PostRASchedulerList.cpp revision 57796906e96fa68af19262323496e4b9c038a516
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "ExactHazardRecognizer.h"
23#include "SimpleHazardRecognizer.h"
24#include "ScheduleDAGInstrs.h"
25#include "llvm/CodeGen/Passes.h"
26#include "llvm/CodeGen/LatencyPriorityQueue.h"
27#include "llvm/CodeGen/SchedulerRegistry.h"
28#include "llvm/CodeGen/MachineDominators.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunctionPass.h"
31#include "llvm/CodeGen/MachineLoopInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetSubtarget.h"
40#include "llvm/Support/Compiler.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/ADT/Statistic.h"
45#include <map>
46#include <set>
47using namespace llvm;
48
49STATISTIC(NumNoops, "Number of noops inserted");
50STATISTIC(NumStalls, "Number of pipeline stalls");
51
52// Post-RA scheduling is enabled with
53// TargetSubtarget.enablePostRAScheduler(). This flag can be used to
54// override the target.
55static cl::opt<bool>
56EnablePostRAScheduler("post-RA-scheduler",
57                       cl::desc("Enable scheduling after register allocation"),
58                       cl::init(false), cl::Hidden);
59static cl::opt<bool>
60EnableAntiDepBreaking("break-anti-dependencies",
61                      cl::desc("Break post-RA scheduling anti-dependencies"),
62                      cl::init(true), cl::Hidden);
63static cl::opt<bool>
64EnablePostRAHazardAvoidance("avoid-hazards",
65                      cl::desc("Enable exact hazard avoidance"),
66                      cl::init(true), cl::Hidden);
67
68// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
69static cl::opt<int>
70DebugDiv("postra-sched-debugdiv",
71                      cl::desc("Debug control MBBs that are scheduled"),
72                      cl::init(0), cl::Hidden);
73static cl::opt<int>
74DebugMod("postra-sched-debugmod",
75                      cl::desc("Debug control MBBs that are scheduled"),
76                      cl::init(0), cl::Hidden);
77
78namespace {
79  class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
80    AliasAnalysis *AA;
81
82  public:
83    static char ID;
84    PostRAScheduler() : MachineFunctionPass(&ID) {}
85
86    void getAnalysisUsage(AnalysisUsage &AU) const {
87      AU.setPreservesCFG();
88      AU.addRequired<AliasAnalysis>();
89      AU.addRequired<MachineDominatorTree>();
90      AU.addPreserved<MachineDominatorTree>();
91      AU.addRequired<MachineLoopInfo>();
92      AU.addPreserved<MachineLoopInfo>();
93      MachineFunctionPass::getAnalysisUsage(AU);
94    }
95
96    const char *getPassName() const {
97      return "Post RA top-down list latency scheduler";
98    }
99
100    bool runOnMachineFunction(MachineFunction &Fn);
101  };
102  char PostRAScheduler::ID = 0;
103
104  class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
105    /// AvailableQueue - The priority queue to use for the available SUnits.
106    ///
107    LatencyPriorityQueue AvailableQueue;
108
109    /// PendingQueue - This contains all of the instructions whose operands have
110    /// been issued, but their results are not ready yet (due to the latency of
111    /// the operation).  Once the operands becomes available, the instruction is
112    /// added to the AvailableQueue.
113    std::vector<SUnit*> PendingQueue;
114
115    /// Topo - A topological ordering for SUnits.
116    ScheduleDAGTopologicalSort Topo;
117
118    /// AllocatableSet - The set of allocatable registers.
119    /// We'll be ignoring anti-dependencies on non-allocatable registers,
120    /// because they may not be safe to break.
121    const BitVector AllocatableSet;
122
123    /// HazardRec - The hazard recognizer to use.
124    ScheduleHazardRecognizer *HazardRec;
125
126    /// AA - AliasAnalysis for making memory reference queries.
127    AliasAnalysis *AA;
128
129    /// Classes - For live regs that are only used in one register class in a
130    /// live range, the register class. If the register is not live, the
131    /// corresponding value is null. If the register is live but used in
132    /// multiple register classes, the corresponding value is -1 casted to a
133    /// pointer.
134    const TargetRegisterClass *
135      Classes[TargetRegisterInfo::FirstVirtualRegister];
136
137    /// RegRegs - Map registers to all their references within a live range.
138    std::multimap<unsigned, MachineOperand *> RegRefs;
139
140    /// KillIndices - The index of the most recent kill (proceding bottom-up),
141    /// or ~0u if the register is not live.
142    unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
143
144    /// DefIndices - The index of the most recent complete def (proceding bottom
145    /// up), or ~0u if the register is live.
146    unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
147
148    /// KeepRegs - A set of registers which are live and cannot be changed to
149    /// break anti-dependencies.
150    SmallSet<unsigned, 4> KeepRegs;
151
152  public:
153    SchedulePostRATDList(MachineFunction &MF,
154                         const MachineLoopInfo &MLI,
155                         const MachineDominatorTree &MDT,
156                         ScheduleHazardRecognizer *HR,
157                         AliasAnalysis *aa)
158      : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
159        AllocatableSet(TRI->getAllocatableSet(MF)),
160        HazardRec(HR), AA(aa) {}
161
162    ~SchedulePostRATDList() {
163      delete HazardRec;
164    }
165
166    /// StartBlock - Initialize register live-range state for scheduling in
167    /// this block.
168    ///
169    void StartBlock(MachineBasicBlock *BB);
170
171    /// Schedule - Schedule the instruction range using list scheduling.
172    ///
173    void Schedule();
174
175    /// FixupKills - Fix register kill flags that have been made
176    /// invalid due to scheduling
177    ///
178    void FixupKills(MachineBasicBlock *MBB);
179
180    /// Observe - Update liveness information to account for the current
181    /// instruction, which will not be scheduled.
182    ///
183    void Observe(MachineInstr *MI, unsigned Count);
184
185    /// FinishBlock - Clean up register live-range state.
186    ///
187    void FinishBlock();
188
189  private:
190    void PrescanInstruction(MachineInstr *MI);
191    void ScanInstruction(MachineInstr *MI, unsigned Count);
192    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
193    void ReleaseSuccessors(SUnit *SU);
194    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
195    void ListScheduleTopDown();
196    bool BreakAntiDependencies();
197    unsigned findSuitableFreeRegister(unsigned AntiDepReg,
198                                      unsigned LastNewReg,
199                                      const TargetRegisterClass *);
200    void StartBlockForKills(MachineBasicBlock *BB);
201
202    // ToggleKillFlag - Toggle a register operand kill flag. Other
203    // adjustments may be made to the instruction if necessary. Return
204    // true if the operand has been deleted, false if not.
205    bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
206  };
207}
208
209/// isSchedulingBoundary - Test if the given instruction should be
210/// considered a scheduling boundary. This primarily includes labels
211/// and terminators.
212///
213static bool isSchedulingBoundary(const MachineInstr *MI,
214                                 const MachineFunction &MF) {
215  // Terminators and labels can't be scheduled around.
216  if (MI->getDesc().isTerminator() || MI->isLabel())
217    return true;
218
219  // Don't attempt to schedule around any instruction that modifies
220  // a stack-oriented pointer, as it's unlikely to be profitable. This
221  // saves compile time, because it doesn't require every single
222  // stack slot reference to depend on the instruction that does the
223  // modification.
224  const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
225  if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore()))
226    return true;
227
228  return false;
229}
230
231bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
232  AA = &getAnalysis<AliasAnalysis>();
233
234  // Check for explicit enable/disable of post-ra scheduling.
235  if (EnablePostRAScheduler.getPosition() > 0) {
236    if (!EnablePostRAScheduler)
237      return false;
238  } else {
239    // Check that post-RA scheduling is enabled for this target.
240    const TargetSubtarget &ST = Fn.getTarget().getSubtarget<TargetSubtarget>();
241    if (!ST.enablePostRAScheduler())
242      return false;
243  }
244
245  DEBUG(errs() << "PostRAScheduler\n");
246
247  const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
248  const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
249  const InstrItineraryData &InstrItins = Fn.getTarget().getInstrItineraryData();
250  ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ?
251    (ScheduleHazardRecognizer *)new ExactHazardRecognizer(InstrItins) :
252    (ScheduleHazardRecognizer *)new SimpleHazardRecognizer();
253
254  SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR, AA);
255
256  // Loop over all of the basic blocks
257  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
258       MBB != MBBe; ++MBB) {
259#ifndef NDEBUG
260    // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
261    if (DebugDiv > 0) {
262      static int bbcnt = 0;
263      if (bbcnt++ % DebugDiv != DebugMod)
264        continue;
265      errs() << "*** DEBUG scheduling " << Fn.getFunction()->getNameStr() <<
266        ":MBB ID#" << MBB->getNumber() << " ***\n";
267    }
268#endif
269
270    // Initialize register live-range state for scheduling in this block.
271    Scheduler.StartBlock(MBB);
272
273    // Schedule each sequence of instructions not interrupted by a label
274    // or anything else that effectively needs to shut down scheduling.
275    MachineBasicBlock::iterator Current = MBB->end();
276    unsigned Count = MBB->size(), CurrentCount = Count;
277    for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
278      MachineInstr *MI = prior(I);
279      if (isSchedulingBoundary(MI, Fn)) {
280        Scheduler.Run(MBB, I, Current, CurrentCount);
281        Scheduler.EmitSchedule(0);
282        Current = MI;
283        CurrentCount = Count - 1;
284        Scheduler.Observe(MI, CurrentCount);
285      }
286      I = MI;
287      --Count;
288    }
289    assert(Count == 0 && "Instruction count mismatch!");
290    assert((MBB->begin() == Current || CurrentCount != 0) &&
291           "Instruction count mismatch!");
292    Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
293    Scheduler.EmitSchedule(0);
294
295    // Clean up register live-range state.
296    Scheduler.FinishBlock();
297
298    // Update register kills
299    Scheduler.FixupKills(MBB);
300  }
301
302  return true;
303}
304
305/// StartBlock - Initialize register live-range state for scheduling in
306/// this block.
307///
308void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
309  // Call the superclass.
310  ScheduleDAGInstrs::StartBlock(BB);
311
312  // Reset the hazard recognizer.
313  HazardRec->Reset();
314
315  // Clear out the register class data.
316  std::fill(Classes, array_endof(Classes),
317            static_cast<const TargetRegisterClass *>(0));
318
319  // Initialize the indices to indicate that no registers are live.
320  std::fill(KillIndices, array_endof(KillIndices), ~0u);
321  std::fill(DefIndices, array_endof(DefIndices), BB->size());
322
323  // Clear "do not change" set.
324  KeepRegs.clear();
325
326  bool IsReturnBlock = (!BB->empty() && BB->back().getDesc().isReturn());
327
328  // Determine the live-out physregs for this block.
329  if (IsReturnBlock) {
330    // In a return block, examine the function live-out regs.
331    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
332         E = MRI.liveout_end(); I != E; ++I) {
333      unsigned Reg = *I;
334      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
335      KillIndices[Reg] = BB->size();
336      DefIndices[Reg] = ~0u;
337      // Repeat, for all aliases.
338      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
339        unsigned AliasReg = *Alias;
340        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
341        KillIndices[AliasReg] = BB->size();
342        DefIndices[AliasReg] = ~0u;
343      }
344    }
345  } else {
346    // In a non-return block, examine the live-in regs of all successors.
347    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
348         SE = BB->succ_end(); SI != SE; ++SI)
349      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
350           E = (*SI)->livein_end(); I != E; ++I) {
351        unsigned Reg = *I;
352        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
353        KillIndices[Reg] = BB->size();
354        DefIndices[Reg] = ~0u;
355        // Repeat, for all aliases.
356        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
357          unsigned AliasReg = *Alias;
358          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
359          KillIndices[AliasReg] = BB->size();
360          DefIndices[AliasReg] = ~0u;
361        }
362      }
363  }
364
365  // Mark live-out callee-saved registers. In a return block this is
366  // all callee-saved registers. In non-return this is any
367  // callee-saved register that is not saved in the prolog.
368  const MachineFrameInfo *MFI = MF.getFrameInfo();
369  BitVector Pristine = MFI->getPristineRegs(BB);
370  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
371    unsigned Reg = *I;
372    if (!IsReturnBlock && !Pristine.test(Reg)) continue;
373    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
374    KillIndices[Reg] = BB->size();
375    DefIndices[Reg] = ~0u;
376    // Repeat, for all aliases.
377    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
378      unsigned AliasReg = *Alias;
379      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
380      KillIndices[AliasReg] = BB->size();
381      DefIndices[AliasReg] = ~0u;
382    }
383  }
384}
385
386/// Schedule - Schedule the instruction range using list scheduling.
387///
388void SchedulePostRATDList::Schedule() {
389  DEBUG(errs() << "********** List Scheduling **********\n");
390
391  // Build the scheduling graph.
392  BuildSchedGraph(AA);
393
394  if (EnableAntiDepBreaking) {
395    if (BreakAntiDependencies()) {
396      // We made changes. Update the dependency graph.
397      // Theoretically we could update the graph in place:
398      // When a live range is changed to use a different register, remove
399      // the def's anti-dependence *and* output-dependence edges due to
400      // that register, and add new anti-dependence and output-dependence
401      // edges based on the next live range of the register.
402      SUnits.clear();
403      EntrySU = SUnit();
404      ExitSU = SUnit();
405      BuildSchedGraph(AA);
406    }
407  }
408
409  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
410          SUnits[su].dumpAll(this));
411
412  AvailableQueue.initNodes(SUnits);
413
414  ListScheduleTopDown();
415
416  AvailableQueue.releaseState();
417}
418
419/// Observe - Update liveness information to account for the current
420/// instruction, which will not be scheduled.
421///
422void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
423  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
424
425  // Any register which was defined within the previous scheduling region
426  // may have been rescheduled and its lifetime may overlap with registers
427  // in ways not reflected in our current liveness state. For each such
428  // register, adjust the liveness state to be conservatively correct.
429  for (unsigned Reg = 0; Reg != TargetRegisterInfo::FirstVirtualRegister; ++Reg)
430    if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
431      assert(KillIndices[Reg] == ~0u && "Clobbered register is live!");
432      // Mark this register to be non-renamable.
433      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
434      // Move the def index to the end of the previous region, to reflect
435      // that the def could theoretically have been scheduled at the end.
436      DefIndices[Reg] = InsertPosIndex;
437    }
438
439  PrescanInstruction(MI);
440  ScanInstruction(MI, Count);
441}
442
443/// FinishBlock - Clean up register live-range state.
444///
445void SchedulePostRATDList::FinishBlock() {
446  RegRefs.clear();
447
448  // Call the superclass.
449  ScheduleDAGInstrs::FinishBlock();
450}
451
452/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
453/// critical path.
454static SDep *CriticalPathStep(SUnit *SU) {
455  SDep *Next = 0;
456  unsigned NextDepth = 0;
457  // Find the predecessor edge with the greatest depth.
458  for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
459       P != PE; ++P) {
460    SUnit *PredSU = P->getSUnit();
461    unsigned PredLatency = P->getLatency();
462    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
463    // In the case of a latency tie, prefer an anti-dependency edge over
464    // other types of edges.
465    if (NextDepth < PredTotalLatency ||
466        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
467      NextDepth = PredTotalLatency;
468      Next = &*P;
469    }
470  }
471  return Next;
472}
473
474void SchedulePostRATDList::PrescanInstruction(MachineInstr *MI) {
475  // Scan the register operands for this instruction and update
476  // Classes and RegRefs.
477  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
478    MachineOperand &MO = MI->getOperand(i);
479    if (!MO.isReg()) continue;
480    unsigned Reg = MO.getReg();
481    if (Reg == 0) continue;
482    const TargetRegisterClass *NewRC = 0;
483
484    if (i < MI->getDesc().getNumOperands())
485      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
486
487    // For now, only allow the register to be changed if its register
488    // class is consistent across all uses.
489    if (!Classes[Reg] && NewRC)
490      Classes[Reg] = NewRC;
491    else if (!NewRC || Classes[Reg] != NewRC)
492      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
493
494    // Now check for aliases.
495    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
496      // If an alias of the reg is used during the live range, give up.
497      // Note that this allows us to skip checking if AntiDepReg
498      // overlaps with any of the aliases, among other things.
499      unsigned AliasReg = *Alias;
500      if (Classes[AliasReg]) {
501        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
502        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
503      }
504    }
505
506    // If we're still willing to consider this register, note the reference.
507    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
508      RegRefs.insert(std::make_pair(Reg, &MO));
509
510    // It's not safe to change register allocation for source operands of
511    // that have special allocation requirements.
512    if (MO.isUse() && MI->getDesc().hasExtraSrcRegAllocReq()) {
513      if (KeepRegs.insert(Reg)) {
514        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
515             *Subreg; ++Subreg)
516          KeepRegs.insert(*Subreg);
517      }
518    }
519  }
520}
521
522void SchedulePostRATDList::ScanInstruction(MachineInstr *MI,
523                                           unsigned Count) {
524  // Update liveness.
525  // Proceding upwards, registers that are defed but not used in this
526  // instruction are now dead.
527  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
528    MachineOperand &MO = MI->getOperand(i);
529    if (!MO.isReg()) continue;
530    unsigned Reg = MO.getReg();
531    if (Reg == 0) continue;
532    if (!MO.isDef()) continue;
533    // Ignore two-addr defs.
534    if (MI->isRegTiedToUseOperand(i)) continue;
535
536    DefIndices[Reg] = Count;
537    KillIndices[Reg] = ~0u;
538    assert(((KillIndices[Reg] == ~0u) !=
539            (DefIndices[Reg] == ~0u)) &&
540           "Kill and Def maps aren't consistent for Reg!");
541    KeepRegs.erase(Reg);
542    Classes[Reg] = 0;
543    RegRefs.erase(Reg);
544    // Repeat, for all subregs.
545    for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
546         *Subreg; ++Subreg) {
547      unsigned SubregReg = *Subreg;
548      DefIndices[SubregReg] = Count;
549      KillIndices[SubregReg] = ~0u;
550      KeepRegs.erase(SubregReg);
551      Classes[SubregReg] = 0;
552      RegRefs.erase(SubregReg);
553    }
554    // Conservatively mark super-registers as unusable.
555    for (const unsigned *Super = TRI->getSuperRegisters(Reg);
556         *Super; ++Super) {
557      unsigned SuperReg = *Super;
558      Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
559    }
560  }
561  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
562    MachineOperand &MO = MI->getOperand(i);
563    if (!MO.isReg()) continue;
564    unsigned Reg = MO.getReg();
565    if (Reg == 0) continue;
566    if (!MO.isUse()) continue;
567
568    const TargetRegisterClass *NewRC = 0;
569    if (i < MI->getDesc().getNumOperands())
570      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
571
572    // For now, only allow the register to be changed if its register
573    // class is consistent across all uses.
574    if (!Classes[Reg] && NewRC)
575      Classes[Reg] = NewRC;
576    else if (!NewRC || Classes[Reg] != NewRC)
577      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
578
579    RegRefs.insert(std::make_pair(Reg, &MO));
580
581    // It wasn't previously live but now it is, this is a kill.
582    if (KillIndices[Reg] == ~0u) {
583      KillIndices[Reg] = Count;
584      DefIndices[Reg] = ~0u;
585          assert(((KillIndices[Reg] == ~0u) !=
586                  (DefIndices[Reg] == ~0u)) &&
587               "Kill and Def maps aren't consistent for Reg!");
588    }
589    // Repeat, for all aliases.
590    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
591      unsigned AliasReg = *Alias;
592      if (KillIndices[AliasReg] == ~0u) {
593        KillIndices[AliasReg] = Count;
594        DefIndices[AliasReg] = ~0u;
595      }
596    }
597  }
598}
599
600unsigned
601SchedulePostRATDList::findSuitableFreeRegister(unsigned AntiDepReg,
602                                               unsigned LastNewReg,
603                                               const TargetRegisterClass *RC) {
604  for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
605       RE = RC->allocation_order_end(MF); R != RE; ++R) {
606    unsigned NewReg = *R;
607    // Don't replace a register with itself.
608    if (NewReg == AntiDepReg) continue;
609    // Don't replace a register with one that was recently used to repair
610    // an anti-dependence with this AntiDepReg, because that would
611    // re-introduce that anti-dependence.
612    if (NewReg == LastNewReg) continue;
613    // If NewReg is dead and NewReg's most recent def is not before
614    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
615    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
616           "Kill and Def maps aren't consistent for AntiDepReg!");
617    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
618           "Kill and Def maps aren't consistent for NewReg!");
619    if (KillIndices[NewReg] != ~0u ||
620        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
621        KillIndices[AntiDepReg] > DefIndices[NewReg])
622      continue;
623    return NewReg;
624  }
625
626  // No registers are free and available!
627  return 0;
628}
629
630/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
631/// of the ScheduleDAG and break them by renaming registers.
632///
633bool SchedulePostRATDList::BreakAntiDependencies() {
634  // The code below assumes that there is at least one instruction,
635  // so just duck out immediately if the block is empty.
636  if (SUnits.empty()) return false;
637
638  // Find the node at the bottom of the critical path.
639  SUnit *Max = 0;
640  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
641    SUnit *SU = &SUnits[i];
642    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
643      Max = SU;
644  }
645
646#ifndef NDEBUG
647  {
648    DEBUG(errs() << "Critical path has total latency "
649          << (Max->getDepth() + Max->Latency) << "\n");
650    DEBUG(errs() << "Available regs:");
651    for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
652      if (KillIndices[Reg] == ~0u)
653        DEBUG(errs() << " " << TRI->getName(Reg));
654    }
655    DEBUG(errs() << '\n');
656  }
657#endif
658
659  // Track progress along the critical path through the SUnit graph as we walk
660  // the instructions.
661  SUnit *CriticalPathSU = Max;
662  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
663
664  // Consider this pattern:
665  //   A = ...
666  //   ... = A
667  //   A = ...
668  //   ... = A
669  //   A = ...
670  //   ... = A
671  //   A = ...
672  //   ... = A
673  // There are three anti-dependencies here, and without special care,
674  // we'd break all of them using the same register:
675  //   A = ...
676  //   ... = A
677  //   B = ...
678  //   ... = B
679  //   B = ...
680  //   ... = B
681  //   B = ...
682  //   ... = B
683  // because at each anti-dependence, B is the first register that
684  // isn't A which is free.  This re-introduces anti-dependencies
685  // at all but one of the original anti-dependencies that we were
686  // trying to break.  To avoid this, keep track of the most recent
687  // register that each register was replaced with, avoid
688  // using it to repair an anti-dependence on the same register.
689  // This lets us produce this:
690  //   A = ...
691  //   ... = A
692  //   B = ...
693  //   ... = B
694  //   C = ...
695  //   ... = C
696  //   B = ...
697  //   ... = B
698  // This still has an anti-dependence on B, but at least it isn't on the
699  // original critical path.
700  //
701  // TODO: If we tracked more than one register here, we could potentially
702  // fix that remaining critical edge too. This is a little more involved,
703  // because unlike the most recent register, less recent registers should
704  // still be considered, though only if no other registers are available.
705  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
706
707  // Attempt to break anti-dependence edges on the critical path. Walk the
708  // instructions from the bottom up, tracking information about liveness
709  // as we go to help determine which registers are available.
710  bool Changed = false;
711  unsigned Count = InsertPosIndex - 1;
712  for (MachineBasicBlock::iterator I = InsertPos, E = Begin;
713       I != E; --Count) {
714    MachineInstr *MI = --I;
715
716    // Check if this instruction has a dependence on the critical path that
717    // is an anti-dependence that we may be able to break. If it is, set
718    // AntiDepReg to the non-zero register associated with the anti-dependence.
719    //
720    // We limit our attention to the critical path as a heuristic to avoid
721    // breaking anti-dependence edges that aren't going to significantly
722    // impact the overall schedule. There are a limited number of registers
723    // and we want to save them for the important edges.
724    //
725    // TODO: Instructions with multiple defs could have multiple
726    // anti-dependencies. The current code here only knows how to break one
727    // edge per instruction. Note that we'd have to be able to break all of
728    // the anti-dependencies in an instruction in order to be effective.
729    unsigned AntiDepReg = 0;
730    if (MI == CriticalPathMI) {
731      if (SDep *Edge = CriticalPathStep(CriticalPathSU)) {
732        SUnit *NextSU = Edge->getSUnit();
733
734        // Only consider anti-dependence edges.
735        if (Edge->getKind() == SDep::Anti) {
736          AntiDepReg = Edge->getReg();
737          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
738          if (!AllocatableSet.test(AntiDepReg))
739            // Don't break anti-dependencies on non-allocatable registers.
740            AntiDepReg = 0;
741          else if (KeepRegs.count(AntiDepReg))
742            // Don't break anti-dependencies if an use down below requires
743            // this exact register.
744            AntiDepReg = 0;
745          else {
746            // If the SUnit has other dependencies on the SUnit that it
747            // anti-depends on, don't bother breaking the anti-dependency
748            // since those edges would prevent such units from being
749            // scheduled past each other regardless.
750            //
751            // Also, if there are dependencies on other SUnits with the
752            // same register as the anti-dependency, don't attempt to
753            // break it.
754            for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(),
755                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
756              if (P->getSUnit() == NextSU ?
757                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
758                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
759                AntiDepReg = 0;
760                break;
761              }
762          }
763        }
764        CriticalPathSU = NextSU;
765        CriticalPathMI = CriticalPathSU->getInstr();
766      } else {
767        // We've reached the end of the critical path.
768        CriticalPathSU = 0;
769        CriticalPathMI = 0;
770      }
771    }
772
773    PrescanInstruction(MI);
774
775    if (MI->getDesc().hasExtraDefRegAllocReq())
776      // If this instruction's defs have special allocation requirement, don't
777      // break this anti-dependency.
778      AntiDepReg = 0;
779    else if (AntiDepReg) {
780      // If this instruction has a use of AntiDepReg, breaking it
781      // is invalid.
782      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
783        MachineOperand &MO = MI->getOperand(i);
784        if (!MO.isReg()) continue;
785        unsigned Reg = MO.getReg();
786        if (Reg == 0) continue;
787        if (MO.isUse() && AntiDepReg == Reg) {
788          AntiDepReg = 0;
789          break;
790        }
791      }
792    }
793
794    // Determine AntiDepReg's register class, if it is live and is
795    // consistently used within a single class.
796    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
797    assert((AntiDepReg == 0 || RC != NULL) &&
798           "Register should be live if it's causing an anti-dependence!");
799    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
800      AntiDepReg = 0;
801
802    // Look for a suitable register to use to break the anti-depenence.
803    //
804    // TODO: Instead of picking the first free register, consider which might
805    // be the best.
806    if (AntiDepReg != 0) {
807      if (unsigned NewReg = findSuitableFreeRegister(AntiDepReg,
808                                                     LastNewReg[AntiDepReg],
809                                                     RC)) {
810        DEBUG(errs() << "Breaking anti-dependence edge on "
811              << TRI->getName(AntiDepReg)
812              << " with " << RegRefs.count(AntiDepReg) << " references"
813              << " using " << TRI->getName(NewReg) << "!\n");
814
815        // Update the references to the old register to refer to the new
816        // register.
817        std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
818                  std::multimap<unsigned, MachineOperand *>::iterator>
819           Range = RegRefs.equal_range(AntiDepReg);
820        for (std::multimap<unsigned, MachineOperand *>::iterator
821             Q = Range.first, QE = Range.second; Q != QE; ++Q)
822          Q->second->setReg(NewReg);
823
824        // We just went back in time and modified history; the
825        // liveness information for the anti-depenence reg is now
826        // inconsistent. Set the state as if it were dead.
827        Classes[NewReg] = Classes[AntiDepReg];
828        DefIndices[NewReg] = DefIndices[AntiDepReg];
829        KillIndices[NewReg] = KillIndices[AntiDepReg];
830        assert(((KillIndices[NewReg] == ~0u) !=
831                (DefIndices[NewReg] == ~0u)) &&
832             "Kill and Def maps aren't consistent for NewReg!");
833
834        Classes[AntiDepReg] = 0;
835        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
836        KillIndices[AntiDepReg] = ~0u;
837        assert(((KillIndices[AntiDepReg] == ~0u) !=
838                (DefIndices[AntiDepReg] == ~0u)) &&
839             "Kill and Def maps aren't consistent for AntiDepReg!");
840
841        RegRefs.erase(AntiDepReg);
842        Changed = true;
843        LastNewReg[AntiDepReg] = NewReg;
844      }
845    }
846
847    ScanInstruction(MI, Count);
848  }
849
850  return Changed;
851}
852
853/// StartBlockForKills - Initialize register live-range state for updating kills
854///
855void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
856  // Initialize the indices to indicate that no registers are live.
857  std::fill(KillIndices, array_endof(KillIndices), ~0u);
858
859  // Determine the live-out physregs for this block.
860  if (!BB->empty() && BB->back().getDesc().isReturn()) {
861    // In a return block, examine the function live-out regs.
862    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
863           E = MRI.liveout_end(); I != E; ++I) {
864      unsigned Reg = *I;
865      KillIndices[Reg] = BB->size();
866      // Repeat, for all subregs.
867      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
868           *Subreg; ++Subreg) {
869        KillIndices[*Subreg] = BB->size();
870      }
871    }
872  }
873  else {
874    // In a non-return block, examine the live-in regs of all successors.
875    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
876           SE = BB->succ_end(); SI != SE; ++SI) {
877      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
878             E = (*SI)->livein_end(); I != E; ++I) {
879        unsigned Reg = *I;
880        KillIndices[Reg] = BB->size();
881        // Repeat, for all subregs.
882        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
883             *Subreg; ++Subreg) {
884          KillIndices[*Subreg] = BB->size();
885        }
886      }
887    }
888  }
889}
890
891bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
892                                          MachineOperand &MO) {
893  // Setting kill flag...
894  if (!MO.isKill()) {
895    MO.setIsKill(true);
896    return false;
897  }
898
899  // If MO itself is live, clear the kill flag...
900  if (KillIndices[MO.getReg()] != ~0u) {
901    MO.setIsKill(false);
902    return false;
903  }
904
905  // If any subreg of MO is live, then create an imp-def for that
906  // subreg and keep MO marked as killed.
907  MO.setIsKill(false);
908  bool AllDead = true;
909  const unsigned SuperReg = MO.getReg();
910  for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg);
911       *Subreg; ++Subreg) {
912    if (KillIndices[*Subreg] != ~0u) {
913      MI->addOperand(MachineOperand::CreateReg(*Subreg,
914                                               true  /*IsDef*/,
915                                               true  /*IsImp*/,
916                                               false /*IsKill*/,
917                                               false /*IsDead*/));
918      AllDead = false;
919    }
920  }
921
922  if(AllDead)
923    MO.setIsKill(true);
924  return false;
925}
926
927/// FixupKills - Fix the register kill flags, they may have been made
928/// incorrect by instruction reordering.
929///
930void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
931  DEBUG(errs() << "Fixup kills for BB ID#" << MBB->getNumber() << '\n');
932
933  std::set<unsigned> killedRegs;
934  BitVector ReservedRegs = TRI->getReservedRegs(MF);
935
936  StartBlockForKills(MBB);
937
938  // Examine block from end to start...
939  unsigned Count = MBB->size();
940  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
941       I != E; --Count) {
942    MachineInstr *MI = --I;
943
944    // Update liveness.  Registers that are defed but not used in this
945    // instruction are now dead. Mark register and all subregs as they
946    // are completely defined.
947    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
948      MachineOperand &MO = MI->getOperand(i);
949      if (!MO.isReg()) continue;
950      unsigned Reg = MO.getReg();
951      if (Reg == 0) continue;
952      if (!MO.isDef()) continue;
953      // Ignore two-addr defs.
954      if (MI->isRegTiedToUseOperand(i)) continue;
955
956      KillIndices[Reg] = ~0u;
957
958      // Repeat for all subregs.
959      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
960           *Subreg; ++Subreg) {
961        KillIndices[*Subreg] = ~0u;
962      }
963    }
964
965    // Examine all used registers and set/clear kill flag. When a
966    // register is used multiple times we only set the kill flag on
967    // the first use.
968    killedRegs.clear();
969    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
970      MachineOperand &MO = MI->getOperand(i);
971      if (!MO.isReg() || !MO.isUse()) continue;
972      unsigned Reg = MO.getReg();
973      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
974
975      bool kill = false;
976      if (killedRegs.find(Reg) == killedRegs.end()) {
977        kill = true;
978        // A register is not killed if any subregs are live...
979        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
980             *Subreg; ++Subreg) {
981          if (KillIndices[*Subreg] != ~0u) {
982            kill = false;
983            break;
984          }
985        }
986
987        // If subreg is not live, then register is killed if it became
988        // live in this instruction
989        if (kill)
990          kill = (KillIndices[Reg] == ~0u);
991      }
992
993      if (MO.isKill() != kill) {
994        bool removed = ToggleKillFlag(MI, MO);
995        if (removed) {
996          DEBUG(errs() << "Fixed <removed> in ");
997        } else {
998          DEBUG(errs() << "Fixed " << MO << " in ");
999        }
1000        DEBUG(MI->dump());
1001      }
1002
1003      killedRegs.insert(Reg);
1004    }
1005
1006    // Mark any used register (that is not using undef) and subregs as
1007    // now live...
1008    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1009      MachineOperand &MO = MI->getOperand(i);
1010      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1011      unsigned Reg = MO.getReg();
1012      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
1013
1014      KillIndices[Reg] = Count;
1015
1016      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
1017           *Subreg; ++Subreg) {
1018        KillIndices[*Subreg] = Count;
1019      }
1020    }
1021  }
1022}
1023
1024//===----------------------------------------------------------------------===//
1025//  Top-Down Scheduling
1026//===----------------------------------------------------------------------===//
1027
1028/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
1029/// the PendingQueue if the count reaches zero. Also update its cycle bound.
1030void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
1031  SUnit *SuccSU = SuccEdge->getSUnit();
1032
1033#ifndef NDEBUG
1034  if (SuccSU->NumPredsLeft == 0) {
1035    errs() << "*** Scheduling failed! ***\n";
1036    SuccSU->dump(this);
1037    errs() << " has been released too many times!\n";
1038    llvm_unreachable(0);
1039  }
1040#endif
1041  --SuccSU->NumPredsLeft;
1042
1043  // Compute how many cycles it will be before this actually becomes
1044  // available.  This is the max of the start time of all predecessors plus
1045  // their latencies.
1046  SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
1047
1048  // If all the node's predecessors are scheduled, this node is ready
1049  // to be scheduled. Ignore the special ExitSU node.
1050  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
1051    PendingQueue.push_back(SuccSU);
1052}
1053
1054/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
1055void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
1056  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1057       I != E; ++I)
1058    ReleaseSucc(SU, &*I);
1059}
1060
1061/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
1062/// count of its successors. If a successor pending count is zero, add it to
1063/// the Available queue.
1064void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
1065  DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: ");
1066  DEBUG(SU->dump(this));
1067
1068  Sequence.push_back(SU);
1069  assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
1070  SU->setDepthToAtLeast(CurCycle);
1071
1072  ReleaseSuccessors(SU);
1073  SU->isScheduled = true;
1074  AvailableQueue.ScheduledNode(SU);
1075}
1076
1077/// ListScheduleTopDown - The main loop of list scheduling for top-down
1078/// schedulers.
1079void SchedulePostRATDList::ListScheduleTopDown() {
1080  unsigned CurCycle = 0;
1081
1082  // Release any successors of the special Entry node.
1083  ReleaseSuccessors(&EntrySU);
1084
1085  // All leaves to Available queue.
1086  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1087    // It is available if it has no predecessors.
1088    if (SUnits[i].Preds.empty()) {
1089      AvailableQueue.push(&SUnits[i]);
1090      SUnits[i].isAvailable = true;
1091    }
1092  }
1093
1094  // In any cycle where we can't schedule any instructions, we must
1095  // stall or emit a noop, depending on the target.
1096  bool CycleHasInsts = false;
1097
1098  // While Available queue is not empty, grab the node with the highest
1099  // priority. If it is not ready put it back.  Schedule the node.
1100  std::vector<SUnit*> NotReady;
1101  Sequence.reserve(SUnits.size());
1102  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
1103    // Check to see if any of the pending instructions are ready to issue.  If
1104    // so, add them to the available queue.
1105    unsigned MinDepth = ~0u;
1106    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
1107      if (PendingQueue[i]->getDepth() <= CurCycle) {
1108        AvailableQueue.push(PendingQueue[i]);
1109        PendingQueue[i]->isAvailable = true;
1110        PendingQueue[i] = PendingQueue.back();
1111        PendingQueue.pop_back();
1112        --i; --e;
1113      } else if (PendingQueue[i]->getDepth() < MinDepth)
1114        MinDepth = PendingQueue[i]->getDepth();
1115    }
1116
1117    DEBUG(errs() << "\n*** Examining Available\n";
1118          LatencyPriorityQueue q = AvailableQueue;
1119          while (!q.empty()) {
1120            SUnit *su = q.pop();
1121            errs() << "Height " << su->getHeight() << ": ";
1122            su->dump(this);
1123          });
1124
1125    SUnit *FoundSUnit = 0;
1126
1127    bool HasNoopHazards = false;
1128    while (!AvailableQueue.empty()) {
1129      SUnit *CurSUnit = AvailableQueue.pop();
1130
1131      ScheduleHazardRecognizer::HazardType HT =
1132        HazardRec->getHazardType(CurSUnit);
1133      if (HT == ScheduleHazardRecognizer::NoHazard) {
1134        FoundSUnit = CurSUnit;
1135        break;
1136      }
1137
1138      // Remember if this is a noop hazard.
1139      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
1140
1141      NotReady.push_back(CurSUnit);
1142    }
1143
1144    // Add the nodes that aren't ready back onto the available list.
1145    if (!NotReady.empty()) {
1146      AvailableQueue.push_all(NotReady);
1147      NotReady.clear();
1148    }
1149
1150    // If we found a node to schedule, do it now.
1151    if (FoundSUnit) {
1152      ScheduleNodeTopDown(FoundSUnit, CurCycle);
1153      HazardRec->EmitInstruction(FoundSUnit);
1154      CycleHasInsts = true;
1155
1156      // If we are using the target-specific hazards, then don't
1157      // advance the cycle time just because we schedule a node. If
1158      // the target allows it we can schedule multiple nodes in the
1159      // same cycle.
1160      if (!EnablePostRAHazardAvoidance) {
1161        if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
1162          ++CurCycle;
1163      }
1164    } else {
1165      if (CycleHasInsts) {
1166        DEBUG(errs() << "*** Finished cycle " << CurCycle << '\n');
1167        HazardRec->AdvanceCycle();
1168      } else if (!HasNoopHazards) {
1169        // Otherwise, we have a pipeline stall, but no other problem,
1170        // just advance the current cycle and try again.
1171        DEBUG(errs() << "*** Stall in cycle " << CurCycle << '\n');
1172        HazardRec->AdvanceCycle();
1173        ++NumStalls;
1174      } else {
1175        // Otherwise, we have no instructions to issue and we have instructions
1176        // that will fault if we don't do this right.  This is the case for
1177        // processors without pipeline interlocks and other cases.
1178        DEBUG(errs() << "*** Emitting noop in cycle " << CurCycle << '\n');
1179        HazardRec->EmitNoop();
1180        Sequence.push_back(0);   // NULL here means noop
1181        ++NumNoops;
1182      }
1183
1184      ++CurCycle;
1185      CycleHasInsts = false;
1186    }
1187  }
1188
1189#ifndef NDEBUG
1190  VerifySchedule(/*isBottomUp=*/false);
1191#endif
1192}
1193
1194//===----------------------------------------------------------------------===//
1195//                         Public Constructor Functions
1196//===----------------------------------------------------------------------===//
1197
1198FunctionPass *llvm::createPostRAScheduler() {
1199  return new PostRAScheduler();
1200}
1201