PostRASchedulerList.cpp revision 878ef1d5bc3b2d12f58fbd796a4ac91b163c88f0
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "llvm/CodeGen/Passes.h"
23#include "llvm/CodeGen/ScheduleDAGInstrs.h"
24#include "llvm/CodeGen/LatencyPriorityQueue.h"
25#include "llvm/CodeGen/SchedulerRegistry.h"
26#include "llvm/CodeGen/MachineFunctionPass.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetRegisterInfo.h"
30#include "llvm/Support/Compiler.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/DenseSet.h"
34#include <map>
35#include <climits>
36using namespace llvm;
37
38STATISTIC(NumStalls, "Number of pipeline stalls");
39
40static cl::opt<bool>
41EnableAntiDepBreaking("break-anti-dependencies",
42                      cl::desc("Break scheduling anti-dependencies"),
43                      cl::init(false));
44
45namespace {
46  class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
47  public:
48    static char ID;
49    PostRAScheduler() : MachineFunctionPass(&ID) {}
50
51    const char *getPassName() const {
52      return "Post RA top-down list latency scheduler";
53    }
54
55    bool runOnMachineFunction(MachineFunction &Fn);
56  };
57  char PostRAScheduler::ID = 0;
58
59  class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
60    /// AvailableQueue - The priority queue to use for the available SUnits.
61    ///
62    LatencyPriorityQueue AvailableQueue;
63
64    /// PendingQueue - This contains all of the instructions whose operands have
65    /// been issued, but their results are not ready yet (due to the latency of
66    /// the operation).  Once the operands becomes available, the instruction is
67    /// added to the AvailableQueue.
68    std::vector<SUnit*> PendingQueue;
69
70    /// Topo - A topological ordering for SUnits.
71    ScheduleDAGTopologicalSort Topo;
72
73  public:
74    SchedulePostRATDList(MachineBasicBlock *mbb, const TargetMachine &tm)
75      : ScheduleDAGInstrs(mbb, tm), Topo(SUnits) {}
76
77    void Schedule();
78
79  private:
80    void ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain);
81    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
82    void ListScheduleTopDown();
83    bool BreakAntiDependencies();
84  };
85}
86
87bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
88  DOUT << "PostRAScheduler\n";
89
90  // Loop over all of the basic blocks
91  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
92       MBB != MBBe; ++MBB) {
93
94    SchedulePostRATDList Scheduler(MBB, Fn.getTarget());
95
96    Scheduler.Run();
97
98    Scheduler.EmitSchedule();
99  }
100
101  return true;
102}
103
104/// Schedule - Schedule the DAG using list scheduling.
105void SchedulePostRATDList::Schedule() {
106  DOUT << "********** List Scheduling **********\n";
107
108  // Build scheduling units.
109  BuildSchedUnits();
110
111  if (EnableAntiDepBreaking) {
112    if (BreakAntiDependencies()) {
113      // We made changes. Update the dependency graph.
114      // Theoretically we could update the graph in place:
115      // When a live range is changed to use a different register, remove
116      // the def's anti-dependence *and* output-dependence edges due to
117      // that register, and add new anti-dependence and output-dependence
118      // edges based on the next live range of the register.
119      SUnits.clear();
120      BuildSchedUnits();
121    }
122  }
123
124  AvailableQueue.initNodes(SUnits);
125
126  ListScheduleTopDown();
127
128  AvailableQueue.releaseState();
129}
130
131/// getInstrOperandRegClass - Return register class of the operand of an
132/// instruction of the specified TargetInstrDesc.
133static const TargetRegisterClass*
134getInstrOperandRegClass(const TargetRegisterInfo *TRI,
135                        const TargetInstrInfo *TII, const TargetInstrDesc &II,
136                        unsigned Op) {
137  if (Op >= II.getNumOperands())
138    return NULL;
139  if (II.OpInfo[Op].isLookupPtrRegClass())
140    return TII->getPointerRegClass();
141  return TRI->getRegClass(II.OpInfo[Op].RegClass);
142}
143
144/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
145/// of the ScheduleDAG and break them by renaming registers.
146///
147bool SchedulePostRATDList::BreakAntiDependencies() {
148  // The code below assumes that there is at least one instruction,
149  // so just duck out immediately if the block is empty.
150  if (BB->empty()) return false;
151
152  Topo.InitDAGTopologicalSorting();
153
154  // Compute a critical path for the DAG.
155  SUnit *Max = 0;
156  std::vector<SDep *> CriticalPath(SUnits.size());
157  for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
158       E = Topo.end(); I != E; ++I) {
159    SUnit *SU = &SUnits[*I];
160    for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
161         P != PE; ++P) {
162      SUnit *PredSU = P->Dep;
163      unsigned PredLatency = PredSU->CycleBound + PredSU->Latency;
164      if (SU->CycleBound < PredLatency) {
165        SU->CycleBound = PredLatency;
166        CriticalPath[*I] = &*P;
167      }
168    }
169    // Keep track of the node at the end of the critical path.
170    if (!Max || SU->CycleBound + SU->Latency > Max->CycleBound + Max->Latency)
171      Max = SU;
172  }
173
174  DOUT << "Critical path has total latency "
175       << (Max ? Max->CycleBound + Max->Latency : 0) << "\n";
176
177  // Walk the critical path from the bottom up. Collect all anti-dependence
178  // edges on the critical path. Skip anti-dependencies between SUnits that
179  // are connected with other edges, since such units won't be able to be
180  // scheduled past each other anyway.
181  //
182  // The heuristic is that edges on the critical path are more important to
183  // break than other edges. And since there are a limited number of
184  // registers, we don't want to waste them breaking edges that aren't
185  // important.
186  //
187  // TODO: Instructions with multiple defs could have multiple
188  // anti-dependencies. The current code here only knows how to break one
189  // edge per instruction. Note that we'd have to be able to break all of
190  // the anti-dependencies in an instruction in order to be effective.
191  BitVector AllocatableSet = TRI->getAllocatableSet(*MF);
192  DenseMap<MachineInstr *, unsigned> CriticalAntiDeps;
193  for (SUnit *SU = Max; CriticalPath[SU->NodeNum];
194       SU = CriticalPath[SU->NodeNum]->Dep) {
195    SDep *Edge = CriticalPath[SU->NodeNum];
196    SUnit *NextSU = Edge->Dep;
197    unsigned AntiDepReg = Edge->Reg;
198    // Don't break anti-dependencies on non-allocatable registers.
199    if (!AllocatableSet.test(AntiDepReg))
200      continue;
201    // If the SUnit has other dependencies on the SUnit that it
202    // anti-depends on, don't bother breaking the anti-dependency.
203    // Also, if there are dependencies on other SUnits with the
204    // same register as the anti-dependency, don't attempt to
205    // break it.
206    for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
207         P != PE; ++P)
208      if (P->Dep == NextSU ?
209            (!P->isAntiDep || P->Reg != AntiDepReg) :
210            (!P->isCtrl && !P->isAntiDep && P->Reg == AntiDepReg)) {
211        AntiDepReg = 0;
212        break;
213      }
214    if (AntiDepReg != 0)
215      CriticalAntiDeps[SU->getInstr()] = AntiDepReg;
216  }
217
218  // For live regs that are only used in one register class in a live range,
219  // the register class. If the register is not live or is referenced in
220  // multiple register classes, the corresponding value is null. If the
221  // register is used in multiple register classes, the corresponding value
222  // is -1 casted to a pointer.
223  const TargetRegisterClass *
224    Classes[TargetRegisterInfo::FirstVirtualRegister] = {};
225
226  // Map registers to all their references within a live range.
227  std::multimap<unsigned, MachineOperand *> RegRefs;
228
229  // The index of the most recent kill (proceding bottom-up), or -1 if
230  // the register is not live.
231  unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
232  std::fill(KillIndices, array_endof(KillIndices), -1);
233  // The index of the most recent def (proceding bottom up), or -1 if
234  // the register is live.
235  unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
236  std::fill(DefIndices, array_endof(DefIndices), BB->size());
237
238  // Determine the live-out physregs for this block.
239  if (!BB->empty() && BB->back().getDesc().isReturn())
240    // In a return block, examine the function live-out regs.
241    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
242         E = MRI.liveout_end(); I != E; ++I) {
243      unsigned Reg = *I;
244      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
245      KillIndices[Reg] = BB->size();
246      DefIndices[Reg] = -1;
247      // Repeat, for all aliases.
248      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
249        unsigned AliasReg = *Alias;
250        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
251        KillIndices[AliasReg] = BB->size();
252        DefIndices[AliasReg] = -1;
253      }
254    }
255  else
256    // In a non-return block, examine the live-in regs of all successors.
257    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
258         SE = BB->succ_end(); SI != SE; ++SI)
259      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
260           E = (*SI)->livein_end(); I != E; ++I) {
261        unsigned Reg = *I;
262        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
263        KillIndices[Reg] = BB->size();
264        DefIndices[Reg] = -1;
265        // Repeat, for all aliases.
266        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
267          unsigned AliasReg = *Alias;
268          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
269          KillIndices[AliasReg] = BB->size();
270          DefIndices[AliasReg] = -1;
271        }
272      }
273
274  // Consider callee-saved registers as live-out, since we're running after
275  // prologue/epilogue insertion so there's no way to add additional
276  // saved registers.
277  //
278  // TODO: If the callee saves and restores these, then we can potentially
279  // use them between the save and the restore. To do that, we could scan
280  // the exit blocks to see which of these registers are defined.
281  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
282    unsigned Reg = *I;
283    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
284    KillIndices[Reg] = BB->size();
285    DefIndices[Reg] = -1;
286    // Repeat, for all aliases.
287    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
288      unsigned AliasReg = *Alias;
289      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
290      KillIndices[AliasReg] = BB->size();
291      DefIndices[AliasReg] = -1;
292    }
293  }
294
295  // Consider this pattern:
296  //   A = ...
297  //   ... = A
298  //   A = ...
299  //   ... = A
300  //   A = ...
301  //   ... = A
302  //   A = ...
303  //   ... = A
304  // There are three anti-dependencies here, and without special care,
305  // we'd break all of them using the same register:
306  //   A = ...
307  //   ... = A
308  //   B = ...
309  //   ... = B
310  //   B = ...
311  //   ... = B
312  //   B = ...
313  //   ... = B
314  // because at each anti-dependence, B is the first register that
315  // isn't A which is free.  This re-introduces anti-dependencies
316  // at all but one of the original anti-dependencies that we were
317  // trying to break.  To avoid this, keep track of the most recent
318  // register that each register was replaced with, avoid avoid
319  // using it to repair an anti-dependence on the same register.
320  // This lets us produce this:
321  //   A = ...
322  //   ... = A
323  //   B = ...
324  //   ... = B
325  //   C = ...
326  //   ... = C
327  //   B = ...
328  //   ... = B
329  // This still has an anti-dependence on B, but at least it isn't on the
330  // original critical path.
331  //
332  // TODO: If we tracked more than one register here, we could potentially
333  // fix that remaining critical edge too. This is a little more involved,
334  // because unlike the most recent register, less recent registers should
335  // still be considered, though only if no other registers are available.
336  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
337
338  // A registers defined and not used in an instruction. This is used for
339  // liveness tracking and is declared outside the loop only to avoid
340  // having it be re-allocated on each iteration.
341  DenseSet<unsigned> Defs;
342
343  // Attempt to break anti-dependence edges on the critical path. Walk the
344  // instructions from the bottom up, tracking information about liveness
345  // as we go to help determine which registers are available.
346  bool Changed = false;
347  unsigned Count = BB->size() - 1;
348  for (MachineBasicBlock::reverse_iterator I = BB->rbegin(), E = BB->rend();
349       I != E; ++I, --Count) {
350    MachineInstr *MI = &*I;
351
352    // Check if this instruction has an anti-dependence that we're
353    // interested in.
354    DenseMap<MachineInstr *, unsigned>::iterator C = CriticalAntiDeps.find(MI);
355    unsigned AntiDepReg = C != CriticalAntiDeps.end() ?
356      C->second : 0;
357
358    // Scan the register operands for this instruction and update
359    // Classes and RegRefs.
360    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
361      MachineOperand &MO = MI->getOperand(i);
362      if (!MO.isReg()) continue;
363      unsigned Reg = MO.getReg();
364      if (Reg == 0) continue;
365      const TargetRegisterClass *NewRC =
366        getInstrOperandRegClass(TRI, TII, MI->getDesc(), i);
367
368      // If this instruction has a use of AntiDepReg, breaking it
369      // is invalid.
370      if (MO.isUse() && AntiDepReg == Reg)
371        AntiDepReg = 0;
372
373      // For now, only allow the register to be changed if its register
374      // class is consistent across all uses.
375      if (!Classes[Reg] && NewRC)
376        Classes[Reg] = NewRC;
377      else if (!NewRC || Classes[Reg] != NewRC)
378        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
379
380      // Now check for aliases.
381      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
382        // If an alias of the reg is used during the live range, give up.
383        // Note that this allows us to skip checking if AntiDepReg
384        // overlaps with any of the aliases, among other things.
385        unsigned AliasReg = *Alias;
386        if (Classes[AliasReg]) {
387          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
388          Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
389        }
390      }
391
392      // If we're still willing to consider this register, note the reference.
393      if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
394        RegRefs.insert(std::make_pair(Reg, &MO));
395    }
396
397    // Determine AntiDepReg's register class, if it is live and is
398    // consistently used within a single class.
399    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
400    assert(AntiDepReg == 0 || RC != NULL &&
401           "Register should be live if it's causing an anti-dependence!");
402    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
403      AntiDepReg = 0;
404
405    // Look for a suitable register to use to break the anti-depenence.
406    //
407    // TODO: Instead of picking the first free register, consider which might
408    // be the best.
409    if (AntiDepReg != 0) {
410      for (TargetRegisterClass::iterator R = RC->allocation_order_begin(*MF),
411           RE = RC->allocation_order_end(*MF); R != RE; ++R) {
412        unsigned NewReg = *R;
413        // Don't replace a register with itself.
414        if (NewReg == AntiDepReg) continue;
415        // Don't replace a register with one that was recently used to repair
416        // an anti-dependence with this AntiDepReg, because that would
417        // re-introduce that anti-dependence.
418        if (NewReg == LastNewReg[AntiDepReg]) continue;
419        // If NewReg is dead and NewReg's most recent def is not before
420        // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
421        assert(((KillIndices[AntiDepReg] == -1u) != (DefIndices[AntiDepReg] == -1u)) &&
422               "Kill and Def maps aren't consistent for AntiDepReg!");
423        assert(((KillIndices[NewReg] == -1u) != (DefIndices[NewReg] == -1u)) &&
424               "Kill and Def maps aren't consistent for NewReg!");
425        if (KillIndices[NewReg] == -1u &&
426            KillIndices[AntiDepReg] <= DefIndices[NewReg]) {
427          DOUT << "Breaking anti-dependence edge on reg " << AntiDepReg
428               << " with reg " << NewReg << "!\n";
429
430          // Update the references to the old register to refer to the new
431          // register.
432          std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
433                    std::multimap<unsigned, MachineOperand *>::iterator>
434             Range = RegRefs.equal_range(AntiDepReg);
435          for (std::multimap<unsigned, MachineOperand *>::iterator
436               Q = Range.first, QE = Range.second; Q != QE; ++Q)
437            Q->second->setReg(NewReg);
438
439          // We just went back in time and modified history; the
440          // liveness information for the anti-depenence reg is now
441          // inconsistent. Set the state as if it were dead.
442          Classes[NewReg] = Classes[AntiDepReg];
443          DefIndices[NewReg] = DefIndices[AntiDepReg];
444          KillIndices[NewReg] = KillIndices[AntiDepReg];
445
446          Classes[AntiDepReg] = 0;
447          DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
448          KillIndices[AntiDepReg] = -1;
449
450          RegRefs.erase(AntiDepReg);
451          Changed = true;
452          LastNewReg[AntiDepReg] = NewReg;
453          break;
454        }
455      }
456    }
457
458    // Update liveness.
459    Defs.clear();
460    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
461      MachineOperand &MO = MI->getOperand(i);
462      if (!MO.isReg()) continue;
463      unsigned Reg = MO.getReg();
464      if (Reg == 0) continue;
465      if (MO.isDef())
466        Defs.insert(Reg);
467      else {
468        // Treat a use in the same instruction as a def as an extension of
469        // a live range.
470        Defs.erase(Reg);
471        // It wasn't previously live but now it is, this is a kill.
472        if (KillIndices[Reg] == -1u) {
473          KillIndices[Reg] = Count;
474          DefIndices[Reg] = -1u;
475        }
476        // Repeat, for all aliases.
477        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
478          unsigned AliasReg = *Alias;
479          Defs.erase(AliasReg);
480          if (KillIndices[AliasReg] == -1u) {
481            KillIndices[AliasReg] = Count;
482            DefIndices[AliasReg] = -1u;
483          }
484        }
485      }
486    }
487    // Proceding upwards, registers that are defed but not used in this
488    // instruction are now dead.
489    for (DenseSet<unsigned>::iterator D = Defs.begin(), DE = Defs.end();
490         D != DE; ++D) {
491      unsigned Reg = *D;
492      DefIndices[Reg] = Count;
493      KillIndices[Reg] = -1;
494      Classes[Reg] = 0;
495      RegRefs.erase(Reg);
496      // Repeat, for all subregs.
497      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
498           *Subreg; ++Subreg) {
499        unsigned SubregReg = *Subreg;
500        DefIndices[SubregReg] = Count;
501        KillIndices[SubregReg] = -1;
502        Classes[SubregReg] = 0;
503        RegRefs.erase(SubregReg);
504      }
505    }
506  }
507  assert(Count == -1u && "Count mismatch!");
508
509  return Changed;
510}
511
512//===----------------------------------------------------------------------===//
513//  Top-Down Scheduling
514//===----------------------------------------------------------------------===//
515
516/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
517/// the PendingQueue if the count reaches zero. Also update its cycle bound.
518void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain) {
519  --SuccSU->NumPredsLeft;
520
521#ifndef NDEBUG
522  if (SuccSU->NumPredsLeft < 0) {
523    cerr << "*** Scheduling failed! ***\n";
524    SuccSU->dump(this);
525    cerr << " has been released too many times!\n";
526    assert(0);
527  }
528#endif
529
530  // Compute how many cycles it will be before this actually becomes
531  // available.  This is the max of the start time of all predecessors plus
532  // their latencies.
533  // If this is a token edge, we don't need to wait for the latency of the
534  // preceeding instruction (e.g. a long-latency load) unless there is also
535  // some other data dependence.
536  unsigned PredDoneCycle = SU->Cycle;
537  if (!isChain)
538    PredDoneCycle += SU->Latency;
539  else if (SU->Latency)
540    PredDoneCycle += 1;
541  SuccSU->CycleBound = std::max(SuccSU->CycleBound, PredDoneCycle);
542
543  if (SuccSU->NumPredsLeft == 0) {
544    PendingQueue.push_back(SuccSU);
545  }
546}
547
548/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
549/// count of its successors. If a successor pending count is zero, add it to
550/// the Available queue.
551void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
552  DOUT << "*** Scheduling [" << CurCycle << "]: ";
553  DEBUG(SU->dump(this));
554
555  Sequence.push_back(SU);
556  SU->Cycle = CurCycle;
557
558  // Top down: release successors.
559  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
560       I != E; ++I)
561    ReleaseSucc(SU, I->Dep, I->isCtrl);
562
563  SU->isScheduled = true;
564  AvailableQueue.ScheduledNode(SU);
565}
566
567/// ListScheduleTopDown - The main loop of list scheduling for top-down
568/// schedulers.
569void SchedulePostRATDList::ListScheduleTopDown() {
570  unsigned CurCycle = 0;
571
572  // All leaves to Available queue.
573  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
574    // It is available if it has no predecessors.
575    if (SUnits[i].Preds.empty()) {
576      AvailableQueue.push(&SUnits[i]);
577      SUnits[i].isAvailable = true;
578    }
579  }
580
581  // While Available queue is not empty, grab the node with the highest
582  // priority. If it is not ready put it back.  Schedule the node.
583  Sequence.reserve(SUnits.size());
584  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
585    // Check to see if any of the pending instructions are ready to issue.  If
586    // so, add them to the available queue.
587    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
588      if (PendingQueue[i]->CycleBound == CurCycle) {
589        AvailableQueue.push(PendingQueue[i]);
590        PendingQueue[i]->isAvailable = true;
591        PendingQueue[i] = PendingQueue.back();
592        PendingQueue.pop_back();
593        --i; --e;
594      } else {
595        assert(PendingQueue[i]->CycleBound > CurCycle && "Negative latency?");
596      }
597    }
598
599    // If there are no instructions available, don't try to issue anything.
600    if (AvailableQueue.empty()) {
601      ++CurCycle;
602      continue;
603    }
604
605    SUnit *FoundSUnit = AvailableQueue.pop();
606
607    // If we found a node to schedule, do it now.
608    if (FoundSUnit) {
609      ScheduleNodeTopDown(FoundSUnit, CurCycle);
610
611      // If this is a pseudo-op node, we don't want to increment the current
612      // cycle.
613      if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
614        ++CurCycle;
615    } else {
616      // Otherwise, we have a pipeline stall, but no other problem, just advance
617      // the current cycle and try again.
618      DOUT << "*** Advancing cycle, no work to do\n";
619      ++NumStalls;
620      ++CurCycle;
621    }
622  }
623
624#ifndef NDEBUG
625  VerifySchedule(/*isBottomUp=*/false);
626#endif
627}
628
629//===----------------------------------------------------------------------===//
630//                         Public Constructor Functions
631//===----------------------------------------------------------------------===//
632
633FunctionPass *llvm::createPostRAScheduler() {
634  return new PostRAScheduler();
635}
636