PostRASchedulerList.cpp revision 812d7506d0c55fbb0eee522cb77b62e4ab777dea
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "llvm/CodeGen/Passes.h"
23#include "llvm/CodeGen/ScheduleDAGInstrs.h"
24#include "llvm/CodeGen/LatencyPriorityQueue.h"
25#include "llvm/CodeGen/SchedulerRegistry.h"
26#include "llvm/CodeGen/MachineDominators.h"
27#include "llvm/CodeGen/MachineFunctionPass.h"
28#include "llvm/CodeGen/MachineLoopInfo.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Support/Compiler.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/DenseSet.h"
36#include "llvm/ADT/SmallVector.h"
37#include <map>
38#include <climits>
39using namespace llvm;
40
41STATISTIC(NumStalls, "Number of pipeline stalls");
42
43static cl::opt<bool>
44EnableAntiDepBreaking("break-anti-dependencies",
45                      cl::desc("Break scheduling anti-dependencies"),
46                      cl::init(true));
47
48namespace {
49  class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
50  public:
51    static char ID;
52    PostRAScheduler() : MachineFunctionPass(&ID) {}
53
54    void getAnalysisUsage(AnalysisUsage &AU) const {
55      AU.addRequired<MachineDominatorTree>();
56      AU.addPreserved<MachineDominatorTree>();
57      AU.addRequired<MachineLoopInfo>();
58      AU.addPreserved<MachineLoopInfo>();
59      MachineFunctionPass::getAnalysisUsage(AU);
60    }
61
62    const char *getPassName() const {
63      return "Post RA top-down list latency scheduler";
64    }
65
66    bool runOnMachineFunction(MachineFunction &Fn);
67  };
68  char PostRAScheduler::ID = 0;
69
70  class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
71    /// AvailableQueue - The priority queue to use for the available SUnits.
72    ///
73    LatencyPriorityQueue AvailableQueue;
74
75    /// PendingQueue - This contains all of the instructions whose operands have
76    /// been issued, but their results are not ready yet (due to the latency of
77    /// the operation).  Once the operands becomes available, the instruction is
78    /// added to the AvailableQueue.
79    std::vector<SUnit*> PendingQueue;
80
81    /// Topo - A topological ordering for SUnits.
82    ScheduleDAGTopologicalSort Topo;
83
84  public:
85    SchedulePostRATDList(MachineBasicBlock *mbb, const TargetMachine &tm,
86                         const MachineLoopInfo &MLI,
87                         const MachineDominatorTree &MDT)
88      : ScheduleDAGInstrs(mbb, tm, MLI, MDT), Topo(SUnits) {}
89
90    void Schedule();
91
92  private:
93    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
94    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
95    void ListScheduleTopDown();
96    bool BreakAntiDependencies();
97  };
98}
99
100bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
101  DOUT << "PostRAScheduler\n";
102
103  const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
104  const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
105
106  // Loop over all of the basic blocks
107  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
108       MBB != MBBe; ++MBB) {
109
110    SchedulePostRATDList Scheduler(MBB, Fn.getTarget(), MLI, MDT);
111
112    Scheduler.Run();
113
114    Scheduler.EmitSchedule();
115  }
116
117  return true;
118}
119
120/// Schedule - Schedule the DAG using list scheduling.
121void SchedulePostRATDList::Schedule() {
122  DOUT << "********** List Scheduling **********\n";
123
124  // Build scheduling units.
125  BuildSchedUnits();
126
127  if (EnableAntiDepBreaking) {
128    if (BreakAntiDependencies()) {
129      // We made changes. Update the dependency graph.
130      // Theoretically we could update the graph in place:
131      // When a live range is changed to use a different register, remove
132      // the def's anti-dependence *and* output-dependence edges due to
133      // that register, and add new anti-dependence and output-dependence
134      // edges based on the next live range of the register.
135      SUnits.clear();
136      BuildSchedUnits();
137    }
138  }
139
140  AvailableQueue.initNodes(SUnits);
141
142  ListScheduleTopDown();
143
144  AvailableQueue.releaseState();
145}
146
147/// getInstrOperandRegClass - Return register class of the operand of an
148/// instruction of the specified TargetInstrDesc.
149static const TargetRegisterClass*
150getInstrOperandRegClass(const TargetRegisterInfo *TRI,
151                        const TargetInstrInfo *TII, const TargetInstrDesc &II,
152                        unsigned Op) {
153  if (Op >= II.getNumOperands())
154    return NULL;
155  if (II.OpInfo[Op].isLookupPtrRegClass())
156    return TII->getPointerRegClass();
157  return TRI->getRegClass(II.OpInfo[Op].RegClass);
158}
159
160/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
161/// critical path.
162static SDep *CriticalPathStep(SUnit *SU) {
163  SDep *Next = 0;
164  unsigned NextDepth = 0;
165  // Find the predecessor edge with the greatest depth.
166  for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
167       P != PE; ++P) {
168    SUnit *PredSU = P->getSUnit();
169    unsigned PredLatency = P->getLatency();
170    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
171    // In the case of a latency tie, prefer an anti-dependency edge over
172    // other types of edges.
173    if (NextDepth < PredTotalLatency ||
174        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
175      NextDepth = PredTotalLatency;
176      Next = &*P;
177    }
178  }
179  return Next;
180}
181
182/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
183/// of the ScheduleDAG and break them by renaming registers.
184///
185bool SchedulePostRATDList::BreakAntiDependencies() {
186  // The code below assumes that there is at least one instruction,
187  // so just duck out immediately if the block is empty.
188  if (BB->empty()) return false;
189
190  // Find the node at the bottom of the critical path.
191  SUnit *Max = 0;
192  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
193    SUnit *SU = &SUnits[i];
194    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
195      Max = SU;
196  }
197
198  DOUT << "Critical path has total latency "
199       << (Max ? Max->getDepth() + Max->Latency : 0) << "\n";
200
201  // Walk the critical path from the bottom up. Collect all anti-dependence
202  // edges on the critical path. Skip anti-dependencies between SUnits that
203  // are connected with other edges, since such units won't be able to be
204  // scheduled past each other anyway.
205  //
206  // The heuristic is that edges on the critical path are more important to
207  // break than other edges. And since there are a limited number of
208  // registers, we don't want to waste them breaking edges that aren't
209  // important.
210  //
211  // TODO: Instructions with multiple defs could have multiple
212  // anti-dependencies. The current code here only knows how to break one
213  // edge per instruction. Note that we'd have to be able to break all of
214  // the anti-dependencies in an instruction in order to be effective.
215  BitVector AllocatableSet = TRI->getAllocatableSet(*MF);
216  DenseMap<MachineInstr *, unsigned> CriticalAntiDeps;
217  SUnit *SU = Max;
218  for (SDep *Edge = CriticalPathStep(SU); Edge;
219       Edge = CriticalPathStep(SU = Edge->getSUnit())) {
220    SUnit *NextSU = Edge->getSUnit();
221    // Only consider anti-dependence edges.
222    if (Edge->getKind() != SDep::Anti)
223      continue;
224    unsigned AntiDepReg = Edge->getReg();
225    assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
226    // Don't break anti-dependencies on non-allocatable registers.
227    if (!AllocatableSet.test(AntiDepReg))
228      continue;
229    // If the SUnit has other dependencies on the SUnit that it
230    // anti-depends on, don't bother breaking the anti-dependency.
231    // Also, if there are dependencies on other SUnits with the
232    // same register as the anti-dependency, don't attempt to
233    // break it.
234    for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
235         P != PE; ++P)
236      if (P->getSUnit() == NextSU ?
237            (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
238            (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
239        AntiDepReg = 0;
240        break;
241      }
242    if (AntiDepReg != 0)
243      CriticalAntiDeps[SU->getInstr()] = AntiDepReg;
244  }
245
246  // For live regs that are only used in one register class in a live range,
247  // the register class. If the register is not live, the corresponding value
248  // is null. If the register is live but used in multiple register classes,
249  // the corresponding value is -1 casted to a pointer.
250  const TargetRegisterClass *
251    Classes[TargetRegisterInfo::FirstVirtualRegister] = {};
252
253  // Map registers to all their references within a live range.
254  std::multimap<unsigned, MachineOperand *> RegRefs;
255
256  // The index of the most recent kill (proceding bottom-up), or -1 if
257  // the register is not live.
258  unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
259  std::fill(KillIndices, array_endof(KillIndices), -1);
260  // The index of the most recent def (proceding bottom up), or -1 if
261  // the register is live.
262  unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
263  std::fill(DefIndices, array_endof(DefIndices), BB->size());
264
265  // Determine the live-out physregs for this block.
266  if (!BB->empty() && BB->back().getDesc().isReturn())
267    // In a return block, examine the function live-out regs.
268    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
269         E = MRI.liveout_end(); I != E; ++I) {
270      unsigned Reg = *I;
271      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
272      KillIndices[Reg] = BB->size();
273      DefIndices[Reg] = -1;
274      // Repeat, for all aliases.
275      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
276        unsigned AliasReg = *Alias;
277        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
278        KillIndices[AliasReg] = BB->size();
279        DefIndices[AliasReg] = -1;
280      }
281    }
282  else
283    // In a non-return block, examine the live-in regs of all successors.
284    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
285         SE = BB->succ_end(); SI != SE; ++SI)
286      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
287           E = (*SI)->livein_end(); I != E; ++I) {
288        unsigned Reg = *I;
289        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
290        KillIndices[Reg] = BB->size();
291        DefIndices[Reg] = -1;
292        // Repeat, for all aliases.
293        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
294          unsigned AliasReg = *Alias;
295          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
296          KillIndices[AliasReg] = BB->size();
297          DefIndices[AliasReg] = -1;
298        }
299      }
300
301  // Consider callee-saved registers as live-out, since we're running after
302  // prologue/epilogue insertion so there's no way to add additional
303  // saved registers.
304  //
305  // TODO: If the callee saves and restores these, then we can potentially
306  // use them between the save and the restore. To do that, we could scan
307  // the exit blocks to see which of these registers are defined.
308  // Alternatively, calle-saved registers that aren't saved and restored
309  // could be marked live-in in every block.
310  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
311    unsigned Reg = *I;
312    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
313    KillIndices[Reg] = BB->size();
314    DefIndices[Reg] = -1;
315    // Repeat, for all aliases.
316    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
317      unsigned AliasReg = *Alias;
318      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
319      KillIndices[AliasReg] = BB->size();
320      DefIndices[AliasReg] = -1;
321    }
322  }
323
324  // Consider this pattern:
325  //   A = ...
326  //   ... = A
327  //   A = ...
328  //   ... = A
329  //   A = ...
330  //   ... = A
331  //   A = ...
332  //   ... = A
333  // There are three anti-dependencies here, and without special care,
334  // we'd break all of them using the same register:
335  //   A = ...
336  //   ... = A
337  //   B = ...
338  //   ... = B
339  //   B = ...
340  //   ... = B
341  //   B = ...
342  //   ... = B
343  // because at each anti-dependence, B is the first register that
344  // isn't A which is free.  This re-introduces anti-dependencies
345  // at all but one of the original anti-dependencies that we were
346  // trying to break.  To avoid this, keep track of the most recent
347  // register that each register was replaced with, avoid avoid
348  // using it to repair an anti-dependence on the same register.
349  // This lets us produce this:
350  //   A = ...
351  //   ... = A
352  //   B = ...
353  //   ... = B
354  //   C = ...
355  //   ... = C
356  //   B = ...
357  //   ... = B
358  // This still has an anti-dependence on B, but at least it isn't on the
359  // original critical path.
360  //
361  // TODO: If we tracked more than one register here, we could potentially
362  // fix that remaining critical edge too. This is a little more involved,
363  // because unlike the most recent register, less recent registers should
364  // still be considered, though only if no other registers are available.
365  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
366
367  // Attempt to break anti-dependence edges on the critical path. Walk the
368  // instructions from the bottom up, tracking information about liveness
369  // as we go to help determine which registers are available.
370  bool Changed = false;
371  unsigned Count = BB->size() - 1;
372  for (MachineBasicBlock::reverse_iterator I = BB->rbegin(), E = BB->rend();
373       I != E; ++I, --Count) {
374    MachineInstr *MI = &*I;
375
376    // After regalloc, IMPLICIT_DEF instructions aren't safe to treat as
377    // dependence-breaking. In the case of an INSERT_SUBREG, the IMPLICIT_DEF
378    // is left behind appearing to clobber the super-register, while the
379    // subregister needs to remain live. So we just ignore them.
380    if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
381      continue;
382
383    // Check if this instruction has an anti-dependence that we're
384    // interested in.
385    DenseMap<MachineInstr *, unsigned>::iterator C = CriticalAntiDeps.find(MI);
386    unsigned AntiDepReg = C != CriticalAntiDeps.end() ?
387      C->second : 0;
388
389    // Scan the register operands for this instruction and update
390    // Classes and RegRefs.
391    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
392      MachineOperand &MO = MI->getOperand(i);
393      if (!MO.isReg()) continue;
394      unsigned Reg = MO.getReg();
395      if (Reg == 0) continue;
396      const TargetRegisterClass *NewRC =
397        getInstrOperandRegClass(TRI, TII, MI->getDesc(), i);
398
399      // If this instruction has a use of AntiDepReg, breaking it
400      // is invalid.
401      if (MO.isUse() && AntiDepReg == Reg)
402        AntiDepReg = 0;
403
404      // For now, only allow the register to be changed if its register
405      // class is consistent across all uses.
406      if (!Classes[Reg] && NewRC)
407        Classes[Reg] = NewRC;
408      else if (!NewRC || Classes[Reg] != NewRC)
409        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
410
411      // Now check for aliases.
412      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
413        // If an alias of the reg is used during the live range, give up.
414        // Note that this allows us to skip checking if AntiDepReg
415        // overlaps with any of the aliases, among other things.
416        unsigned AliasReg = *Alias;
417        if (Classes[AliasReg]) {
418          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
419          Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
420        }
421      }
422
423      // If we're still willing to consider this register, note the reference.
424      if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
425        RegRefs.insert(std::make_pair(Reg, &MO));
426    }
427
428    // Determine AntiDepReg's register class, if it is live and is
429    // consistently used within a single class.
430    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
431    assert((AntiDepReg == 0 || RC != NULL) &&
432           "Register should be live if it's causing an anti-dependence!");
433    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
434      AntiDepReg = 0;
435
436    // Look for a suitable register to use to break the anti-depenence.
437    //
438    // TODO: Instead of picking the first free register, consider which might
439    // be the best.
440    if (AntiDepReg != 0) {
441      for (TargetRegisterClass::iterator R = RC->allocation_order_begin(*MF),
442           RE = RC->allocation_order_end(*MF); R != RE; ++R) {
443        unsigned NewReg = *R;
444        // Don't replace a register with itself.
445        if (NewReg == AntiDepReg) continue;
446        // Don't replace a register with one that was recently used to repair
447        // an anti-dependence with this AntiDepReg, because that would
448        // re-introduce that anti-dependence.
449        if (NewReg == LastNewReg[AntiDepReg]) continue;
450        // If NewReg is dead and NewReg's most recent def is not before
451        // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
452        assert(((KillIndices[AntiDepReg] == -1u) != (DefIndices[AntiDepReg] == -1u)) &&
453               "Kill and Def maps aren't consistent for AntiDepReg!");
454        assert(((KillIndices[NewReg] == -1u) != (DefIndices[NewReg] == -1u)) &&
455               "Kill and Def maps aren't consistent for NewReg!");
456        if (KillIndices[NewReg] == -1u &&
457            Classes[NewReg] != reinterpret_cast<TargetRegisterClass *>(-1) &&
458            KillIndices[AntiDepReg] <= DefIndices[NewReg]) {
459          DOUT << "Breaking anti-dependence edge on "
460               << TRI->getName(AntiDepReg)
461               << " with " << RegRefs.count(AntiDepReg) << " references"
462               << " using " << TRI->getName(NewReg) << "!\n";
463
464          // Update the references to the old register to refer to the new
465          // register.
466          std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
467                    std::multimap<unsigned, MachineOperand *>::iterator>
468             Range = RegRefs.equal_range(AntiDepReg);
469          for (std::multimap<unsigned, MachineOperand *>::iterator
470               Q = Range.first, QE = Range.second; Q != QE; ++Q)
471            Q->second->setReg(NewReg);
472
473          // We just went back in time and modified history; the
474          // liveness information for the anti-depenence reg is now
475          // inconsistent. Set the state as if it were dead.
476          Classes[NewReg] = Classes[AntiDepReg];
477          DefIndices[NewReg] = DefIndices[AntiDepReg];
478          KillIndices[NewReg] = KillIndices[AntiDepReg];
479
480          Classes[AntiDepReg] = 0;
481          DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
482          KillIndices[AntiDepReg] = -1;
483
484          RegRefs.erase(AntiDepReg);
485          Changed = true;
486          LastNewReg[AntiDepReg] = NewReg;
487          break;
488        }
489      }
490    }
491
492    // Update liveness.
493    // Proceding upwards, registers that are defed but not used in this
494    // instruction are now dead.
495    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
496      MachineOperand &MO = MI->getOperand(i);
497      if (!MO.isReg()) continue;
498      unsigned Reg = MO.getReg();
499      if (Reg == 0) continue;
500      if (!MO.isDef()) continue;
501      // Ignore two-addr defs.
502      if (MI->isRegReDefinedByTwoAddr(i)) continue;
503
504      DefIndices[Reg] = Count;
505      KillIndices[Reg] = -1;
506      Classes[Reg] = 0;
507      RegRefs.erase(Reg);
508      // Repeat, for all subregs.
509      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
510           *Subreg; ++Subreg) {
511        unsigned SubregReg = *Subreg;
512        DefIndices[SubregReg] = Count;
513        KillIndices[SubregReg] = -1;
514        Classes[SubregReg] = 0;
515        RegRefs.erase(SubregReg);
516      }
517      for (const unsigned *Super = TRI->getSuperRegisters(Reg);
518           *Super; ++Super) {
519        unsigned SuperReg = *Super;
520        Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
521      }
522    }
523    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
524      MachineOperand &MO = MI->getOperand(i);
525      if (!MO.isReg()) continue;
526      unsigned Reg = MO.getReg();
527      if (Reg == 0) continue;
528      if (!MO.isUse()) continue;
529
530      const TargetRegisterClass *NewRC =
531        getInstrOperandRegClass(TRI, TII, MI->getDesc(), i);
532
533      // For now, only allow the register to be changed if its register
534      // class is consistent across all uses.
535      if (!Classes[Reg] && NewRC)
536        Classes[Reg] = NewRC;
537      else if (!NewRC || Classes[Reg] != NewRC)
538        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
539
540      RegRefs.insert(std::make_pair(Reg, &MO));
541
542      // It wasn't previously live but now it is, this is a kill.
543      if (KillIndices[Reg] == -1u) {
544        KillIndices[Reg] = Count;
545        DefIndices[Reg] = -1u;
546      }
547      // Repeat, for all aliases.
548      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
549        unsigned AliasReg = *Alias;
550        if (KillIndices[AliasReg] == -1u) {
551          KillIndices[AliasReg] = Count;
552          DefIndices[AliasReg] = -1u;
553        }
554      }
555    }
556  }
557  assert(Count == -1u && "Count mismatch!");
558
559  return Changed;
560}
561
562//===----------------------------------------------------------------------===//
563//  Top-Down Scheduling
564//===----------------------------------------------------------------------===//
565
566/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
567/// the PendingQueue if the count reaches zero. Also update its cycle bound.
568void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
569  SUnit *SuccSU = SuccEdge->getSUnit();
570  --SuccSU->NumPredsLeft;
571
572#ifndef NDEBUG
573  if (SuccSU->NumPredsLeft < 0) {
574    cerr << "*** Scheduling failed! ***\n";
575    SuccSU->dump(this);
576    cerr << " has been released too many times!\n";
577    assert(0);
578  }
579#endif
580
581  // Compute how many cycles it will be before this actually becomes
582  // available.  This is the max of the start time of all predecessors plus
583  // their latencies.
584  SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
585
586  if (SuccSU->NumPredsLeft == 0) {
587    PendingQueue.push_back(SuccSU);
588  }
589}
590
591/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
592/// count of its successors. If a successor pending count is zero, add it to
593/// the Available queue.
594void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
595  DOUT << "*** Scheduling [" << CurCycle << "]: ";
596  DEBUG(SU->dump(this));
597
598  Sequence.push_back(SU);
599  assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
600  SU->setDepthToAtLeast(CurCycle);
601
602  // Top down: release successors.
603  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
604       I != E; ++I)
605    ReleaseSucc(SU, &*I);
606
607  SU->isScheduled = true;
608  AvailableQueue.ScheduledNode(SU);
609}
610
611/// ListScheduleTopDown - The main loop of list scheduling for top-down
612/// schedulers.
613void SchedulePostRATDList::ListScheduleTopDown() {
614  unsigned CurCycle = 0;
615
616  // All leaves to Available queue.
617  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
618    // It is available if it has no predecessors.
619    if (SUnits[i].Preds.empty()) {
620      AvailableQueue.push(&SUnits[i]);
621      SUnits[i].isAvailable = true;
622    }
623  }
624
625  // While Available queue is not empty, grab the node with the highest
626  // priority. If it is not ready put it back.  Schedule the node.
627  Sequence.reserve(SUnits.size());
628  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
629    // Check to see if any of the pending instructions are ready to issue.  If
630    // so, add them to the available queue.
631    unsigned MinDepth = ~0u;
632    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
633      if (PendingQueue[i]->getDepth() <= CurCycle) {
634        AvailableQueue.push(PendingQueue[i]);
635        PendingQueue[i]->isAvailable = true;
636        PendingQueue[i] = PendingQueue.back();
637        PendingQueue.pop_back();
638        --i; --e;
639      } else if (PendingQueue[i]->getDepth() < MinDepth)
640        MinDepth = PendingQueue[i]->getDepth();
641    }
642
643    // If there are no instructions available, don't try to issue anything.
644    if (AvailableQueue.empty()) {
645      CurCycle = MinDepth != ~0u ? MinDepth : CurCycle + 1;
646      continue;
647    }
648
649    SUnit *FoundSUnit = AvailableQueue.pop();
650
651    // If we found a node to schedule, do it now.
652    if (FoundSUnit) {
653      ScheduleNodeTopDown(FoundSUnit, CurCycle);
654
655      // If this is a pseudo-op node, we don't want to increment the current
656      // cycle.
657      if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
658        ++CurCycle;
659    } else {
660      // Otherwise, we have a pipeline stall, but no other problem, just advance
661      // the current cycle and try again.
662      DOUT << "*** Advancing cycle, no work to do\n";
663      ++NumStalls;
664      ++CurCycle;
665    }
666  }
667
668#ifndef NDEBUG
669  VerifySchedule(/*isBottomUp=*/false);
670#endif
671}
672
673//===----------------------------------------------------------------------===//
674//                         Public Constructor Functions
675//===----------------------------------------------------------------------===//
676
677FunctionPass *llvm::createPostRAScheduler() {
678  return new PostRAScheduler();
679}
680