PostRASchedulerList.cpp revision 714e8bc1fc415050e557272326a75b50ac54d2bb
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "ExactHazardRecognizer.h"
23#include "SimpleHazardRecognizer.h"
24#include "ScheduleDAGInstrs.h"
25#include "llvm/CodeGen/Passes.h"
26#include "llvm/CodeGen/LatencyPriorityQueue.h"
27#include "llvm/CodeGen/SchedulerRegistry.h"
28#include "llvm/CodeGen/MachineDominators.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineLoopInfo.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
33#include "llvm/Target/TargetLowering.h"
34#include "llvm/Target/TargetMachine.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetRegisterInfo.h"
37#include "llvm/Target/TargetSubtarget.h"
38#include "llvm/Support/Compiler.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/ADT/Statistic.h"
43#include <map>
44#include <set>
45using namespace llvm;
46
47STATISTIC(NumNoops, "Number of noops inserted");
48STATISTIC(NumStalls, "Number of pipeline stalls");
49
50static cl::opt<bool>
51EnableAntiDepBreaking("break-anti-dependencies",
52                      cl::desc("Break post-RA scheduling anti-dependencies"),
53                      cl::init(true), cl::Hidden);
54
55static cl::opt<bool>
56EnablePostRAHazardAvoidance("avoid-hazards",
57                      cl::desc("Enable exact hazard avoidance"),
58                      cl::init(true), cl::Hidden);
59
60// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
61static cl::opt<int>
62DebugDiv("postra-sched-debugdiv",
63                      cl::desc("Debug control MBBs that are scheduled"),
64                      cl::init(0), cl::Hidden);
65static cl::opt<int>
66DebugMod("postra-sched-debugmod",
67                      cl::desc("Debug control MBBs that are scheduled"),
68                      cl::init(0), cl::Hidden);
69
70namespace {
71  class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
72  public:
73    static char ID;
74    PostRAScheduler() : MachineFunctionPass(&ID) {}
75
76    void getAnalysisUsage(AnalysisUsage &AU) const {
77      AU.setPreservesCFG();
78      AU.addRequired<MachineDominatorTree>();
79      AU.addPreserved<MachineDominatorTree>();
80      AU.addRequired<MachineLoopInfo>();
81      AU.addPreserved<MachineLoopInfo>();
82      MachineFunctionPass::getAnalysisUsage(AU);
83    }
84
85    const char *getPassName() const {
86      return "Post RA top-down list latency scheduler";
87    }
88
89    bool runOnMachineFunction(MachineFunction &Fn);
90  };
91  char PostRAScheduler::ID = 0;
92
93  class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
94    /// AvailableQueue - The priority queue to use for the available SUnits.
95    ///
96    LatencyPriorityQueue AvailableQueue;
97
98    /// PendingQueue - This contains all of the instructions whose operands have
99    /// been issued, but their results are not ready yet (due to the latency of
100    /// the operation).  Once the operands becomes available, the instruction is
101    /// added to the AvailableQueue.
102    std::vector<SUnit*> PendingQueue;
103
104    /// Topo - A topological ordering for SUnits.
105    ScheduleDAGTopologicalSort Topo;
106
107    /// AllocatableSet - The set of allocatable registers.
108    /// We'll be ignoring anti-dependencies on non-allocatable registers,
109    /// because they may not be safe to break.
110    const BitVector AllocatableSet;
111
112    /// HazardRec - The hazard recognizer to use.
113    ScheduleHazardRecognizer *HazardRec;
114
115    /// Classes - For live regs that are only used in one register class in a
116    /// live range, the register class. If the register is not live, the
117    /// corresponding value is null. If the register is live but used in
118    /// multiple register classes, the corresponding value is -1 casted to a
119    /// pointer.
120    const TargetRegisterClass *
121      Classes[TargetRegisterInfo::FirstVirtualRegister];
122
123    /// RegRegs - Map registers to all their references within a live range.
124    std::multimap<unsigned, MachineOperand *> RegRefs;
125
126    /// KillIndices - The index of the most recent kill (proceding bottom-up),
127    /// or ~0u if the register is not live.
128    unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
129
130    /// DefIndices - The index of the most recent complete def (proceding bottom
131    /// up), or ~0u if the register is live.
132    unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
133
134    /// KeepRegs - A set of registers which are live and cannot be changed to
135    /// break anti-dependencies.
136    SmallSet<unsigned, 4> KeepRegs;
137
138  public:
139    SchedulePostRATDList(MachineFunction &MF,
140                         const MachineLoopInfo &MLI,
141                         const MachineDominatorTree &MDT,
142                         ScheduleHazardRecognizer *HR)
143      : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
144        AllocatableSet(TRI->getAllocatableSet(MF)),
145        HazardRec(HR) {}
146
147    ~SchedulePostRATDList() {
148      delete HazardRec;
149    }
150
151    /// StartBlock - Initialize register live-range state for scheduling in
152    /// this block.
153    ///
154    void StartBlock(MachineBasicBlock *BB);
155
156    /// Schedule - Schedule the instruction range using list scheduling.
157    ///
158    void Schedule();
159
160    /// FixupKills - Fix register kill flags that have been made
161    /// invalid due to scheduling
162    ///
163    void FixupKills(MachineBasicBlock *MBB);
164
165    /// Observe - Update liveness information to account for the current
166    /// instruction, which will not be scheduled.
167    ///
168    void Observe(MachineInstr *MI, unsigned Count);
169
170    /// FinishBlock - Clean up register live-range state.
171    ///
172    void FinishBlock();
173
174  private:
175    void PrescanInstruction(MachineInstr *MI);
176    void ScanInstruction(MachineInstr *MI, unsigned Count);
177    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
178    void ReleaseSuccessors(SUnit *SU);
179    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
180    void ListScheduleTopDown();
181    bool BreakAntiDependencies();
182    unsigned findSuitableFreeRegister(unsigned AntiDepReg,
183                                      unsigned LastNewReg,
184                                      const TargetRegisterClass *);
185    void StartBlockForKills(MachineBasicBlock *BB);
186
187    // ToggleKillFlag - Toggle a register operand kill flag. Other
188    // adjustments may be made to the instruction if necessary. Return
189    // true if the operand has been deleted, false if not.
190    bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
191  };
192}
193
194/// isSchedulingBoundary - Test if the given instruction should be
195/// considered a scheduling boundary. This primarily includes labels
196/// and terminators.
197///
198static bool isSchedulingBoundary(const MachineInstr *MI,
199                                 const MachineFunction &MF) {
200  // Terminators and labels can't be scheduled around.
201  if (MI->getDesc().isTerminator() || MI->isLabel())
202    return true;
203
204  // Don't attempt to schedule around any instruction that modifies
205  // a stack-oriented pointer, as it's unlikely to be profitable. This
206  // saves compile time, because it doesn't require every single
207  // stack slot reference to depend on the instruction that does the
208  // modification.
209  const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
210  if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore()))
211    return true;
212
213  return false;
214}
215
216bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
217  // Check that post-RA scheduling is enabled for this function
218  const TargetSubtarget &ST = Fn.getTarget().getSubtarget<TargetSubtarget>();
219  if (!ST.enablePostRAScheduler())
220    return true;
221
222  DEBUG(errs() << "PostRAScheduler\n");
223
224  const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
225  const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
226  const InstrItineraryData &InstrItins = Fn.getTarget().getInstrItineraryData();
227  ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ?
228    (ScheduleHazardRecognizer *)new ExactHazardRecognizer(InstrItins) :
229    (ScheduleHazardRecognizer *)new SimpleHazardRecognizer();
230
231  SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR);
232
233  // Loop over all of the basic blocks
234  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
235       MBB != MBBe; ++MBB) {
236#ifndef NDEBUG
237    // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
238    if (DebugDiv > 0) {
239      static int bbcnt = 0;
240      if (bbcnt++ % DebugDiv != DebugMod)
241        continue;
242      errs() << "*** DEBUG scheduling " << Fn.getFunction()->getNameStr() <<
243        ":MBB ID#" << MBB->getNumber() << " ***\n";
244    }
245#endif
246
247    // Initialize register live-range state for scheduling in this block.
248    Scheduler.StartBlock(MBB);
249
250    // Schedule each sequence of instructions not interrupted by a label
251    // or anything else that effectively needs to shut down scheduling.
252    MachineBasicBlock::iterator Current = MBB->end();
253    unsigned Count = MBB->size(), CurrentCount = Count;
254    for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
255      MachineInstr *MI = prior(I);
256      if (isSchedulingBoundary(MI, Fn)) {
257        Scheduler.Run(MBB, I, Current, CurrentCount);
258        Scheduler.EmitSchedule(0);
259        Current = MI;
260        CurrentCount = Count - 1;
261        Scheduler.Observe(MI, CurrentCount);
262      }
263      I = MI;
264      --Count;
265    }
266    assert(Count == 0 && "Instruction count mismatch!");
267    assert((MBB->begin() == Current || CurrentCount != 0) &&
268           "Instruction count mismatch!");
269    Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
270    Scheduler.EmitSchedule(0);
271
272    // Clean up register live-range state.
273    Scheduler.FinishBlock();
274
275    // Update register kills
276    Scheduler.FixupKills(MBB);
277  }
278
279  return true;
280}
281
282/// StartBlock - Initialize register live-range state for scheduling in
283/// this block.
284///
285void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
286  // Call the superclass.
287  ScheduleDAGInstrs::StartBlock(BB);
288
289  // Reset the hazard recognizer.
290  HazardRec->Reset();
291
292  // Clear out the register class data.
293  std::fill(Classes, array_endof(Classes),
294            static_cast<const TargetRegisterClass *>(0));
295
296  // Initialize the indices to indicate that no registers are live.
297  std::fill(KillIndices, array_endof(KillIndices), ~0u);
298  std::fill(DefIndices, array_endof(DefIndices), BB->size());
299
300  // Clear "do not change" set.
301  KeepRegs.clear();
302
303  // Determine the live-out physregs for this block.
304  if (!BB->empty() && BB->back().getDesc().isReturn())
305    // In a return block, examine the function live-out regs.
306    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
307         E = MRI.liveout_end(); I != E; ++I) {
308      unsigned Reg = *I;
309      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
310      KillIndices[Reg] = BB->size();
311      DefIndices[Reg] = ~0u;
312      // Repeat, for all aliases.
313      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
314        unsigned AliasReg = *Alias;
315        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
316        KillIndices[AliasReg] = BB->size();
317        DefIndices[AliasReg] = ~0u;
318      }
319    }
320  else
321    // In a non-return block, examine the live-in regs of all successors.
322    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
323         SE = BB->succ_end(); SI != SE; ++SI)
324      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
325           E = (*SI)->livein_end(); I != E; ++I) {
326        unsigned Reg = *I;
327        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
328        KillIndices[Reg] = BB->size();
329        DefIndices[Reg] = ~0u;
330        // Repeat, for all aliases.
331        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
332          unsigned AliasReg = *Alias;
333          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
334          KillIndices[AliasReg] = BB->size();
335          DefIndices[AliasReg] = ~0u;
336        }
337      }
338
339  // Consider callee-saved registers as live-out, since we're running after
340  // prologue/epilogue insertion so there's no way to add additional
341  // saved registers.
342  //
343  // TODO: there is a new method
344  // MachineFrameInfo::getPristineRegs(MBB). It gives you a list of
345  // CSRs that have not been saved when entering the MBB. The
346  // remaining CSRs have been saved and can be treated like call
347  // clobbered registers.
348  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
349    unsigned Reg = *I;
350    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
351    KillIndices[Reg] = BB->size();
352    DefIndices[Reg] = ~0u;
353    // Repeat, for all aliases.
354    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
355      unsigned AliasReg = *Alias;
356      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
357      KillIndices[AliasReg] = BB->size();
358      DefIndices[AliasReg] = ~0u;
359    }
360  }
361}
362
363/// Schedule - Schedule the instruction range using list scheduling.
364///
365void SchedulePostRATDList::Schedule() {
366  DEBUG(errs() << "********** List Scheduling **********\n");
367
368  // Build the scheduling graph.
369  BuildSchedGraph();
370
371  if (EnableAntiDepBreaking) {
372    if (BreakAntiDependencies()) {
373      // We made changes. Update the dependency graph.
374      // Theoretically we could update the graph in place:
375      // When a live range is changed to use a different register, remove
376      // the def's anti-dependence *and* output-dependence edges due to
377      // that register, and add new anti-dependence and output-dependence
378      // edges based on the next live range of the register.
379      SUnits.clear();
380      EntrySU = SUnit();
381      ExitSU = SUnit();
382      BuildSchedGraph();
383    }
384  }
385
386  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
387          SUnits[su].dumpAll(this));
388
389  AvailableQueue.initNodes(SUnits);
390
391  ListScheduleTopDown();
392
393  AvailableQueue.releaseState();
394}
395
396/// Observe - Update liveness information to account for the current
397/// instruction, which will not be scheduled.
398///
399void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
400  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
401
402  // Any register which was defined within the previous scheduling region
403  // may have been rescheduled and its lifetime may overlap with registers
404  // in ways not reflected in our current liveness state. For each such
405  // register, adjust the liveness state to be conservatively correct.
406  for (unsigned Reg = 0; Reg != TargetRegisterInfo::FirstVirtualRegister; ++Reg)
407    if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
408      assert(KillIndices[Reg] == ~0u && "Clobbered register is live!");
409      // Mark this register to be non-renamable.
410      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
411      // Move the def index to the end of the previous region, to reflect
412      // that the def could theoretically have been scheduled at the end.
413      DefIndices[Reg] = InsertPosIndex;
414    }
415
416  PrescanInstruction(MI);
417  ScanInstruction(MI, Count);
418}
419
420/// FinishBlock - Clean up register live-range state.
421///
422void SchedulePostRATDList::FinishBlock() {
423  RegRefs.clear();
424
425  // Call the superclass.
426  ScheduleDAGInstrs::FinishBlock();
427}
428
429/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
430/// critical path.
431static SDep *CriticalPathStep(SUnit *SU) {
432  SDep *Next = 0;
433  unsigned NextDepth = 0;
434  // Find the predecessor edge with the greatest depth.
435  for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
436       P != PE; ++P) {
437    SUnit *PredSU = P->getSUnit();
438    unsigned PredLatency = P->getLatency();
439    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
440    // In the case of a latency tie, prefer an anti-dependency edge over
441    // other types of edges.
442    if (NextDepth < PredTotalLatency ||
443        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
444      NextDepth = PredTotalLatency;
445      Next = &*P;
446    }
447  }
448  return Next;
449}
450
451void SchedulePostRATDList::PrescanInstruction(MachineInstr *MI) {
452  // Scan the register operands for this instruction and update
453  // Classes and RegRefs.
454  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
455    MachineOperand &MO = MI->getOperand(i);
456    if (!MO.isReg()) continue;
457    unsigned Reg = MO.getReg();
458    if (Reg == 0) continue;
459    const TargetRegisterClass *NewRC = 0;
460
461    if (i < MI->getDesc().getNumOperands())
462      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
463
464    // For now, only allow the register to be changed if its register
465    // class is consistent across all uses.
466    if (!Classes[Reg] && NewRC)
467      Classes[Reg] = NewRC;
468    else if (!NewRC || Classes[Reg] != NewRC)
469      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
470
471    // Now check for aliases.
472    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
473      // If an alias of the reg is used during the live range, give up.
474      // Note that this allows us to skip checking if AntiDepReg
475      // overlaps with any of the aliases, among other things.
476      unsigned AliasReg = *Alias;
477      if (Classes[AliasReg]) {
478        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
479        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
480      }
481    }
482
483    // If we're still willing to consider this register, note the reference.
484    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
485      RegRefs.insert(std::make_pair(Reg, &MO));
486  }
487}
488
489void SchedulePostRATDList::ScanInstruction(MachineInstr *MI,
490                                           unsigned Count) {
491  // Update liveness.
492  // Proceding upwards, registers that are defed but not used in this
493  // instruction are now dead.
494  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
495    MachineOperand &MO = MI->getOperand(i);
496    if (!MO.isReg()) continue;
497    unsigned Reg = MO.getReg();
498    if (Reg == 0) continue;
499    if (!MO.isDef()) continue;
500    // Ignore two-addr defs.
501    if (MI->isRegTiedToUseOperand(i)) continue;
502
503    DefIndices[Reg] = Count;
504    KillIndices[Reg] = ~0u;
505    assert(((KillIndices[Reg] == ~0u) !=
506            (DefIndices[Reg] == ~0u)) &&
507           "Kill and Def maps aren't consistent for Reg!");
508    KeepRegs.erase(Reg);
509    Classes[Reg] = 0;
510    RegRefs.erase(Reg);
511    // Repeat, for all subregs.
512    for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
513         *Subreg; ++Subreg) {
514      unsigned SubregReg = *Subreg;
515      DefIndices[SubregReg] = Count;
516      KillIndices[SubregReg] = ~0u;
517      KeepRegs.erase(SubregReg);
518      Classes[SubregReg] = 0;
519      RegRefs.erase(SubregReg);
520    }
521    // Conservatively mark super-registers as unusable.
522    for (const unsigned *Super = TRI->getSuperRegisters(Reg);
523         *Super; ++Super) {
524      unsigned SuperReg = *Super;
525      Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
526    }
527  }
528  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
529    MachineOperand &MO = MI->getOperand(i);
530    if (!MO.isReg()) continue;
531    unsigned Reg = MO.getReg();
532    if (Reg == 0) continue;
533    if (!MO.isUse()) continue;
534
535    const TargetRegisterClass *NewRC = 0;
536    if (i < MI->getDesc().getNumOperands())
537      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
538
539    // For now, only allow the register to be changed if its register
540    // class is consistent across all uses.
541    if (!Classes[Reg] && NewRC)
542      Classes[Reg] = NewRC;
543    else if (!NewRC || Classes[Reg] != NewRC)
544      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
545
546    RegRefs.insert(std::make_pair(Reg, &MO));
547
548    // It wasn't previously live but now it is, this is a kill.
549    if (KillIndices[Reg] == ~0u) {
550      KillIndices[Reg] = Count;
551      DefIndices[Reg] = ~0u;
552          assert(((KillIndices[Reg] == ~0u) !=
553                  (DefIndices[Reg] == ~0u)) &&
554               "Kill and Def maps aren't consistent for Reg!");
555    }
556    // Repeat, for all aliases.
557    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
558      unsigned AliasReg = *Alias;
559      if (KillIndices[AliasReg] == ~0u) {
560        KillIndices[AliasReg] = Count;
561        DefIndices[AliasReg] = ~0u;
562      }
563    }
564  }
565}
566
567unsigned
568SchedulePostRATDList::findSuitableFreeRegister(unsigned AntiDepReg,
569                                               unsigned LastNewReg,
570                                               const TargetRegisterClass *RC) {
571  for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
572       RE = RC->allocation_order_end(MF); R != RE; ++R) {
573    unsigned NewReg = *R;
574    // Don't replace a register with itself.
575    if (NewReg == AntiDepReg) continue;
576    // Don't replace a register with one that was recently used to repair
577    // an anti-dependence with this AntiDepReg, because that would
578    // re-introduce that anti-dependence.
579    if (NewReg == LastNewReg) continue;
580    // If NewReg is dead and NewReg's most recent def is not before
581    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
582    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
583           "Kill and Def maps aren't consistent for AntiDepReg!");
584    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
585           "Kill and Def maps aren't consistent for NewReg!");
586    if (KillIndices[NewReg] != ~0u ||
587        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
588        KillIndices[AntiDepReg] > DefIndices[NewReg])
589      continue;
590    return NewReg;
591  }
592
593  // No registers are free and available!
594  return 0;
595}
596
597/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
598/// of the ScheduleDAG and break them by renaming registers.
599///
600bool SchedulePostRATDList::BreakAntiDependencies() {
601  // The code below assumes that there is at least one instruction,
602  // so just duck out immediately if the block is empty.
603  if (SUnits.empty()) return false;
604
605  // Find the node at the bottom of the critical path.
606  SUnit *Max = 0;
607  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
608    SUnit *SU = &SUnits[i];
609    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
610      Max = SU;
611  }
612
613  DEBUG(errs() << "Critical path has total latency "
614        << (Max->getDepth() + Max->Latency) << "\n");
615
616  // Track progress along the critical path through the SUnit graph as we walk
617  // the instructions.
618  SUnit *CriticalPathSU = Max;
619  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
620
621  // Consider this pattern:
622  //   A = ...
623  //   ... = A
624  //   A = ...
625  //   ... = A
626  //   A = ...
627  //   ... = A
628  //   A = ...
629  //   ... = A
630  // There are three anti-dependencies here, and without special care,
631  // we'd break all of them using the same register:
632  //   A = ...
633  //   ... = A
634  //   B = ...
635  //   ... = B
636  //   B = ...
637  //   ... = B
638  //   B = ...
639  //   ... = B
640  // because at each anti-dependence, B is the first register that
641  // isn't A which is free.  This re-introduces anti-dependencies
642  // at all but one of the original anti-dependencies that we were
643  // trying to break.  To avoid this, keep track of the most recent
644  // register that each register was replaced with, avoid
645  // using it to repair an anti-dependence on the same register.
646  // This lets us produce this:
647  //   A = ...
648  //   ... = A
649  //   B = ...
650  //   ... = B
651  //   C = ...
652  //   ... = C
653  //   B = ...
654  //   ... = B
655  // This still has an anti-dependence on B, but at least it isn't on the
656  // original critical path.
657  //
658  // TODO: If we tracked more than one register here, we could potentially
659  // fix that remaining critical edge too. This is a little more involved,
660  // because unlike the most recent register, less recent registers should
661  // still be considered, though only if no other registers are available.
662  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
663
664  // Attempt to break anti-dependence edges on the critical path. Walk the
665  // instructions from the bottom up, tracking information about liveness
666  // as we go to help determine which registers are available.
667  bool Changed = false;
668  unsigned Count = InsertPosIndex - 1;
669  for (MachineBasicBlock::iterator I = InsertPos, E = Begin;
670       I != E; --Count) {
671    MachineInstr *MI = --I;
672
673    // After regalloc, KILL instructions aren't safe to treat as
674    // dependence-breaking. In the case of an INSERT_SUBREG, the KILL
675    // is left behind appearing to clobber the super-register, while the
676    // subregister needs to remain live. So we just ignore them.
677    if (MI->getOpcode() == TargetInstrInfo::KILL)
678      continue;
679
680    // Check if this instruction has a dependence on the critical path that
681    // is an anti-dependence that we may be able to break. If it is, set
682    // AntiDepReg to the non-zero register associated with the anti-dependence.
683    //
684    // We limit our attention to the critical path as a heuristic to avoid
685    // breaking anti-dependence edges that aren't going to significantly
686    // impact the overall schedule. There are a limited number of registers
687    // and we want to save them for the important edges.
688    //
689    // TODO: Instructions with multiple defs could have multiple
690    // anti-dependencies. The current code here only knows how to break one
691    // edge per instruction. Note that we'd have to be able to break all of
692    // the anti-dependencies in an instruction in order to be effective.
693    unsigned AntiDepReg = 0;
694    if (MI == CriticalPathMI) {
695      if (SDep *Edge = CriticalPathStep(CriticalPathSU)) {
696        SUnit *NextSU = Edge->getSUnit();
697
698        // Only consider anti-dependence edges.
699        if (Edge->getKind() == SDep::Anti) {
700          AntiDepReg = Edge->getReg();
701          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
702          if (!AllocatableSet.test(AntiDepReg))
703            // Don't break anti-dependencies on non-allocatable registers.
704            AntiDepReg = 0;
705          else if (KeepRegs.count(AntiDepReg))
706            // Don't break anti-dependencies if an use down below requires
707            // this exact register.
708            AntiDepReg = 0;
709          else {
710            // If the SUnit has other dependencies on the SUnit that it
711            // anti-depends on, don't bother breaking the anti-dependency
712            // since those edges would prevent such units from being
713            // scheduled past each other regardless.
714            //
715            // Also, if there are dependencies on other SUnits with the
716            // same register as the anti-dependency, don't attempt to
717            // break it.
718            for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(),
719                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
720              if (P->getSUnit() == NextSU ?
721                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
722                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
723                AntiDepReg = 0;
724                break;
725              }
726          }
727        }
728        CriticalPathSU = NextSU;
729        CriticalPathMI = CriticalPathSU->getInstr();
730      } else {
731        // We've reached the end of the critical path.
732        CriticalPathSU = 0;
733        CriticalPathMI = 0;
734      }
735    }
736
737    PrescanInstruction(MI);
738
739    if (MI->getDesc().hasExtraSrcRegAllocReq()) {
740      // It's not safe to change register allocation for source operands of
741      // that have special allocation requirements.
742      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
743        MachineOperand &MO = MI->getOperand(i);
744        if (!MO.isReg()) continue;
745        unsigned Reg = MO.getReg();
746        if (Reg == 0) continue;
747        if (MO.isUse()) {
748          if (KeepRegs.insert(Reg)) {
749            for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
750                 *Subreg; ++Subreg)
751              KeepRegs.insert(*Subreg);
752          }
753        }
754      }
755    }
756
757    if (MI->getDesc().hasExtraDefRegAllocReq())
758      // If this instruction's defs have special allocation requirement, don't
759      // break this anti-dependency.
760      AntiDepReg = 0;
761    else if (AntiDepReg) {
762      // If this instruction has a use of AntiDepReg, breaking it
763      // is invalid.
764      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
765        MachineOperand &MO = MI->getOperand(i);
766        if (!MO.isReg()) continue;
767        unsigned Reg = MO.getReg();
768        if (Reg == 0) continue;
769        if (MO.isUse() && AntiDepReg == Reg) {
770          AntiDepReg = 0;
771          break;
772        }
773      }
774    }
775
776    // Determine AntiDepReg's register class, if it is live and is
777    // consistently used within a single class.
778    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
779    assert((AntiDepReg == 0 || RC != NULL) &&
780           "Register should be live if it's causing an anti-dependence!");
781    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
782      AntiDepReg = 0;
783
784    // Look for a suitable register to use to break the anti-depenence.
785    //
786    // TODO: Instead of picking the first free register, consider which might
787    // be the best.
788    if (AntiDepReg != 0) {
789      if (unsigned NewReg = findSuitableFreeRegister(AntiDepReg,
790                                                     LastNewReg[AntiDepReg],
791                                                     RC)) {
792        DEBUG(errs() << "Breaking anti-dependence edge on "
793              << TRI->getName(AntiDepReg)
794              << " with " << RegRefs.count(AntiDepReg) << " references"
795              << " using " << TRI->getName(NewReg) << "!\n");
796
797        // Update the references to the old register to refer to the new
798        // register.
799        std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
800                  std::multimap<unsigned, MachineOperand *>::iterator>
801           Range = RegRefs.equal_range(AntiDepReg);
802        for (std::multimap<unsigned, MachineOperand *>::iterator
803             Q = Range.first, QE = Range.second; Q != QE; ++Q)
804          Q->second->setReg(NewReg);
805
806        // We just went back in time and modified history; the
807        // liveness information for the anti-depenence reg is now
808        // inconsistent. Set the state as if it were dead.
809        Classes[NewReg] = Classes[AntiDepReg];
810        DefIndices[NewReg] = DefIndices[AntiDepReg];
811        KillIndices[NewReg] = KillIndices[AntiDepReg];
812        assert(((KillIndices[NewReg] == ~0u) !=
813                (DefIndices[NewReg] == ~0u)) &&
814             "Kill and Def maps aren't consistent for NewReg!");
815
816        Classes[AntiDepReg] = 0;
817        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
818        KillIndices[AntiDepReg] = ~0u;
819        assert(((KillIndices[AntiDepReg] == ~0u) !=
820                (DefIndices[AntiDepReg] == ~0u)) &&
821             "Kill and Def maps aren't consistent for AntiDepReg!");
822
823        RegRefs.erase(AntiDepReg);
824        Changed = true;
825        LastNewReg[AntiDepReg] = NewReg;
826      }
827    }
828
829    ScanInstruction(MI, Count);
830  }
831
832  return Changed;
833}
834
835/// StartBlockForKills - Initialize register live-range state for updating kills
836///
837void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
838  // Initialize the indices to indicate that no registers are live.
839  std::fill(KillIndices, array_endof(KillIndices), ~0u);
840
841  // Determine the live-out physregs for this block.
842  if (!BB->empty() && BB->back().getDesc().isReturn()) {
843    // In a return block, examine the function live-out regs.
844    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
845           E = MRI.liveout_end(); I != E; ++I) {
846      unsigned Reg = *I;
847      KillIndices[Reg] = BB->size();
848      // Repeat, for all subregs.
849      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
850           *Subreg; ++Subreg) {
851        KillIndices[*Subreg] = BB->size();
852      }
853    }
854  }
855  else {
856    // In a non-return block, examine the live-in regs of all successors.
857    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
858           SE = BB->succ_end(); SI != SE; ++SI) {
859      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
860             E = (*SI)->livein_end(); I != E; ++I) {
861        unsigned Reg = *I;
862        KillIndices[Reg] = BB->size();
863        // Repeat, for all subregs.
864        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
865             *Subreg; ++Subreg) {
866          KillIndices[*Subreg] = BB->size();
867        }
868      }
869    }
870  }
871}
872
873bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
874                                          MachineOperand &MO) {
875  // Setting kill flag...
876  if (!MO.isKill()) {
877    MO.setIsKill(true);
878    return false;
879  }
880
881  // If MO itself is live, clear the kill flag...
882  if (KillIndices[MO.getReg()] != ~0u) {
883    MO.setIsKill(false);
884    return false;
885  }
886
887  // If any subreg of MO is live, then create an imp-def for that
888  // subreg and keep MO marked as killed.
889  bool AllDead = true;
890  const unsigned SuperReg = MO.getReg();
891  for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg);
892       *Subreg; ++Subreg) {
893    if (KillIndices[*Subreg] != ~0u) {
894      MI->addOperand(MachineOperand::CreateReg(*Subreg,
895                                               true  /*IsDef*/,
896                                               true  /*IsImp*/,
897                                               false /*IsKill*/,
898                                               false /*IsDead*/));
899      AllDead = false;
900    }
901  }
902
903  MO.setIsKill(AllDead);
904  return false;
905}
906
907/// FixupKills - Fix the register kill flags, they may have been made
908/// incorrect by instruction reordering.
909///
910void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
911  DEBUG(errs() << "Fixup kills for BB ID#" << MBB->getNumber() << '\n');
912
913  std::set<unsigned> killedRegs;
914  BitVector ReservedRegs = TRI->getReservedRegs(MF);
915
916  StartBlockForKills(MBB);
917
918  // Examine block from end to start...
919  unsigned Count = MBB->size();
920  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
921       I != E; --Count) {
922    MachineInstr *MI = --I;
923
924    // Update liveness.  Registers that are defed but not used in this
925    // instruction are now dead. Mark register and all subregs as they
926    // are completely defined.
927    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
928      MachineOperand &MO = MI->getOperand(i);
929      if (!MO.isReg()) continue;
930      unsigned Reg = MO.getReg();
931      if (Reg == 0) continue;
932      if (!MO.isDef()) continue;
933      // Ignore two-addr defs.
934      if (MI->isRegTiedToUseOperand(i)) continue;
935
936      KillIndices[Reg] = ~0u;
937
938      // Repeat for all subregs.
939      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
940           *Subreg; ++Subreg) {
941        KillIndices[*Subreg] = ~0u;
942      }
943    }
944
945    // Examine all used registers and set/clear kill flag. When a
946    // register is used multiple times we only set the kill flag on
947    // the first use.
948    killedRegs.clear();
949    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
950      MachineOperand &MO = MI->getOperand(i);
951      if (!MO.isReg() || !MO.isUse()) continue;
952      unsigned Reg = MO.getReg();
953      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
954
955      bool kill = false;
956      if (killedRegs.find(Reg) == killedRegs.end()) {
957        kill = true;
958        // A register is not killed if any subregs are live...
959        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
960             *Subreg; ++Subreg) {
961          if (KillIndices[*Subreg] != ~0u) {
962            kill = false;
963            break;
964          }
965        }
966
967        // If subreg is not live, then register is killed if it became
968        // live in this instruction
969        if (kill)
970          kill = (KillIndices[Reg] == ~0u);
971      }
972
973      if (MO.isKill() != kill) {
974        bool removed = ToggleKillFlag(MI, MO);
975        if (removed) {
976          DEBUG(errs() << "Fixed <removed> in ");
977        } else {
978          DEBUG(errs() << "Fixed " << MO << " in ");
979        }
980        DEBUG(MI->dump());
981      }
982
983      killedRegs.insert(Reg);
984    }
985
986    // Mark any used register (that is not using undef) and subregs as
987    // now live...
988    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
989      MachineOperand &MO = MI->getOperand(i);
990      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
991      unsigned Reg = MO.getReg();
992      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
993
994      KillIndices[Reg] = Count;
995
996      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
997           *Subreg; ++Subreg) {
998        KillIndices[*Subreg] = Count;
999      }
1000    }
1001  }
1002}
1003
1004//===----------------------------------------------------------------------===//
1005//  Top-Down Scheduling
1006//===----------------------------------------------------------------------===//
1007
1008/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
1009/// the PendingQueue if the count reaches zero. Also update its cycle bound.
1010void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
1011  SUnit *SuccSU = SuccEdge->getSUnit();
1012
1013#ifndef NDEBUG
1014  if (SuccSU->NumPredsLeft == 0) {
1015    errs() << "*** Scheduling failed! ***\n";
1016    SuccSU->dump(this);
1017    errs() << " has been released too many times!\n";
1018    llvm_unreachable(0);
1019  }
1020#endif
1021  --SuccSU->NumPredsLeft;
1022
1023  // Compute how many cycles it will be before this actually becomes
1024  // available.  This is the max of the start time of all predecessors plus
1025  // their latencies.
1026  SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
1027
1028  // If all the node's predecessors are scheduled, this node is ready
1029  // to be scheduled. Ignore the special ExitSU node.
1030  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
1031    PendingQueue.push_back(SuccSU);
1032}
1033
1034/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
1035void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
1036  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1037       I != E; ++I)
1038    ReleaseSucc(SU, &*I);
1039}
1040
1041/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
1042/// count of its successors. If a successor pending count is zero, add it to
1043/// the Available queue.
1044void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
1045  DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: ");
1046  DEBUG(SU->dump(this));
1047
1048  Sequence.push_back(SU);
1049  assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
1050  SU->setDepthToAtLeast(CurCycle);
1051
1052  ReleaseSuccessors(SU);
1053  SU->isScheduled = true;
1054  AvailableQueue.ScheduledNode(SU);
1055}
1056
1057/// ListScheduleTopDown - The main loop of list scheduling for top-down
1058/// schedulers.
1059void SchedulePostRATDList::ListScheduleTopDown() {
1060  unsigned CurCycle = 0;
1061
1062  // Release any successors of the special Entry node.
1063  ReleaseSuccessors(&EntrySU);
1064
1065  // All leaves to Available queue.
1066  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1067    // It is available if it has no predecessors.
1068    if (SUnits[i].Preds.empty()) {
1069      AvailableQueue.push(&SUnits[i]);
1070      SUnits[i].isAvailable = true;
1071    }
1072  }
1073
1074  // In any cycle where we can't schedule any instructions, we must
1075  // stall or emit a noop, depending on the target.
1076  bool CycleHasInsts = false;
1077
1078  // While Available queue is not empty, grab the node with the highest
1079  // priority. If it is not ready put it back.  Schedule the node.
1080  std::vector<SUnit*> NotReady;
1081  Sequence.reserve(SUnits.size());
1082  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
1083    // Check to see if any of the pending instructions are ready to issue.  If
1084    // so, add them to the available queue.
1085    unsigned MinDepth = ~0u;
1086    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
1087      if (PendingQueue[i]->getDepth() <= CurCycle) {
1088        AvailableQueue.push(PendingQueue[i]);
1089        PendingQueue[i]->isAvailable = true;
1090        PendingQueue[i] = PendingQueue.back();
1091        PendingQueue.pop_back();
1092        --i; --e;
1093      } else if (PendingQueue[i]->getDepth() < MinDepth)
1094        MinDepth = PendingQueue[i]->getDepth();
1095    }
1096
1097    DEBUG(errs() << "\n*** Examining Available\n";
1098          LatencyPriorityQueue q = AvailableQueue;
1099          while (!q.empty()) {
1100            SUnit *su = q.pop();
1101            errs() << "Height " << su->getHeight() << ": ";
1102            su->dump(this);
1103          });
1104
1105    SUnit *FoundSUnit = 0;
1106
1107    bool HasNoopHazards = false;
1108    while (!AvailableQueue.empty()) {
1109      SUnit *CurSUnit = AvailableQueue.pop();
1110
1111      ScheduleHazardRecognizer::HazardType HT =
1112        HazardRec->getHazardType(CurSUnit);
1113      if (HT == ScheduleHazardRecognizer::NoHazard) {
1114        FoundSUnit = CurSUnit;
1115        break;
1116      }
1117
1118      // Remember if this is a noop hazard.
1119      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
1120
1121      NotReady.push_back(CurSUnit);
1122    }
1123
1124    // Add the nodes that aren't ready back onto the available list.
1125    if (!NotReady.empty()) {
1126      AvailableQueue.push_all(NotReady);
1127      NotReady.clear();
1128    }
1129
1130    // If we found a node to schedule, do it now.
1131    if (FoundSUnit) {
1132      ScheduleNodeTopDown(FoundSUnit, CurCycle);
1133      HazardRec->EmitInstruction(FoundSUnit);
1134      CycleHasInsts = true;
1135
1136      // If we are using the target-specific hazards, then don't
1137      // advance the cycle time just because we schedule a node. If
1138      // the target allows it we can schedule multiple nodes in the
1139      // same cycle.
1140      if (!EnablePostRAHazardAvoidance) {
1141        if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
1142          ++CurCycle;
1143      }
1144    } else {
1145      if (CycleHasInsts) {
1146        DEBUG(errs() << "*** Finished cycle " << CurCycle << '\n');
1147        HazardRec->AdvanceCycle();
1148      } else if (!HasNoopHazards) {
1149        // Otherwise, we have a pipeline stall, but no other problem,
1150        // just advance the current cycle and try again.
1151        DEBUG(errs() << "*** Stall in cycle " << CurCycle << '\n');
1152        HazardRec->AdvanceCycle();
1153        ++NumStalls;
1154      } else {
1155        // Otherwise, we have no instructions to issue and we have instructions
1156        // that will fault if we don't do this right.  This is the case for
1157        // processors without pipeline interlocks and other cases.
1158        DEBUG(errs() << "*** Emitting noop in cycle " << CurCycle << '\n');
1159        HazardRec->EmitNoop();
1160        Sequence.push_back(0);   // NULL here means noop
1161        ++NumNoops;
1162      }
1163
1164      ++CurCycle;
1165      CycleHasInsts = false;
1166    }
1167  }
1168
1169#ifndef NDEBUG
1170  VerifySchedule(/*isBottomUp=*/false);
1171#endif
1172}
1173
1174//===----------------------------------------------------------------------===//
1175//                         Public Constructor Functions
1176//===----------------------------------------------------------------------===//
1177
1178FunctionPass *llvm::createPostRAScheduler() {
1179  return new PostRAScheduler();
1180}
1181