revision 46252d8ea1d264ca341e3ca3e7f4e3c82e32940e
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "AntiDepBreaker.h"
23#include "AggressiveAntiDepBreaker.h"
24#include "CriticalAntiDepBreaker.h"
25#include "RegisterClassInfo.h"
26#include "ScheduleDAGInstrs.h"
27#include "llvm/CodeGen/Passes.h"
28#include "llvm/CodeGen/LatencyPriorityQueue.h"
29#include "llvm/CodeGen/SchedulerRegistry.h"
30#include "llvm/CodeGen/MachineDominators.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunctionPass.h"
33#include "llvm/CodeGen/MachineLoopInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/Target/TargetLowering.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetSubtargetInfo.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/ADT/BitVector.h"
47#include "llvm/ADT/Statistic.h"
48using namespace llvm;
49
50STATISTIC(NumNoops, "Number of noops inserted");
51STATISTIC(NumStalls, "Number of pipeline stalls");
52STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
53
54// Post-RA scheduling is enabled with
55// TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
56// override the target.
57static cl::opt<bool>
58EnablePostRAScheduler("post-RA-scheduler",
59                       cl::desc("Enable scheduling after register allocation"),
60                       cl::init(false), cl::Hidden);
61static cl::opt<std::string>
62EnableAntiDepBreaking("break-anti-dependencies",
63                      cl::desc("Break post-RA scheduling anti-dependencies: "
64                               "\"critical\", \"all\", or \"none\""),
65                      cl::init("none"), cl::Hidden);
66
67// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
68static cl::opt<int>
69DebugDiv("postra-sched-debugdiv",
70                      cl::desc("Debug control MBBs that are scheduled"),
71                      cl::init(0), cl::Hidden);
72static cl::opt<int>
73DebugMod("postra-sched-debugmod",
74                      cl::desc("Debug control MBBs that are scheduled"),
75                      cl::init(0), cl::Hidden);
76
77AntiDepBreaker::~AntiDepBreaker() { }
78
79namespace {
80  class PostRAScheduler : public MachineFunctionPass {
81    AliasAnalysis *AA;
82    const TargetInstrInfo *TII;
83    RegisterClassInfo RegClassInfo;
84
85  public:
86    static char ID;
87    PostRAScheduler() : MachineFunctionPass(ID) {}
88
89    void getAnalysisUsage(AnalysisUsage &AU) const {
90      AU.setPreservesCFG();
91      AU.addRequired<AliasAnalysis>();
92      AU.addRequired<TargetPassConfig>();
93      AU.addRequired<MachineDominatorTree>();
94      AU.addPreserved<MachineDominatorTree>();
95      AU.addRequired<MachineLoopInfo>();
96      AU.addPreserved<MachineLoopInfo>();
97      MachineFunctionPass::getAnalysisUsage(AU);
98    }
99
100    bool runOnMachineFunction(MachineFunction &Fn);
101  };
102  char PostRAScheduler::ID = 0;
103
104  class SchedulePostRATDList : public ScheduleDAGInstrs {
105    /// AvailableQueue - The priority queue to use for the available SUnits.
106    ///
107    LatencyPriorityQueue AvailableQueue;
108
109    /// PendingQueue - This contains all of the instructions whose operands have
110    /// been issued, but their results are not ready yet (due to the latency of
111    /// the operation).  Once the operands becomes available, the instruction is
112    /// added to the AvailableQueue.
113    std::vector<SUnit*> PendingQueue;
114
115    /// Topo - A topological ordering for SUnits.
116    ScheduleDAGTopologicalSort Topo;
117
118    /// HazardRec - The hazard recognizer to use.
119    ScheduleHazardRecognizer *HazardRec;
120
121    /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
122    AntiDepBreaker *AntiDepBreak;
123
124    /// AA - AliasAnalysis for making memory reference queries.
125    AliasAnalysis *AA;
126
127    /// LiveRegs - true if the register is live.
128    BitVector LiveRegs;
129
130  public:
131    SchedulePostRATDList(
132      MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
133      AliasAnalysis *AA, const RegisterClassInfo&,
134      TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
135      SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs);
136
137    ~SchedulePostRATDList();
138
139    /// StartBlock - Initialize register live-range state for scheduling in
140    /// this block.
141    ///
142    void StartBlock(MachineBasicBlock *BB);
143
144    /// Schedule - Schedule the instruction range using list scheduling.
145    ///
146    void Schedule();
147
148    /// Observe - Update liveness information to account for the current
149    /// instruction, which will not be scheduled.
150    ///
151    void Observe(MachineInstr *MI, unsigned Count);
152
153    /// FinishBlock - Clean up register live-range state.
154    ///
155    void FinishBlock();
156
157    /// FixupKills - Fix register kill flags that have been made
158    /// invalid due to scheduling
159    ///
160    void FixupKills(MachineBasicBlock *MBB);
161
162  private:
163    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
164    void ReleaseSuccessors(SUnit *SU);
165    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
166    void ListScheduleTopDown();
167    void StartBlockForKills(MachineBasicBlock *BB);
168
169    // ToggleKillFlag - Toggle a register operand kill flag. Other
170    // adjustments may be made to the instruction if necessary. Return
171    // true if the operand has been deleted, false if not.
172    bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
173  };
174}
175
176char &llvm::PostRASchedulerID = PostRAScheduler::ID;
177
178INITIALIZE_PASS(PostRAScheduler, "post-RA-sched",
179                "Post RA top-down list latency scheduler", false, false)
180
181SchedulePostRATDList::SchedulePostRATDList(
182  MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
183  AliasAnalysis *AA, const RegisterClassInfo &RCI,
184  TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
185  SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs)
186  : ScheduleDAGInstrs(MF, MLI, MDT, /*IsPostRA=*/true), Topo(SUnits), AA(AA),
187    LiveRegs(TRI->getNumRegs())
188{
189  const TargetMachine &TM = MF.getTarget();
190  const InstrItineraryData *InstrItins = TM.getInstrItineraryData();
191  HazardRec =
192    TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins, this);
193  AntiDepBreak =
194    ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
195     (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
196     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
197      (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : NULL));
198}
199
200SchedulePostRATDList::~SchedulePostRATDList() {
201  delete HazardRec;
202  delete AntiDepBreak;
203}
204
205bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
206  TII = Fn.getTarget().getInstrInfo();
207  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
208  MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
209  AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
210  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
211
212  RegClassInfo.runOnMachineFunction(Fn);
213
214  // Check for explicit enable/disable of post-ra scheduling.
215  TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
216    TargetSubtargetInfo::ANTIDEP_NONE;
217  SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
218  if (EnablePostRAScheduler.getPosition() > 0) {
219    if (!EnablePostRAScheduler)
220      return false;
221  } else {
222    // Check that post-RA scheduling is enabled for this target.
223    // This may upgrade the AntiDepMode.
224    const TargetSubtargetInfo &ST = Fn.getTarget().getSubtarget<TargetSubtargetInfo>();
225    if (!ST.enablePostRAScheduler(PassConfig->getOptLevel(), AntiDepMode,
226                                  CriticalPathRCs))
227      return false;
228  }
229
230  // Check for antidep breaking override...
231  if (EnableAntiDepBreaking.getPosition() > 0) {
232    AntiDepMode = (EnableAntiDepBreaking == "all")
233      ? TargetSubtargetInfo::ANTIDEP_ALL
234      : ((EnableAntiDepBreaking == "critical")
235         ? TargetSubtargetInfo::ANTIDEP_CRITICAL
236         : TargetSubtargetInfo::ANTIDEP_NONE);
237  }
238
239  DEBUG(dbgs() << "PostRAScheduler\n");
240
241  SchedulePostRATDList Scheduler(Fn, MLI, MDT, AA, RegClassInfo, AntiDepMode,
242                                 CriticalPathRCs);
243
244  // Loop over all of the basic blocks
245  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
246       MBB != MBBe; ++MBB) {
247#ifndef NDEBUG
248    // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
249    if (DebugDiv > 0) {
250      static int bbcnt = 0;
251      if (bbcnt++ % DebugDiv != DebugMod)
252        continue;
253      dbgs() << "*** DEBUG scheduling " << Fn.getFunction()->getName()
254             << ":BB#" << MBB->getNumber() << " ***\n";
255    }
256#endif
257
258    // Initialize register live-range state for scheduling in this block.
259    Scheduler.StartBlock(MBB);
260
261    // Schedule each sequence of instructions not interrupted by a label
262    // or anything else that effectively needs to shut down scheduling.
263    MachineBasicBlock::iterator Current = MBB->end();
264    unsigned Count = MBB->size(), CurrentCount = Count;
265    for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
266      MachineInstr *MI = llvm::prior(I);
267      // Calls are not scheduling boundaries before register allocation, but
268      // post-ra we don't gain anything by scheduling across calls since we
269      // don't need to worry about register pressure.
270      if (MI->isCall() || TII->isSchedulingBoundary(MI, MBB, Fn)) {
271        Scheduler.Run(MBB, I, Current, CurrentCount);
272        Scheduler.EmitSchedule();
273        Current = MI;
274        CurrentCount = Count - 1;
275        Scheduler.Observe(MI, CurrentCount);
276      }
277      I = MI;
278      --Count;
279      if (MI->isBundle())
280        Count -= MI->getBundleSize();
281    }
282    assert(Count == 0 && "Instruction count mismatch!");
283    assert((MBB->begin() == Current || CurrentCount != 0) &&
284           "Instruction count mismatch!");
285    Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
286    Scheduler.EmitSchedule();
287
288    // Clean up register live-range state.
289    Scheduler.FinishBlock();
290
291    // Update register kills
292    Scheduler.FixupKills(MBB);
293  }
294
295  return true;
296}
297
298/// StartBlock - Initialize register live-range state for scheduling in
299/// this block.
300///
301void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
302  // Call the superclass.
303  ScheduleDAGInstrs::StartBlock(BB);
304
305  // Reset the hazard recognizer and anti-dep breaker.
306  HazardRec->Reset();
307  if (AntiDepBreak != NULL)
308    AntiDepBreak->StartBlock(BB);
309}
310
311/// Schedule - Schedule the instruction range using list scheduling.
312///
313void SchedulePostRATDList::Schedule() {
314  // Build the scheduling graph.
315  BuildSchedGraph(AA);
316
317  if (AntiDepBreak != NULL) {
318    unsigned Broken =
319      AntiDepBreak->BreakAntiDependencies(SUnits, Begin, InsertPos,
320                                          InsertPosIndex, DbgValues);
321
322    if (Broken != 0) {
323      // We made changes. Update the dependency graph.
324      // Theoretically we could update the graph in place:
325      // When a live range is changed to use a different register, remove
326      // the def's anti-dependence *and* output-dependence edges due to
327      // that register, and add new anti-dependence and output-dependence
328      // edges based on the next live range of the register.
329      SUnits.clear();
330      Sequence.clear();
331      EntrySU = SUnit();
332      ExitSU = SUnit();
333      BuildSchedGraph(AA);
334
335      NumFixedAnti += Broken;
336    }
337  }
338
339  DEBUG(dbgs() << "********** List Scheduling **********\n");
340  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
341          SUnits[su].dumpAll(this));
342
343  AvailableQueue.initNodes(SUnits);
344  ListScheduleTopDown();
345  AvailableQueue.releaseState();
346}
347
348/// Observe - Update liveness information to account for the current
349/// instruction, which will not be scheduled.
350///
351void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
352  if (AntiDepBreak != NULL)
353    AntiDepBreak->Observe(MI, Count, InsertPosIndex);
354}
355
356/// FinishBlock - Clean up register live-range state.
357///
358void SchedulePostRATDList::FinishBlock() {
359  if (AntiDepBreak != NULL)
360    AntiDepBreak->FinishBlock();
361
362  // Call the superclass.
363  ScheduleDAGInstrs::FinishBlock();
364}
365
366/// StartBlockForKills - Initialize register live-range state for updating kills
367///
368void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
369  // Start with no live registers.
370  LiveRegs.reset();
371
372  // Determine the live-out physregs for this block.
373  if (!BB->empty() && BB->back().isReturn()) {
374    // In a return block, examine the function live-out regs.
375    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
376           E = MRI.liveout_end(); I != E; ++I) {
377      unsigned Reg = *I;
378      LiveRegs.set(Reg);
379      // Repeat, for all subregs.
380      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
381           *Subreg; ++Subreg)
382        LiveRegs.set(*Subreg);
383    }
384  }
385  else {
386    // In a non-return block, examine the live-in regs of all successors.
387    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
388           SE = BB->succ_end(); SI != SE; ++SI) {
389      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
390             E = (*SI)->livein_end(); I != E; ++I) {
391        unsigned Reg = *I;
392        LiveRegs.set(Reg);
393        // Repeat, for all subregs.
394        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
395             *Subreg; ++Subreg)
396          LiveRegs.set(*Subreg);
397      }
398    }
399  }
400}
401
402bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
403                                          MachineOperand &MO) {
404  // Setting kill flag...
405  if (!MO.isKill()) {
406    MO.setIsKill(true);
407    return false;
408  }
409
410  // If MO itself is live, clear the kill flag...
411  if (LiveRegs.test(MO.getReg())) {
412    MO.setIsKill(false);
413    return false;
414  }
415
416  // If any subreg of MO is live, then create an imp-def for that
417  // subreg and keep MO marked as killed.
418  MO.setIsKill(false);
419  bool AllDead = true;
420  const unsigned SuperReg = MO.getReg();
421  for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg);
422       *Subreg; ++Subreg) {
423    if (LiveRegs.test(*Subreg)) {
424      MI->addOperand(MachineOperand::CreateReg(*Subreg,
425                                               true  /*IsDef*/,
426                                               true  /*IsImp*/,
427                                               false /*IsKill*/,
428                                               false /*IsDead*/));
429      AllDead = false;
430    }
431  }
432
433  if(AllDead)
434    MO.setIsKill(true);
435  return false;
436}
437
438/// FixupKills - Fix the register kill flags, they may have been made
439/// incorrect by instruction reordering.
440///
441void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
442  DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
443
444  BitVector killedRegs(TRI->getNumRegs());
445  BitVector ReservedRegs = TRI->getReservedRegs(MF);
446
447  StartBlockForKills(MBB);
448
449  // Examine block from end to start...
450  unsigned Count = MBB->size();
451  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
452       I != E; --Count) {
453    MachineInstr *MI = --I;
454    if (MI->isDebugValue())
455      continue;
456
457    // Update liveness.  Registers that are defed but not used in this
458    // instruction are now dead. Mark register and all subregs as they
459    // are completely defined.
460    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
461      MachineOperand &MO = MI->getOperand(i);
462      if (MO.isRegMask())
463        for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
464          if (MO.clobbersPhysReg(i))
465            LiveRegs.reset(i);
466      if (!MO.isReg()) continue;
467      unsigned Reg = MO.getReg();
468      if (Reg == 0) continue;
469      if (!MO.isDef()) continue;
470      // Ignore two-addr defs.
471      if (MI->isRegTiedToUseOperand(i)) continue;
472
473      LiveRegs.reset(Reg);
474
475      // Repeat for all subregs.
476      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
477           *Subreg; ++Subreg)
478        LiveRegs.reset(*Subreg);
479    }
480
481    // Examine all used registers and set/clear kill flag. When a
482    // register is used multiple times we only set the kill flag on
483    // the first use.
484    killedRegs.reset();
485    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
486      MachineOperand &MO = MI->getOperand(i);
487      if (!MO.isReg() || !MO.isUse()) continue;
488      unsigned Reg = MO.getReg();
489      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
490
491      bool kill = false;
492      if (!killedRegs.test(Reg)) {
493        kill = true;
494        // A register is not killed if any subregs are live...
495        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
496             *Subreg; ++Subreg) {
497          if (LiveRegs.test(*Subreg)) {
498            kill = false;
499            break;
500          }
501        }
502
503        // If subreg is not live, then register is killed if it became
504        // live in this instruction
505        if (kill)
506          kill = !LiveRegs.test(Reg);
507      }
508
509      if (MO.isKill() != kill) {
510        DEBUG(dbgs() << "Fixing " << MO << " in ");
511        // Warning: ToggleKillFlag may invalidate MO.
512        ToggleKillFlag(MI, MO);
513        DEBUG(MI->dump());
514      }
515
516      killedRegs.set(Reg);
517    }
518
519    // Mark any used register (that is not using undef) and subregs as
520    // now live...
521    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
522      MachineOperand &MO = MI->getOperand(i);
523      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
524      unsigned Reg = MO.getReg();
525      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
526
527      LiveRegs.set(Reg);
528
529      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
530           *Subreg; ++Subreg)
531        LiveRegs.set(*Subreg);
532    }
533  }
534}
535
536//===----------------------------------------------------------------------===//
537//  Top-Down Scheduling
538//===----------------------------------------------------------------------===//
539
540/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
541/// the PendingQueue if the count reaches zero. Also update its cycle bound.
542void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
543  SUnit *SuccSU = SuccEdge->getSUnit();
544
545#ifndef NDEBUG
546  if (SuccSU->NumPredsLeft == 0) {
547    dbgs() << "*** Scheduling failed! ***\n";
548    SuccSU->dump(this);
549    dbgs() << " has been released too many times!\n";
550    llvm_unreachable(0);
551  }
552#endif
553  --SuccSU->NumPredsLeft;
554
555  // Standard scheduler algorithms will recompute the depth of the successor
556  // here as such:
557  //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
558  //
559  // However, we lazily compute node depth instead. Note that
560  // ScheduleNodeTopDown has already updated the depth of this node which causes
561  // all descendents to be marked dirty. Setting the successor depth explicitly
562  // here would cause depth to be recomputed for all its ancestors. If the
563  // successor is not yet ready (because of a transitively redundant edge) then
564  // this causes depth computation to be quadratic in the size of the DAG.
565
566  // If all the node's predecessors are scheduled, this node is ready
567  // to be scheduled. Ignore the special ExitSU node.
568  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
569    PendingQueue.push_back(SuccSU);
570}
571
572/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
573void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
574  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
575       I != E; ++I) {
576    ReleaseSucc(SU, &*I);
577  }
578}
579
580/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
581/// count of its successors. If a successor pending count is zero, add it to
582/// the Available queue.
583void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
584  DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
585  DEBUG(SU->dump(this));
586
587  Sequence.push_back(SU);
588  assert(CurCycle >= SU->getDepth() &&
589         "Node scheduled above its depth!");
590  SU->setDepthToAtLeast(CurCycle);
591
592  ReleaseSuccessors(SU);
593  SU->isScheduled = true;
594  AvailableQueue.ScheduledNode(SU);
595}
596
597/// ListScheduleTopDown - The main loop of list scheduling for top-down
598/// schedulers.
599void SchedulePostRATDList::ListScheduleTopDown() {
600  unsigned CurCycle = 0;
601
602  // We're scheduling top-down but we're visiting the regions in
603  // bottom-up order, so we don't know the hazards at the start of a
604  // region. So assume no hazards (this should usually be ok as most
605  // blocks are a single region).
606  HazardRec->Reset();
607
608  // Release any successors of the special Entry node.
609  ReleaseSuccessors(&EntrySU);
610
611  // Add all leaves to Available queue.
612  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
613    // It is available if it has no predecessors.
614    bool available = SUnits[i].Preds.empty();
615    if (available) {
616      AvailableQueue.push(&SUnits[i]);
617      SUnits[i].isAvailable = true;
618    }
619  }
620
621  // In any cycle where we can't schedule any instructions, we must
622  // stall or emit a noop, depending on the target.
623  bool CycleHasInsts = false;
624
625  // While Available queue is not empty, grab the node with the highest
626  // priority. If it is not ready put it back.  Schedule the node.
627  std::vector<SUnit*> NotReady;
628  Sequence.reserve(SUnits.size());
629  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
630    // Check to see if any of the pending instructions are ready to issue.  If
631    // so, add them to the available queue.
632    unsigned MinDepth = ~0u;
633    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
634      if (PendingQueue[i]->getDepth() <= CurCycle) {
635        AvailableQueue.push(PendingQueue[i]);
636        PendingQueue[i]->isAvailable = true;
637        PendingQueue[i] = PendingQueue.back();
638        PendingQueue.pop_back();
639        --i; --e;
640      } else if (PendingQueue[i]->getDepth() < MinDepth)
641        MinDepth = PendingQueue[i]->getDepth();
642    }
643
644    DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));
645
646    SUnit *FoundSUnit = 0;
647    bool HasNoopHazards = false;
648    while (!AvailableQueue.empty()) {
649      SUnit *CurSUnit = AvailableQueue.pop();
650
651      ScheduleHazardRecognizer::HazardType HT =
652        HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
653      if (HT == ScheduleHazardRecognizer::NoHazard) {
654        FoundSUnit = CurSUnit;
655        break;
656      }
657
658      // Remember if this is a noop hazard.
659      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
660
661      NotReady.push_back(CurSUnit);
662    }
663
664    // Add the nodes that aren't ready back onto the available list.
665    if (!NotReady.empty()) {
666      AvailableQueue.push_all(NotReady);
667      NotReady.clear();
668    }
669
670    // If we found a node to schedule...
671    if (FoundSUnit) {
672      // ... schedule the node...
673      ScheduleNodeTopDown(FoundSUnit, CurCycle);
674      HazardRec->EmitInstruction(FoundSUnit);
675      CycleHasInsts = true;
676      if (HazardRec->atIssueLimit()) {
677        DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
678        HazardRec->AdvanceCycle();
679        ++CurCycle;
680        CycleHasInsts = false;
681      }
682    } else {
683      if (CycleHasInsts) {
684        DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
685        HazardRec->AdvanceCycle();
686      } else if (!HasNoopHazards) {
687        // Otherwise, we have a pipeline stall, but no other problem,
688        // just advance the current cycle and try again.
689        DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
690        HazardRec->AdvanceCycle();
691        ++NumStalls;
692      } else {
693        // Otherwise, we have no instructions to issue and we have instructions
694        // that will fault if we don't do this right.  This is the case for
695        // processors without pipeline interlocks and other cases.
696        DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
697        HazardRec->EmitNoop();
698        Sequence.push_back(0);   // NULL here means noop
699        ++NumNoops;
700      }
701
702      ++CurCycle;
703      CycleHasInsts = false;
704    }
705  }
706
707#ifndef NDEBUG
708  VerifySchedule(/*isBottomUp=*/false);
709#endif
710}
711