PostRASchedulerList.cpp revision 619acdc63ab0a47d125dca0591285c8ac4c9ed20
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "AntiDepBreaker.h"
23#include "AggressiveAntiDepBreaker.h"
24#include "CriticalAntiDepBreaker.h"
25#include "ScheduleDAGInstrs.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/CodeGen/LatencyPriorityQueue.h"
28#include "llvm/CodeGen/SchedulerRegistry.h"
29#include "llvm/CodeGen/MachineDominators.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunctionPass.h"
32#include "llvm/CodeGen/MachineLoopInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Target/TargetLowering.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetRegisterInfo.h"
40#include "llvm/Target/TargetSubtarget.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/ADT/BitVector.h"
46#include "llvm/ADT/Statistic.h"
47#include <set>
48using namespace llvm;
49
50STATISTIC(NumNoops, "Number of noops inserted");
51STATISTIC(NumStalls, "Number of pipeline stalls");
52STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
53
54// Post-RA scheduling is enabled with
55// TargetSubtarget.enablePostRAScheduler(). This flag can be used to
56// override the target.
57static cl::opt<bool>
58EnablePostRAScheduler("post-RA-scheduler",
59                       cl::desc("Enable scheduling after register allocation"),
60                       cl::init(false), cl::Hidden);
61static cl::opt<std::string>
62EnableAntiDepBreaking("break-anti-dependencies",
63                      cl::desc("Break post-RA scheduling anti-dependencies: "
64                               "\"critical\", \"all\", or \"none\""),
65                      cl::init("none"), cl::Hidden);
66
67// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
68static cl::opt<int>
69DebugDiv("postra-sched-debugdiv",
70                      cl::desc("Debug control MBBs that are scheduled"),
71                      cl::init(0), cl::Hidden);
72static cl::opt<int>
73DebugMod("postra-sched-debugmod",
74                      cl::desc("Debug control MBBs that are scheduled"),
75                      cl::init(0), cl::Hidden);
76
77AntiDepBreaker::~AntiDepBreaker() { }
78
79namespace {
80  class PostRAScheduler : public MachineFunctionPass {
81    AliasAnalysis *AA;
82    const TargetInstrInfo *TII;
83    CodeGenOpt::Level OptLevel;
84
85  public:
86    static char ID;
87    PostRAScheduler(CodeGenOpt::Level ol) :
88      MachineFunctionPass(&ID), OptLevel(ol) {}
89
90    void getAnalysisUsage(AnalysisUsage &AU) const {
91      AU.setPreservesCFG();
92      AU.addRequired<AliasAnalysis>();
93      AU.addRequired<MachineDominatorTree>();
94      AU.addPreserved<MachineDominatorTree>();
95      AU.addRequired<MachineLoopInfo>();
96      AU.addPreserved<MachineLoopInfo>();
97      MachineFunctionPass::getAnalysisUsage(AU);
98    }
99
100    const char *getPassName() const {
101      return "Post RA top-down list latency scheduler";
102    }
103
104    bool runOnMachineFunction(MachineFunction &Fn);
105  };
106  char PostRAScheduler::ID = 0;
107
108  class SchedulePostRATDList : public ScheduleDAGInstrs {
109    /// AvailableQueue - The priority queue to use for the available SUnits.
110    ///
111    LatencyPriorityQueue AvailableQueue;
112
113    /// PendingQueue - This contains all of the instructions whose operands have
114    /// been issued, but their results are not ready yet (due to the latency of
115    /// the operation).  Once the operands becomes available, the instruction is
116    /// added to the AvailableQueue.
117    std::vector<SUnit*> PendingQueue;
118
119    /// Topo - A topological ordering for SUnits.
120    ScheduleDAGTopologicalSort Topo;
121
122    /// HazardRec - The hazard recognizer to use.
123    ScheduleHazardRecognizer *HazardRec;
124
125    /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
126    AntiDepBreaker *AntiDepBreak;
127
128    /// AA - AliasAnalysis for making memory reference queries.
129    AliasAnalysis *AA;
130
131    /// KillIndices - The index of the most recent kill (proceding bottom-up),
132    /// or ~0u if the register is not live.
133    std::vector<unsigned> KillIndices;
134
135  public:
136    SchedulePostRATDList(MachineFunction &MF,
137                         const MachineLoopInfo &MLI,
138                         const MachineDominatorTree &MDT,
139                         ScheduleHazardRecognizer *HR,
140                         AntiDepBreaker *ADB,
141                         AliasAnalysis *aa)
142      : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
143        HazardRec(HR), AntiDepBreak(ADB), AA(aa),
144        KillIndices(TRI->getNumRegs()) {}
145
146    ~SchedulePostRATDList() {
147    }
148
149    /// StartBlock - Initialize register live-range state for scheduling in
150    /// this block.
151    ///
152    void StartBlock(MachineBasicBlock *BB);
153
154    /// Schedule - Schedule the instruction range using list scheduling.
155    ///
156    void Schedule();
157
158    /// Observe - Update liveness information to account for the current
159    /// instruction, which will not be scheduled.
160    ///
161    void Observe(MachineInstr *MI, unsigned Count);
162
163    /// FinishBlock - Clean up register live-range state.
164    ///
165    void FinishBlock();
166
167    /// FixupKills - Fix register kill flags that have been made
168    /// invalid due to scheduling
169    ///
170    void FixupKills(MachineBasicBlock *MBB);
171
172  private:
173    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
174    void ReleaseSuccessors(SUnit *SU);
175    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
176    void ListScheduleTopDown();
177    void StartBlockForKills(MachineBasicBlock *BB);
178
179    // ToggleKillFlag - Toggle a register operand kill flag. Other
180    // adjustments may be made to the instruction if necessary. Return
181    // true if the operand has been deleted, false if not.
182    bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
183  };
184}
185
186bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
187  AA = &getAnalysis<AliasAnalysis>();
188  TII = Fn.getTarget().getInstrInfo();
189
190  // Check for explicit enable/disable of post-ra scheduling.
191  TargetSubtarget::AntiDepBreakMode AntiDepMode = TargetSubtarget::ANTIDEP_NONE;
192  SmallVector<TargetRegisterClass*, 4> CriticalPathRCs;
193  if (EnablePostRAScheduler.getPosition() > 0) {
194    if (!EnablePostRAScheduler)
195      return false;
196  } else {
197    // Check that post-RA scheduling is enabled for this target.
198    const TargetSubtarget &ST = Fn.getTarget().getSubtarget<TargetSubtarget>();
199    if (!ST.enablePostRAScheduler(OptLevel, AntiDepMode, CriticalPathRCs))
200      return false;
201  }
202
203  // Check for antidep breaking override...
204  if (EnableAntiDepBreaking.getPosition() > 0) {
205    AntiDepMode = (EnableAntiDepBreaking == "all") ?
206      TargetSubtarget::ANTIDEP_ALL :
207        (EnableAntiDepBreaking == "critical")
208           ? TargetSubtarget::ANTIDEP_CRITICAL : TargetSubtarget::ANTIDEP_NONE;
209  }
210
211  DEBUG(dbgs() << "PostRAScheduler\n");
212
213  const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
214  const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
215  const TargetMachine &TM = Fn.getTarget();
216  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
217  ScheduleHazardRecognizer *HR =
218    TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins);
219  AntiDepBreaker *ADB =
220    ((AntiDepMode == TargetSubtarget::ANTIDEP_ALL) ?
221     (AntiDepBreaker *)new AggressiveAntiDepBreaker(Fn, CriticalPathRCs) :
222     ((AntiDepMode == TargetSubtarget::ANTIDEP_CRITICAL) ?
223      (AntiDepBreaker *)new CriticalAntiDepBreaker(Fn) : NULL));
224
225  SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR, ADB, AA);
226
227  // Loop over all of the basic blocks
228  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
229       MBB != MBBe; ++MBB) {
230#ifndef NDEBUG
231    // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
232    if (DebugDiv > 0) {
233      static int bbcnt = 0;
234      if (bbcnt++ % DebugDiv != DebugMod)
235        continue;
236      dbgs() << "*** DEBUG scheduling " << Fn.getFunction()->getNameStr() <<
237        ":BB#" << MBB->getNumber() << " ***\n";
238    }
239#endif
240
241    // Initialize register live-range state for scheduling in this block.
242    Scheduler.StartBlock(MBB);
243
244    // Schedule each sequence of instructions not interrupted by a label
245    // or anything else that effectively needs to shut down scheduling.
246    MachineBasicBlock::iterator Current = MBB->end();
247    unsigned Count = MBB->size(), CurrentCount = Count;
248    for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
249      MachineInstr *MI = llvm::prior(I);
250      if (TII->isSchedulingBoundary(MI, MBB, Fn)) {
251        Scheduler.Run(MBB, I, Current, CurrentCount);
252        Scheduler.EmitSchedule();
253        Current = MI;
254        CurrentCount = Count - 1;
255        Scheduler.Observe(MI, CurrentCount);
256      }
257      I = MI;
258      --Count;
259    }
260    assert(Count == 0 && "Instruction count mismatch!");
261    assert((MBB->begin() == Current || CurrentCount != 0) &&
262           "Instruction count mismatch!");
263    Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
264    Scheduler.EmitSchedule();
265
266    // Clean up register live-range state.
267    Scheduler.FinishBlock();
268
269    // Update register kills
270    Scheduler.FixupKills(MBB);
271  }
272
273  delete HR;
274  delete ADB;
275
276  return true;
277}
278
279/// StartBlock - Initialize register live-range state for scheduling in
280/// this block.
281///
282void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
283  // Call the superclass.
284  ScheduleDAGInstrs::StartBlock(BB);
285
286  // Reset the hazard recognizer and anti-dep breaker.
287  HazardRec->Reset();
288  if (AntiDepBreak != NULL)
289    AntiDepBreak->StartBlock(BB);
290}
291
292/// Schedule - Schedule the instruction range using list scheduling.
293///
294void SchedulePostRATDList::Schedule() {
295  // Build the scheduling graph.
296  BuildSchedGraph(AA);
297
298  if (AntiDepBreak != NULL) {
299    unsigned Broken =
300      AntiDepBreak->BreakAntiDependencies(SUnits, Begin, InsertPos,
301                                          InsertPosIndex);
302
303    if (Broken != 0) {
304      // We made changes. Update the dependency graph.
305      // Theoretically we could update the graph in place:
306      // When a live range is changed to use a different register, remove
307      // the def's anti-dependence *and* output-dependence edges due to
308      // that register, and add new anti-dependence and output-dependence
309      // edges based on the next live range of the register.
310      SUnits.clear();
311      Sequence.clear();
312      EntrySU = SUnit();
313      ExitSU = SUnit();
314      BuildSchedGraph(AA);
315
316      NumFixedAnti += Broken;
317    }
318  }
319
320  DEBUG(dbgs() << "********** List Scheduling **********\n");
321  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
322          SUnits[su].dumpAll(this));
323
324  AvailableQueue.initNodes(SUnits);
325  ListScheduleTopDown();
326  AvailableQueue.releaseState();
327}
328
329/// Observe - Update liveness information to account for the current
330/// instruction, which will not be scheduled.
331///
332void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
333  if (AntiDepBreak != NULL)
334    AntiDepBreak->Observe(MI, Count, InsertPosIndex);
335}
336
337/// FinishBlock - Clean up register live-range state.
338///
339void SchedulePostRATDList::FinishBlock() {
340  if (AntiDepBreak != NULL)
341    AntiDepBreak->FinishBlock();
342
343  // Call the superclass.
344  ScheduleDAGInstrs::FinishBlock();
345}
346
347/// StartBlockForKills - Initialize register live-range state for updating kills
348///
349void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
350  // Initialize the indices to indicate that no registers are live.
351  for (unsigned i = 0; i < TRI->getNumRegs(); ++i)
352    KillIndices[i] = ~0u;
353
354  // Determine the live-out physregs for this block.
355  if (!BB->empty() && BB->back().getDesc().isReturn()) {
356    // In a return block, examine the function live-out regs.
357    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
358           E = MRI.liveout_end(); I != E; ++I) {
359      unsigned Reg = *I;
360      KillIndices[Reg] = BB->size();
361      // Repeat, for all subregs.
362      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
363           *Subreg; ++Subreg) {
364        KillIndices[*Subreg] = BB->size();
365      }
366    }
367  }
368  else {
369    // In a non-return block, examine the live-in regs of all successors.
370    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
371           SE = BB->succ_end(); SI != SE; ++SI) {
372      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
373             E = (*SI)->livein_end(); I != E; ++I) {
374        unsigned Reg = *I;
375        KillIndices[Reg] = BB->size();
376        // Repeat, for all subregs.
377        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
378             *Subreg; ++Subreg) {
379          KillIndices[*Subreg] = BB->size();
380        }
381      }
382    }
383  }
384}
385
386bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
387                                          MachineOperand &MO) {
388  // Setting kill flag...
389  if (!MO.isKill()) {
390    MO.setIsKill(true);
391    return false;
392  }
393
394  // If MO itself is live, clear the kill flag...
395  if (KillIndices[MO.getReg()] != ~0u) {
396    MO.setIsKill(false);
397    return false;
398  }
399
400  // If any subreg of MO is live, then create an imp-def for that
401  // subreg and keep MO marked as killed.
402  MO.setIsKill(false);
403  bool AllDead = true;
404  const unsigned SuperReg = MO.getReg();
405  for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg);
406       *Subreg; ++Subreg) {
407    if (KillIndices[*Subreg] != ~0u) {
408      MI->addOperand(MachineOperand::CreateReg(*Subreg,
409                                               true  /*IsDef*/,
410                                               true  /*IsImp*/,
411                                               false /*IsKill*/,
412                                               false /*IsDead*/));
413      AllDead = false;
414    }
415  }
416
417  if(AllDead)
418    MO.setIsKill(true);
419  return false;
420}
421
422/// FixupKills - Fix the register kill flags, they may have been made
423/// incorrect by instruction reordering.
424///
425void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
426  DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
427
428  std::set<unsigned> killedRegs;
429  BitVector ReservedRegs = TRI->getReservedRegs(MF);
430
431  StartBlockForKills(MBB);
432
433  // Examine block from end to start...
434  unsigned Count = MBB->size();
435  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
436       I != E; --Count) {
437    MachineInstr *MI = --I;
438    if (MI->isDebugValue())
439      continue;
440
441    // Update liveness.  Registers that are defed but not used in this
442    // instruction are now dead. Mark register and all subregs as they
443    // are completely defined.
444    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
445      MachineOperand &MO = MI->getOperand(i);
446      if (!MO.isReg()) continue;
447      unsigned Reg = MO.getReg();
448      if (Reg == 0) continue;
449      if (!MO.isDef()) continue;
450      // Ignore two-addr defs.
451      if (MI->isRegTiedToUseOperand(i)) continue;
452
453      KillIndices[Reg] = ~0u;
454
455      // Repeat for all subregs.
456      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
457           *Subreg; ++Subreg) {
458        KillIndices[*Subreg] = ~0u;
459      }
460    }
461
462    // Examine all used registers and set/clear kill flag. When a
463    // register is used multiple times we only set the kill flag on
464    // the first use.
465    killedRegs.clear();
466    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
467      MachineOperand &MO = MI->getOperand(i);
468      if (!MO.isReg() || !MO.isUse()) continue;
469      unsigned Reg = MO.getReg();
470      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
471
472      bool kill = false;
473      if (killedRegs.find(Reg) == killedRegs.end()) {
474        kill = true;
475        // A register is not killed if any subregs are live...
476        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
477             *Subreg; ++Subreg) {
478          if (KillIndices[*Subreg] != ~0u) {
479            kill = false;
480            break;
481          }
482        }
483
484        // If subreg is not live, then register is killed if it became
485        // live in this instruction
486        if (kill)
487          kill = (KillIndices[Reg] == ~0u);
488      }
489
490      if (MO.isKill() != kill) {
491        DEBUG(dbgs() << "Fixing " << MO << " in ");
492        // Warning: ToggleKillFlag may invalidate MO.
493        ToggleKillFlag(MI, MO);
494        DEBUG(MI->dump());
495      }
496
497      killedRegs.insert(Reg);
498    }
499
500    // Mark any used register (that is not using undef) and subregs as
501    // now live...
502    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
503      MachineOperand &MO = MI->getOperand(i);
504      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
505      unsigned Reg = MO.getReg();
506      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
507
508      KillIndices[Reg] = Count;
509
510      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
511           *Subreg; ++Subreg) {
512        KillIndices[*Subreg] = Count;
513      }
514    }
515  }
516}
517
518//===----------------------------------------------------------------------===//
519//  Top-Down Scheduling
520//===----------------------------------------------------------------------===//
521
522/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
523/// the PendingQueue if the count reaches zero. Also update its cycle bound.
524void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
525  SUnit *SuccSU = SuccEdge->getSUnit();
526
527#ifndef NDEBUG
528  if (SuccSU->NumPredsLeft == 0) {
529    dbgs() << "*** Scheduling failed! ***\n";
530    SuccSU->dump(this);
531    dbgs() << " has been released too many times!\n";
532    llvm_unreachable(0);
533  }
534#endif
535  --SuccSU->NumPredsLeft;
536
537  // Compute how many cycles it will be before this actually becomes
538  // available.  This is the max of the start time of all predecessors plus
539  // their latencies.
540  SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
541
542  // If all the node's predecessors are scheduled, this node is ready
543  // to be scheduled. Ignore the special ExitSU node.
544  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
545    PendingQueue.push_back(SuccSU);
546}
547
548/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
549void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
550  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
551       I != E; ++I) {
552    ReleaseSucc(SU, &*I);
553  }
554}
555
556/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
557/// count of its successors. If a successor pending count is zero, add it to
558/// the Available queue.
559void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
560  DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
561  DEBUG(SU->dump(this));
562
563  Sequence.push_back(SU);
564  assert(CurCycle >= SU->getDepth() &&
565         "Node scheduled above its depth!");
566  SU->setDepthToAtLeast(CurCycle);
567
568  ReleaseSuccessors(SU);
569  SU->isScheduled = true;
570  AvailableQueue.ScheduledNode(SU);
571}
572
573/// ListScheduleTopDown - The main loop of list scheduling for top-down
574/// schedulers.
575void SchedulePostRATDList::ListScheduleTopDown() {
576  unsigned CurCycle = 0;
577
578  // We're scheduling top-down but we're visiting the regions in
579  // bottom-up order, so we don't know the hazards at the start of a
580  // region. So assume no hazards (this should usually be ok as most
581  // blocks are a single region).
582  HazardRec->Reset();
583
584  // Release any successors of the special Entry node.
585  ReleaseSuccessors(&EntrySU);
586
587  // Add all leaves to Available queue.
588  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
589    // It is available if it has no predecessors.
590    bool available = SUnits[i].Preds.empty();
591    if (available) {
592      AvailableQueue.push(&SUnits[i]);
593      SUnits[i].isAvailable = true;
594    }
595  }
596
597  // In any cycle where we can't schedule any instructions, we must
598  // stall or emit a noop, depending on the target.
599  bool CycleHasInsts = false;
600
601  // While Available queue is not empty, grab the node with the highest
602  // priority. If it is not ready put it back.  Schedule the node.
603  std::vector<SUnit*> NotReady;
604  Sequence.reserve(SUnits.size());
605  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
606    // Check to see if any of the pending instructions are ready to issue.  If
607    // so, add them to the available queue.
608    unsigned MinDepth = ~0u;
609    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
610      if (PendingQueue[i]->getDepth() <= CurCycle) {
611        AvailableQueue.push(PendingQueue[i]);
612        PendingQueue[i]->isAvailable = true;
613        PendingQueue[i] = PendingQueue.back();
614        PendingQueue.pop_back();
615        --i; --e;
616      } else if (PendingQueue[i]->getDepth() < MinDepth)
617        MinDepth = PendingQueue[i]->getDepth();
618    }
619
620    DEBUG(dbgs() << "\n*** Examining Available\n";
621          LatencyPriorityQueue q = AvailableQueue;
622          while (!q.empty()) {
623            SUnit *su = q.pop();
624            dbgs() << "Height " << su->getHeight() << ": ";
625            su->dump(this);
626          });
627
628    SUnit *FoundSUnit = 0;
629    bool HasNoopHazards = false;
630    while (!AvailableQueue.empty()) {
631      SUnit *CurSUnit = AvailableQueue.pop();
632
633      ScheduleHazardRecognizer::HazardType HT =
634        HazardRec->getHazardType(CurSUnit);
635      if (HT == ScheduleHazardRecognizer::NoHazard) {
636        FoundSUnit = CurSUnit;
637        break;
638      }
639
640      // Remember if this is a noop hazard.
641      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
642
643      NotReady.push_back(CurSUnit);
644    }
645
646    // Add the nodes that aren't ready back onto the available list.
647    if (!NotReady.empty()) {
648      AvailableQueue.push_all(NotReady);
649      NotReady.clear();
650    }
651
652    // If we found a node to schedule...
653    if (FoundSUnit) {
654      // ... schedule the node...
655      ScheduleNodeTopDown(FoundSUnit, CurCycle);
656      HazardRec->EmitInstruction(FoundSUnit);
657      CycleHasInsts = true;
658    } else {
659      if (CycleHasInsts) {
660        DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
661        HazardRec->AdvanceCycle();
662      } else if (!HasNoopHazards) {
663        // Otherwise, we have a pipeline stall, but no other problem,
664        // just advance the current cycle and try again.
665        DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
666        HazardRec->AdvanceCycle();
667        ++NumStalls;
668      } else {
669        // Otherwise, we have no instructions to issue and we have instructions
670        // that will fault if we don't do this right.  This is the case for
671        // processors without pipeline interlocks and other cases.
672        DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
673        HazardRec->EmitNoop();
674        Sequence.push_back(0);   // NULL here means noop
675        ++NumNoops;
676      }
677
678      ++CurCycle;
679      CycleHasInsts = false;
680    }
681  }
682
683#ifndef NDEBUG
684  VerifySchedule(/*isBottomUp=*/false);
685#endif
686}
687
688//===----------------------------------------------------------------------===//
689//                         Public Constructor Functions
690//===----------------------------------------------------------------------===//
691
692FunctionPass *llvm::createPostRAScheduler(CodeGenOpt::Level OptLevel) {
693  return new PostRAScheduler(OptLevel);
694}
695