PostRASchedulerList.cpp revision 6c3643c41b7c00fe503a36b468ac0488d946454e
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "llvm/CodeGen/Passes.h"
23#include "llvm/CodeGen/ScheduleDAGInstrs.h"
24#include "llvm/CodeGen/LatencyPriorityQueue.h"
25#include "llvm/CodeGen/SchedulerRegistry.h"
26#include "llvm/CodeGen/MachineDominators.h"
27#include "llvm/CodeGen/MachineFunctionPass.h"
28#include "llvm/CodeGen/MachineLoopInfo.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Support/Compiler.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/DenseSet.h"
36#include "llvm/ADT/SmallVector.h"
37#include <map>
38#include <climits>
39using namespace llvm;
40
41STATISTIC(NumStalls, "Number of pipeline stalls");
42
43static cl::opt<bool>
44EnableAntiDepBreaking("break-anti-dependencies",
45                      cl::desc("Break post-RA scheduling anti-dependencies"),
46                      cl::init(true), cl::Hidden);
47
48namespace {
49  class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
50  public:
51    static char ID;
52    PostRAScheduler() : MachineFunctionPass(&ID) {}
53
54    void getAnalysisUsage(AnalysisUsage &AU) const {
55      AU.addRequired<MachineDominatorTree>();
56      AU.addPreserved<MachineDominatorTree>();
57      AU.addRequired<MachineLoopInfo>();
58      AU.addPreserved<MachineLoopInfo>();
59      MachineFunctionPass::getAnalysisUsage(AU);
60    }
61
62    const char *getPassName() const {
63      return "Post RA top-down list latency scheduler";
64    }
65
66    bool runOnMachineFunction(MachineFunction &Fn);
67  };
68  char PostRAScheduler::ID = 0;
69
70  class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
71    /// AvailableQueue - The priority queue to use for the available SUnits.
72    ///
73    LatencyPriorityQueue AvailableQueue;
74
75    /// PendingQueue - This contains all of the instructions whose operands have
76    /// been issued, but their results are not ready yet (due to the latency of
77    /// the operation).  Once the operands becomes available, the instruction is
78    /// added to the AvailableQueue.
79    std::vector<SUnit*> PendingQueue;
80
81    /// Topo - A topological ordering for SUnits.
82    ScheduleDAGTopologicalSort Topo;
83
84  public:
85    SchedulePostRATDList(MachineBasicBlock *mbb, const TargetMachine &tm,
86                         const MachineLoopInfo &MLI,
87                         const MachineDominatorTree &MDT)
88      : ScheduleDAGInstrs(mbb, tm, MLI, MDT), Topo(SUnits) {}
89
90    void Schedule();
91
92  private:
93    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
94    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
95    void ListScheduleTopDown();
96    bool BreakAntiDependencies();
97  };
98}
99
100bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
101  DOUT << "PostRAScheduler\n";
102
103  const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
104  const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
105
106  // Loop over all of the basic blocks
107  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
108       MBB != MBBe; ++MBB) {
109
110    SchedulePostRATDList Scheduler(MBB, Fn.getTarget(), MLI, MDT);
111
112    Scheduler.Run();
113
114    Scheduler.EmitSchedule();
115  }
116
117  return true;
118}
119
120/// Schedule - Schedule the DAG using list scheduling.
121void SchedulePostRATDList::Schedule() {
122  DOUT << "********** List Scheduling **********\n";
123
124  // Build scheduling units.
125  BuildSchedUnits();
126
127  if (EnableAntiDepBreaking) {
128    if (BreakAntiDependencies()) {
129      // We made changes. Update the dependency graph.
130      // Theoretically we could update the graph in place:
131      // When a live range is changed to use a different register, remove
132      // the def's anti-dependence *and* output-dependence edges due to
133      // that register, and add new anti-dependence and output-dependence
134      // edges based on the next live range of the register.
135      SUnits.clear();
136      BuildSchedUnits();
137    }
138  }
139
140  AvailableQueue.initNodes(SUnits);
141
142  ListScheduleTopDown();
143
144  AvailableQueue.releaseState();
145}
146
147/// getInstrOperandRegClass - Return register class of the operand of an
148/// instruction of the specified TargetInstrDesc.
149static const TargetRegisterClass*
150getInstrOperandRegClass(const TargetRegisterInfo *TRI,
151                        const TargetInstrInfo *TII, const TargetInstrDesc &II,
152                        unsigned Op) {
153  if (Op >= II.getNumOperands())
154    return NULL;
155  if (II.OpInfo[Op].isLookupPtrRegClass())
156    return TII->getPointerRegClass();
157  return TRI->getRegClass(II.OpInfo[Op].RegClass);
158}
159
160/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
161/// critical path.
162static SDep *CriticalPathStep(SUnit *SU) {
163  SDep *Next = 0;
164  unsigned NextDepth = 0;
165  // Find the predecessor edge with the greatest depth.
166  for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
167       P != PE; ++P) {
168    SUnit *PredSU = P->getSUnit();
169    unsigned PredLatency = P->getLatency();
170    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
171    // In the case of a latency tie, prefer an anti-dependency edge over
172    // other types of edges.
173    if (NextDepth < PredTotalLatency ||
174        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
175      NextDepth = PredTotalLatency;
176      Next = &*P;
177    }
178  }
179  return Next;
180}
181
182/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
183/// of the ScheduleDAG and break them by renaming registers.
184///
185bool SchedulePostRATDList::BreakAntiDependencies() {
186  // The code below assumes that there is at least one instruction,
187  // so just duck out immediately if the block is empty.
188  if (BB->empty()) return false;
189
190  // Find the node at the bottom of the critical path.
191  SUnit *Max = 0;
192  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
193    SUnit *SU = &SUnits[i];
194    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
195      Max = SU;
196  }
197
198  DOUT << "Critical path has total latency "
199       << (Max ? Max->getDepth() + Max->Latency : 0) << "\n";
200
201  // We'll be ignoring anti-dependencies on non-allocatable registers, because
202  // they may not be safe to break.
203  const BitVector AllocatableSet = TRI->getAllocatableSet(*MF);
204
205  // Track progress along the critical path through the SUnit graph as we walk
206  // the instructions.
207  SUnit *CriticalPathSU = Max;
208  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
209
210  // For live regs that are only used in one register class in a live range,
211  // the register class. If the register is not live, the corresponding value
212  // is null. If the register is live but used in multiple register classes,
213  // the corresponding value is -1 casted to a pointer.
214  const TargetRegisterClass *
215    Classes[TargetRegisterInfo::FirstVirtualRegister] = {};
216
217  // Map registers to all their references within a live range.
218  std::multimap<unsigned, MachineOperand *> RegRefs;
219
220  // The index of the most recent kill (proceding bottom-up), or ~0u if
221  // the register is not live.
222  unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
223  std::fill(KillIndices, array_endof(KillIndices), ~0u);
224  // The index of the most recent complete def (proceding bottom up), or ~0u if
225  // the register is live.
226  unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
227  std::fill(DefIndices, array_endof(DefIndices), BB->size());
228
229  // Determine the live-out physregs for this block.
230  if (BB->back().getDesc().isReturn())
231    // In a return block, examine the function live-out regs.
232    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
233         E = MRI.liveout_end(); I != E; ++I) {
234      unsigned Reg = *I;
235      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
236      KillIndices[Reg] = BB->size();
237      DefIndices[Reg] = ~0u;
238      // Repeat, for all aliases.
239      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
240        unsigned AliasReg = *Alias;
241        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
242        KillIndices[AliasReg] = BB->size();
243        DefIndices[AliasReg] = ~0u;
244      }
245    }
246  else
247    // In a non-return block, examine the live-in regs of all successors.
248    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
249         SE = BB->succ_end(); SI != SE; ++SI)
250      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
251           E = (*SI)->livein_end(); I != E; ++I) {
252        unsigned Reg = *I;
253        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
254        KillIndices[Reg] = BB->size();
255        DefIndices[Reg] = ~0u;
256        // Repeat, for all aliases.
257        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
258          unsigned AliasReg = *Alias;
259          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
260          KillIndices[AliasReg] = BB->size();
261          DefIndices[AliasReg] = ~0u;
262        }
263      }
264
265  // Consider callee-saved registers as live-out, since we're running after
266  // prologue/epilogue insertion so there's no way to add additional
267  // saved registers.
268  //
269  // TODO: If the callee saves and restores these, then we can potentially
270  // use them between the save and the restore. To do that, we could scan
271  // the exit blocks to see which of these registers are defined.
272  // Alternatively, callee-saved registers that aren't saved and restored
273  // could be marked live-in in every block.
274  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
275    unsigned Reg = *I;
276    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
277    KillIndices[Reg] = BB->size();
278    DefIndices[Reg] = ~0u;
279    // Repeat, for all aliases.
280    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
281      unsigned AliasReg = *Alias;
282      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
283      KillIndices[AliasReg] = BB->size();
284      DefIndices[AliasReg] = ~0u;
285    }
286  }
287
288  // Consider this pattern:
289  //   A = ...
290  //   ... = A
291  //   A = ...
292  //   ... = A
293  //   A = ...
294  //   ... = A
295  //   A = ...
296  //   ... = A
297  // There are three anti-dependencies here, and without special care,
298  // we'd break all of them using the same register:
299  //   A = ...
300  //   ... = A
301  //   B = ...
302  //   ... = B
303  //   B = ...
304  //   ... = B
305  //   B = ...
306  //   ... = B
307  // because at each anti-dependence, B is the first register that
308  // isn't A which is free.  This re-introduces anti-dependencies
309  // at all but one of the original anti-dependencies that we were
310  // trying to break.  To avoid this, keep track of the most recent
311  // register that each register was replaced with, avoid avoid
312  // using it to repair an anti-dependence on the same register.
313  // This lets us produce this:
314  //   A = ...
315  //   ... = A
316  //   B = ...
317  //   ... = B
318  //   C = ...
319  //   ... = C
320  //   B = ...
321  //   ... = B
322  // This still has an anti-dependence on B, but at least it isn't on the
323  // original critical path.
324  //
325  // TODO: If we tracked more than one register here, we could potentially
326  // fix that remaining critical edge too. This is a little more involved,
327  // because unlike the most recent register, less recent registers should
328  // still be considered, though only if no other registers are available.
329  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
330
331  // Attempt to break anti-dependence edges on the critical path. Walk the
332  // instructions from the bottom up, tracking information about liveness
333  // as we go to help determine which registers are available.
334  bool Changed = false;
335  unsigned Count = BB->size() - 1;
336  for (MachineBasicBlock::reverse_iterator I = BB->rbegin(), E = BB->rend();
337       I != E; ++I, --Count) {
338    MachineInstr *MI = &*I;
339
340    // After regalloc, IMPLICIT_DEF instructions aren't safe to treat as
341    // dependence-breaking. In the case of an INSERT_SUBREG, the IMPLICIT_DEF
342    // is left behind appearing to clobber the super-register, while the
343    // subregister needs to remain live. So we just ignore them.
344    if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
345      continue;
346
347    // Check if this instruction has a dependence on the critical path that
348    // is an anti-dependence that we may be able to break. If it is, set
349    // AntiDepReg to the non-zero register associated with the anti-dependence.
350    //
351    // We limit our attention to the critical path as a heuristic to avoid
352    // breaking anti-dependence edges that aren't going to significantly
353    // impact the overall schedule. There are a limited number of registers
354    // and we want to save them for the important edges.
355    //
356    // TODO: Instructions with multiple defs could have multiple
357    // anti-dependencies. The current code here only knows how to break one
358    // edge per instruction. Note that we'd have to be able to break all of
359    // the anti-dependencies in an instruction in order to be effective.
360    unsigned AntiDepReg = 0;
361    if (MI == CriticalPathMI) {
362      if (SDep *Edge = CriticalPathStep(CriticalPathSU)) {
363        SUnit *NextSU = Edge->getSUnit();
364
365        // Only consider anti-dependence edges.
366        if (Edge->getKind() == SDep::Anti) {
367          AntiDepReg = Edge->getReg();
368          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
369          // Don't break anti-dependencies on non-allocatable registers.
370          if (AllocatableSet.test(AntiDepReg)) {
371            // If the SUnit has other dependencies on the SUnit that it
372            // anti-depends on, don't bother breaking the anti-dependency
373            // since those edges would prevent such units from being
374            // scheduled past each other regardless.
375            //
376            // Also, if there are dependencies on other SUnits with the
377            // same register as the anti-dependency, don't attempt to
378            // break it.
379            for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(),
380                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
381              if (P->getSUnit() == NextSU ?
382                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
383                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
384                AntiDepReg = 0;
385                break;
386              }
387          }
388        }
389        CriticalPathSU = NextSU;
390        CriticalPathMI = CriticalPathSU->getInstr();
391      } else {
392        // We've reached the end of the critical path.
393        CriticalPathSU = 0;
394        CriticalPathMI = 0;
395      }
396    }
397
398    // Scan the register operands for this instruction and update
399    // Classes and RegRefs.
400    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
401      MachineOperand &MO = MI->getOperand(i);
402      if (!MO.isReg()) continue;
403      unsigned Reg = MO.getReg();
404      if (Reg == 0) continue;
405      const TargetRegisterClass *NewRC =
406        getInstrOperandRegClass(TRI, TII, MI->getDesc(), i);
407
408      // If this instruction has a use of AntiDepReg, breaking it
409      // is invalid.
410      if (MO.isUse() && AntiDepReg == Reg)
411        AntiDepReg = 0;
412
413      // For now, only allow the register to be changed if its register
414      // class is consistent across all uses.
415      if (!Classes[Reg] && NewRC)
416        Classes[Reg] = NewRC;
417      else if (!NewRC || Classes[Reg] != NewRC)
418        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
419
420      // Now check for aliases.
421      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
422        // If an alias of the reg is used during the live range, give up.
423        // Note that this allows us to skip checking if AntiDepReg
424        // overlaps with any of the aliases, among other things.
425        unsigned AliasReg = *Alias;
426        if (Classes[AliasReg]) {
427          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
428          Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
429        }
430      }
431
432      // If we're still willing to consider this register, note the reference.
433      if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
434        RegRefs.insert(std::make_pair(Reg, &MO));
435    }
436
437    // Determine AntiDepReg's register class, if it is live and is
438    // consistently used within a single class.
439    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
440    assert((AntiDepReg == 0 || RC != NULL) &&
441           "Register should be live if it's causing an anti-dependence!");
442    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
443      AntiDepReg = 0;
444
445    // Look for a suitable register to use to break the anti-depenence.
446    //
447    // TODO: Instead of picking the first free register, consider which might
448    // be the best.
449    if (AntiDepReg != 0) {
450      for (TargetRegisterClass::iterator R = RC->allocation_order_begin(*MF),
451           RE = RC->allocation_order_end(*MF); R != RE; ++R) {
452        unsigned NewReg = *R;
453        // Don't replace a register with itself.
454        if (NewReg == AntiDepReg) continue;
455        // Don't replace a register with one that was recently used to repair
456        // an anti-dependence with this AntiDepReg, because that would
457        // re-introduce that anti-dependence.
458        if (NewReg == LastNewReg[AntiDepReg]) continue;
459        // If NewReg is dead and NewReg's most recent def is not before
460        // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
461        assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
462               "Kill and Def maps aren't consistent for AntiDepReg!");
463        assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
464               "Kill and Def maps aren't consistent for NewReg!");
465        if (KillIndices[NewReg] == ~0u &&
466            Classes[NewReg] != reinterpret_cast<TargetRegisterClass *>(-1) &&
467            KillIndices[AntiDepReg] <= DefIndices[NewReg]) {
468          DOUT << "Breaking anti-dependence edge on "
469               << TRI->getName(AntiDepReg)
470               << " with " << RegRefs.count(AntiDepReg) << " references"
471               << " using " << TRI->getName(NewReg) << "!\n";
472
473          // Update the references to the old register to refer to the new
474          // register.
475          std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
476                    std::multimap<unsigned, MachineOperand *>::iterator>
477             Range = RegRefs.equal_range(AntiDepReg);
478          for (std::multimap<unsigned, MachineOperand *>::iterator
479               Q = Range.first, QE = Range.second; Q != QE; ++Q)
480            Q->second->setReg(NewReg);
481
482          // We just went back in time and modified history; the
483          // liveness information for the anti-depenence reg is now
484          // inconsistent. Set the state as if it were dead.
485          Classes[NewReg] = Classes[AntiDepReg];
486          DefIndices[NewReg] = DefIndices[AntiDepReg];
487          KillIndices[NewReg] = KillIndices[AntiDepReg];
488
489          Classes[AntiDepReg] = 0;
490          DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
491          KillIndices[AntiDepReg] = ~0u;
492
493          RegRefs.erase(AntiDepReg);
494          Changed = true;
495          LastNewReg[AntiDepReg] = NewReg;
496          break;
497        }
498      }
499    }
500
501    // Update liveness.
502    // Proceding upwards, registers that are defed but not used in this
503    // instruction are now dead.
504    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
505      MachineOperand &MO = MI->getOperand(i);
506      if (!MO.isReg()) continue;
507      unsigned Reg = MO.getReg();
508      if (Reg == 0) continue;
509      if (!MO.isDef()) continue;
510      // Ignore two-addr defs.
511      if (MI->isRegReDefinedByTwoAddr(i)) continue;
512
513      DefIndices[Reg] = Count;
514      KillIndices[Reg] = ~0u;
515      Classes[Reg] = 0;
516      RegRefs.erase(Reg);
517      // Repeat, for all subregs.
518      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
519           *Subreg; ++Subreg) {
520        unsigned SubregReg = *Subreg;
521        DefIndices[SubregReg] = Count;
522        KillIndices[SubregReg] = ~0u;
523        Classes[SubregReg] = 0;
524        RegRefs.erase(SubregReg);
525      }
526      // Conservatively mark super-registers as unusable.
527      for (const unsigned *Super = TRI->getSuperRegisters(Reg);
528           *Super; ++Super) {
529        unsigned SuperReg = *Super;
530        Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
531      }
532    }
533    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
534      MachineOperand &MO = MI->getOperand(i);
535      if (!MO.isReg()) continue;
536      unsigned Reg = MO.getReg();
537      if (Reg == 0) continue;
538      if (!MO.isUse()) continue;
539
540      const TargetRegisterClass *NewRC =
541        getInstrOperandRegClass(TRI, TII, MI->getDesc(), i);
542
543      // For now, only allow the register to be changed if its register
544      // class is consistent across all uses.
545      if (!Classes[Reg] && NewRC)
546        Classes[Reg] = NewRC;
547      else if (!NewRC || Classes[Reg] != NewRC)
548        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
549
550      RegRefs.insert(std::make_pair(Reg, &MO));
551
552      // It wasn't previously live but now it is, this is a kill.
553      if (KillIndices[Reg] == ~0u) {
554        KillIndices[Reg] = Count;
555        DefIndices[Reg] = ~0u;
556      }
557      // Repeat, for all aliases.
558      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
559        unsigned AliasReg = *Alias;
560        if (KillIndices[AliasReg] == ~0u) {
561          KillIndices[AliasReg] = Count;
562          DefIndices[AliasReg] = ~0u;
563        }
564      }
565    }
566  }
567  assert(Count == ~0u && "Count mismatch!");
568
569  return Changed;
570}
571
572//===----------------------------------------------------------------------===//
573//  Top-Down Scheduling
574//===----------------------------------------------------------------------===//
575
576/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
577/// the PendingQueue if the count reaches zero. Also update its cycle bound.
578void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
579  SUnit *SuccSU = SuccEdge->getSUnit();
580  --SuccSU->NumPredsLeft;
581
582#ifndef NDEBUG
583  if (SuccSU->NumPredsLeft < 0) {
584    cerr << "*** Scheduling failed! ***\n";
585    SuccSU->dump(this);
586    cerr << " has been released too many times!\n";
587    assert(0);
588  }
589#endif
590
591  // Compute how many cycles it will be before this actually becomes
592  // available.  This is the max of the start time of all predecessors plus
593  // their latencies.
594  SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
595
596  if (SuccSU->NumPredsLeft == 0) {
597    PendingQueue.push_back(SuccSU);
598  }
599}
600
601/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
602/// count of its successors. If a successor pending count is zero, add it to
603/// the Available queue.
604void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
605  DOUT << "*** Scheduling [" << CurCycle << "]: ";
606  DEBUG(SU->dump(this));
607
608  Sequence.push_back(SU);
609  assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
610  SU->setDepthToAtLeast(CurCycle);
611
612  // Top down: release successors.
613  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
614       I != E; ++I)
615    ReleaseSucc(SU, &*I);
616
617  SU->isScheduled = true;
618  AvailableQueue.ScheduledNode(SU);
619}
620
621/// ListScheduleTopDown - The main loop of list scheduling for top-down
622/// schedulers.
623void SchedulePostRATDList::ListScheduleTopDown() {
624  unsigned CurCycle = 0;
625
626  // All leaves to Available queue.
627  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
628    // It is available if it has no predecessors.
629    if (SUnits[i].Preds.empty()) {
630      AvailableQueue.push(&SUnits[i]);
631      SUnits[i].isAvailable = true;
632    }
633  }
634
635  // While Available queue is not empty, grab the node with the highest
636  // priority. If it is not ready put it back.  Schedule the node.
637  Sequence.reserve(SUnits.size());
638  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
639    // Check to see if any of the pending instructions are ready to issue.  If
640    // so, add them to the available queue.
641    unsigned MinDepth = ~0u;
642    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
643      if (PendingQueue[i]->getDepth() <= CurCycle) {
644        AvailableQueue.push(PendingQueue[i]);
645        PendingQueue[i]->isAvailable = true;
646        PendingQueue[i] = PendingQueue.back();
647        PendingQueue.pop_back();
648        --i; --e;
649      } else if (PendingQueue[i]->getDepth() < MinDepth)
650        MinDepth = PendingQueue[i]->getDepth();
651    }
652
653    // If there are no instructions available, don't try to issue anything.
654    if (AvailableQueue.empty()) {
655      CurCycle = MinDepth != ~0u ? MinDepth : CurCycle + 1;
656      continue;
657    }
658
659    SUnit *FoundSUnit = AvailableQueue.pop();
660
661    // If we found a node to schedule, do it now.
662    if (FoundSUnit) {
663      ScheduleNodeTopDown(FoundSUnit, CurCycle);
664
665      // If this is a pseudo-op node, we don't want to increment the current
666      // cycle.
667      if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
668        ++CurCycle;
669    } else {
670      // Otherwise, we have a pipeline stall, but no other problem, just advance
671      // the current cycle and try again.
672      DOUT << "*** Advancing cycle, no work to do\n";
673      ++NumStalls;
674      ++CurCycle;
675    }
676  }
677
678#ifndef NDEBUG
679  VerifySchedule(/*isBottomUp=*/false);
680#endif
681}
682
683//===----------------------------------------------------------------------===//
684//                         Public Constructor Functions
685//===----------------------------------------------------------------------===//
686
687FunctionPass *llvm::createPostRAScheduler() {
688  return new PostRAScheduler();
689}
690