PostRASchedulerList.cpp revision 8b3d6682a45e80d08abf32aa1be0491db1977456
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "AntiDepBreaker.h"
23#include "AggressiveAntiDepBreaker.h"
24#include "CriticalAntiDepBreaker.h"
25#include "ExactHazardRecognizer.h"
26#include "SimpleHazardRecognizer.h"
27#include "ScheduleDAGInstrs.h"
28#include "llvm/CodeGen/Passes.h"
29#include "llvm/CodeGen/LatencyPriorityQueue.h"
30#include "llvm/CodeGen/SchedulerRegistry.h"
31#include "llvm/CodeGen/MachineDominators.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunctionPass.h"
34#include "llvm/CodeGen/MachineLoopInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
37#include "llvm/Analysis/AliasAnalysis.h"
38#include "llvm/Target/TargetLowering.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Target/TargetSubtarget.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/ADT/BitVector.h"
48#include "llvm/ADT/Statistic.h"
49#include <set>
50using namespace llvm;
51
52STATISTIC(NumNoops, "Number of noops inserted");
53STATISTIC(NumStalls, "Number of pipeline stalls");
54STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
55
56// Post-RA scheduling is enabled with
57// TargetSubtarget.enablePostRAScheduler(). This flag can be used to
58// override the target.
59static cl::opt<bool>
60EnablePostRAScheduler("post-RA-scheduler",
61                       cl::desc("Enable scheduling after register allocation"),
62                       cl::init(false), cl::Hidden);
63static cl::opt<std::string>
64EnableAntiDepBreaking("break-anti-dependencies",
65                      cl::desc("Break post-RA scheduling anti-dependencies: "
66                               "\"critical\", \"all\", or \"none\""),
67                      cl::init("none"), cl::Hidden);
68static cl::opt<bool>
69EnablePostRAHazardAvoidance("avoid-hazards",
70                      cl::desc("Enable exact hazard avoidance"),
71                      cl::init(true), cl::Hidden);
72
73// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
74static cl::opt<int>
75DebugDiv("postra-sched-debugdiv",
76                      cl::desc("Debug control MBBs that are scheduled"),
77                      cl::init(0), cl::Hidden);
78static cl::opt<int>
79DebugMod("postra-sched-debugmod",
80                      cl::desc("Debug control MBBs that are scheduled"),
81                      cl::init(0), cl::Hidden);
82
83AntiDepBreaker::~AntiDepBreaker() { }
84
85namespace {
86  class PostRAScheduler : public MachineFunctionPass {
87    AliasAnalysis *AA;
88    CodeGenOpt::Level OptLevel;
89
90  public:
91    static char ID;
92    PostRAScheduler(CodeGenOpt::Level ol) :
93      MachineFunctionPass(&ID), OptLevel(ol) {}
94
95    void getAnalysisUsage(AnalysisUsage &AU) const {
96      AU.setPreservesCFG();
97      AU.addRequired<AliasAnalysis>();
98      AU.addRequired<MachineDominatorTree>();
99      AU.addPreserved<MachineDominatorTree>();
100      AU.addRequired<MachineLoopInfo>();
101      AU.addPreserved<MachineLoopInfo>();
102      MachineFunctionPass::getAnalysisUsage(AU);
103    }
104
105    const char *getPassName() const {
106      return "Post RA top-down list latency scheduler";
107    }
108
109    bool runOnMachineFunction(MachineFunction &Fn);
110  };
111  char PostRAScheduler::ID = 0;
112
113  class SchedulePostRATDList : public ScheduleDAGInstrs {
114    /// AvailableQueue - The priority queue to use for the available SUnits.
115    ///
116    LatencyPriorityQueue AvailableQueue;
117
118    /// PendingQueue - This contains all of the instructions whose operands have
119    /// been issued, but their results are not ready yet (due to the latency of
120    /// the operation).  Once the operands becomes available, the instruction is
121    /// added to the AvailableQueue.
122    std::vector<SUnit*> PendingQueue;
123
124    /// Topo - A topological ordering for SUnits.
125    ScheduleDAGTopologicalSort Topo;
126
127    /// HazardRec - The hazard recognizer to use.
128    ScheduleHazardRecognizer *HazardRec;
129
130    /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
131    AntiDepBreaker *AntiDepBreak;
132
133    /// AA - AliasAnalysis for making memory reference queries.
134    AliasAnalysis *AA;
135
136    /// KillIndices - The index of the most recent kill (proceding bottom-up),
137    /// or ~0u if the register is not live.
138    unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
139
140  public:
141    SchedulePostRATDList(MachineFunction &MF,
142                         const MachineLoopInfo &MLI,
143                         const MachineDominatorTree &MDT,
144                         ScheduleHazardRecognizer *HR,
145                         AntiDepBreaker *ADB,
146                         AliasAnalysis *aa)
147      : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
148      HazardRec(HR), AntiDepBreak(ADB), AA(aa) {}
149
150    ~SchedulePostRATDList() {
151    }
152
153    /// StartBlock - Initialize register live-range state for scheduling in
154    /// this block.
155    ///
156    void StartBlock(MachineBasicBlock *BB);
157
158    /// Schedule - Schedule the instruction range using list scheduling.
159    ///
160    void Schedule();
161
162    /// Observe - Update liveness information to account for the current
163    /// instruction, which will not be scheduled.
164    ///
165    void Observe(MachineInstr *MI, unsigned Count);
166
167    /// FinishBlock - Clean up register live-range state.
168    ///
169    void FinishBlock();
170
171    /// FixupKills - Fix register kill flags that have been made
172    /// invalid due to scheduling
173    ///
174    void FixupKills(MachineBasicBlock *MBB);
175
176  private:
177    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
178    void ReleaseSuccessors(SUnit *SU);
179    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
180    void ListScheduleTopDown();
181    void StartBlockForKills(MachineBasicBlock *BB);
182
183    // ToggleKillFlag - Toggle a register operand kill flag. Other
184    // adjustments may be made to the instruction if necessary. Return
185    // true if the operand has been deleted, false if not.
186    bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
187  };
188}
189
190/// isSchedulingBoundary - Test if the given instruction should be
191/// considered a scheduling boundary. This primarily includes labels
192/// and terminators.
193///
194static bool isSchedulingBoundary(const MachineInstr *MI,
195                                 const MachineFunction &MF) {
196  // Terminators and labels can't be scheduled around.
197  if (MI->getDesc().isTerminator() || MI->isLabel())
198    return true;
199
200  // Don't attempt to schedule around any instruction that modifies
201  // a stack-oriented pointer, as it's unlikely to be profitable. This
202  // saves compile time, because it doesn't require every single
203  // stack slot reference to depend on the instruction that does the
204  // modification.
205  const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
206  if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore()))
207    return true;
208
209  return false;
210}
211
212bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
213  AA = &getAnalysis<AliasAnalysis>();
214
215  // Check for explicit enable/disable of post-ra scheduling.
216  TargetSubtarget::AntiDepBreakMode AntiDepMode = TargetSubtarget::ANTIDEP_NONE;
217  SmallVector<TargetRegisterClass*, 4> CriticalPathRCs;
218  if (EnablePostRAScheduler.getPosition() > 0) {
219    if (!EnablePostRAScheduler)
220      return false;
221  } else {
222    // Check that post-RA scheduling is enabled for this target.
223    const TargetSubtarget &ST = Fn.getTarget().getSubtarget<TargetSubtarget>();
224    if (!ST.enablePostRAScheduler(OptLevel, AntiDepMode, CriticalPathRCs))
225      return false;
226  }
227
228  // Check for antidep breaking override...
229  if (EnableAntiDepBreaking.getPosition() > 0) {
230    AntiDepMode = (EnableAntiDepBreaking == "all") ? TargetSubtarget::ANTIDEP_ALL :
231      (EnableAntiDepBreaking == "critical") ? TargetSubtarget::ANTIDEP_CRITICAL :
232      TargetSubtarget::ANTIDEP_NONE;
233  }
234
235  DEBUG(dbgs() << "PostRAScheduler\n");
236
237  const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
238  const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
239  const InstrItineraryData &InstrItins = Fn.getTarget().getInstrItineraryData();
240  ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ?
241    (ScheduleHazardRecognizer *)new ExactHazardRecognizer(InstrItins) :
242    (ScheduleHazardRecognizer *)new SimpleHazardRecognizer();
243  AntiDepBreaker *ADB =
244    ((AntiDepMode == TargetSubtarget::ANTIDEP_ALL) ?
245     (AntiDepBreaker *)new AggressiveAntiDepBreaker(Fn, CriticalPathRCs) :
246     ((AntiDepMode == TargetSubtarget::ANTIDEP_CRITICAL) ?
247      (AntiDepBreaker *)new CriticalAntiDepBreaker(Fn) : NULL));
248
249  SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR, ADB, AA);
250
251  // Loop over all of the basic blocks
252  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
253       MBB != MBBe; ++MBB) {
254#ifndef NDEBUG
255    // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
256    if (DebugDiv > 0) {
257      static int bbcnt = 0;
258      if (bbcnt++ % DebugDiv != DebugMod)
259        continue;
260      dbgs() << "*** DEBUG scheduling " << Fn.getFunction()->getNameStr() <<
261        ":BB#" << MBB->getNumber() << " ***\n";
262    }
263#endif
264
265    // Initialize register live-range state for scheduling in this block.
266    Scheduler.StartBlock(MBB);
267
268    // Schedule each sequence of instructions not interrupted by a label
269    // or anything else that effectively needs to shut down scheduling.
270    MachineBasicBlock::iterator Current = MBB->end();
271    unsigned Count = MBB->size(), CurrentCount = Count;
272    for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
273      MachineInstr *MI = prior(I);
274      if (isSchedulingBoundary(MI, Fn)) {
275        Scheduler.Run(MBB, I, Current, CurrentCount);
276        Scheduler.EmitSchedule(0);
277        Current = MI;
278        CurrentCount = Count - 1;
279        Scheduler.Observe(MI, CurrentCount);
280      }
281      I = MI;
282      --Count;
283    }
284    assert(Count == 0 && "Instruction count mismatch!");
285    assert((MBB->begin() == Current || CurrentCount != 0) &&
286           "Instruction count mismatch!");
287    Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
288    Scheduler.EmitSchedule(0);
289
290    // Clean up register live-range state.
291    Scheduler.FinishBlock();
292
293    // Update register kills
294    Scheduler.FixupKills(MBB);
295  }
296
297  delete HR;
298  delete ADB;
299
300  return true;
301}
302
303/// StartBlock - Initialize register live-range state for scheduling in
304/// this block.
305///
306void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
307  // Call the superclass.
308  ScheduleDAGInstrs::StartBlock(BB);
309
310  // Reset the hazard recognizer and anti-dep breaker.
311  HazardRec->Reset();
312  if (AntiDepBreak != NULL)
313    AntiDepBreak->StartBlock(BB);
314}
315
316/// Schedule - Schedule the instruction range using list scheduling.
317///
318void SchedulePostRATDList::Schedule() {
319  // Build the scheduling graph.
320  BuildSchedGraph(AA);
321
322  if (AntiDepBreak != NULL) {
323    unsigned Broken =
324      AntiDepBreak->BreakAntiDependencies(SUnits, Begin, InsertPos,
325                                          InsertPosIndex);
326
327    if (Broken != 0) {
328      // We made changes. Update the dependency graph.
329      // Theoretically we could update the graph in place:
330      // When a live range is changed to use a different register, remove
331      // the def's anti-dependence *and* output-dependence edges due to
332      // that register, and add new anti-dependence and output-dependence
333      // edges based on the next live range of the register.
334      SUnits.clear();
335      Sequence.clear();
336      EntrySU = SUnit();
337      ExitSU = SUnit();
338      BuildSchedGraph(AA);
339
340      NumFixedAnti += Broken;
341    }
342  }
343
344  DEBUG(dbgs() << "********** List Scheduling **********\n");
345  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
346          SUnits[su].dumpAll(this));
347
348  AvailableQueue.initNodes(SUnits);
349  ListScheduleTopDown();
350  AvailableQueue.releaseState();
351}
352
353/// Observe - Update liveness information to account for the current
354/// instruction, which will not be scheduled.
355///
356void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
357  if (AntiDepBreak != NULL)
358    AntiDepBreak->Observe(MI, Count, InsertPosIndex);
359}
360
361/// FinishBlock - Clean up register live-range state.
362///
363void SchedulePostRATDList::FinishBlock() {
364  if (AntiDepBreak != NULL)
365    AntiDepBreak->FinishBlock();
366
367  // Call the superclass.
368  ScheduleDAGInstrs::FinishBlock();
369}
370
371/// StartBlockForKills - Initialize register live-range state for updating kills
372///
373void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
374  // Initialize the indices to indicate that no registers are live.
375  for (unsigned i = 0; i < TRI->getNumRegs(); ++i)
376    KillIndices[i] = ~0u;
377
378  // Determine the live-out physregs for this block.
379  if (!BB->empty() && BB->back().getDesc().isReturn()) {
380    // In a return block, examine the function live-out regs.
381    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
382           E = MRI.liveout_end(); I != E; ++I) {
383      unsigned Reg = *I;
384      KillIndices[Reg] = BB->size();
385      // Repeat, for all subregs.
386      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
387           *Subreg; ++Subreg) {
388        KillIndices[*Subreg] = BB->size();
389      }
390    }
391  }
392  else {
393    // In a non-return block, examine the live-in regs of all successors.
394    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
395           SE = BB->succ_end(); SI != SE; ++SI) {
396      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
397             E = (*SI)->livein_end(); I != E; ++I) {
398        unsigned Reg = *I;
399        KillIndices[Reg] = BB->size();
400        // Repeat, for all subregs.
401        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
402             *Subreg; ++Subreg) {
403          KillIndices[*Subreg] = BB->size();
404        }
405      }
406    }
407  }
408}
409
410bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
411                                          MachineOperand &MO) {
412  // Setting kill flag...
413  if (!MO.isKill()) {
414    MO.setIsKill(true);
415    return false;
416  }
417
418  // If MO itself is live, clear the kill flag...
419  if (KillIndices[MO.getReg()] != ~0u) {
420    MO.setIsKill(false);
421    return false;
422  }
423
424  // If any subreg of MO is live, then create an imp-def for that
425  // subreg and keep MO marked as killed.
426  MO.setIsKill(false);
427  bool AllDead = true;
428  const unsigned SuperReg = MO.getReg();
429  for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg);
430       *Subreg; ++Subreg) {
431    if (KillIndices[*Subreg] != ~0u) {
432      MI->addOperand(MachineOperand::CreateReg(*Subreg,
433                                               true  /*IsDef*/,
434                                               true  /*IsImp*/,
435                                               false /*IsKill*/,
436                                               false /*IsDead*/));
437      AllDead = false;
438    }
439  }
440
441  if(AllDead)
442    MO.setIsKill(true);
443  return false;
444}
445
446/// FixupKills - Fix the register kill flags, they may have been made
447/// incorrect by instruction reordering.
448///
449void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
450  DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
451
452  std::set<unsigned> killedRegs;
453  BitVector ReservedRegs = TRI->getReservedRegs(MF);
454
455  StartBlockForKills(MBB);
456
457  // Examine block from end to start...
458  unsigned Count = MBB->size();
459  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
460       I != E; --Count) {
461    MachineInstr *MI = --I;
462    if (MI->isDebugValue())
463      continue;
464
465    // Update liveness.  Registers that are defed but not used in this
466    // instruction are now dead. Mark register and all subregs as they
467    // are completely defined.
468    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
469      MachineOperand &MO = MI->getOperand(i);
470      if (!MO.isReg()) continue;
471      unsigned Reg = MO.getReg();
472      if (Reg == 0) continue;
473      if (!MO.isDef()) continue;
474      // Ignore two-addr defs.
475      if (MI->isRegTiedToUseOperand(i)) continue;
476
477      KillIndices[Reg] = ~0u;
478
479      // Repeat for all subregs.
480      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
481           *Subreg; ++Subreg) {
482        KillIndices[*Subreg] = ~0u;
483      }
484    }
485
486    // Examine all used registers and set/clear kill flag. When a
487    // register is used multiple times we only set the kill flag on
488    // the first use.
489    killedRegs.clear();
490    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
491      MachineOperand &MO = MI->getOperand(i);
492      if (!MO.isReg() || !MO.isUse()) continue;
493      unsigned Reg = MO.getReg();
494      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
495
496      bool kill = false;
497      if (killedRegs.find(Reg) == killedRegs.end()) {
498        kill = true;
499        // A register is not killed if any subregs are live...
500        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
501             *Subreg; ++Subreg) {
502          if (KillIndices[*Subreg] != ~0u) {
503            kill = false;
504            break;
505          }
506        }
507
508        // If subreg is not live, then register is killed if it became
509        // live in this instruction
510        if (kill)
511          kill = (KillIndices[Reg] == ~0u);
512      }
513
514      if (MO.isKill() != kill) {
515        DEBUG(dbgs() << "Fixing " << MO << " in ");
516        // Warning: ToggleKillFlag may invalidate MO.
517        ToggleKillFlag(MI, MO);
518        DEBUG(MI->dump());
519      }
520
521      killedRegs.insert(Reg);
522    }
523
524    // Mark any used register (that is not using undef) and subregs as
525    // now live...
526    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
527      MachineOperand &MO = MI->getOperand(i);
528      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
529      unsigned Reg = MO.getReg();
530      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
531
532      KillIndices[Reg] = Count;
533
534      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
535           *Subreg; ++Subreg) {
536        KillIndices[*Subreg] = Count;
537      }
538    }
539  }
540}
541
542//===----------------------------------------------------------------------===//
543//  Top-Down Scheduling
544//===----------------------------------------------------------------------===//
545
546/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
547/// the PendingQueue if the count reaches zero. Also update its cycle bound.
548void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
549  SUnit *SuccSU = SuccEdge->getSUnit();
550
551#ifndef NDEBUG
552  if (SuccSU->NumPredsLeft == 0) {
553    dbgs() << "*** Scheduling failed! ***\n";
554    SuccSU->dump(this);
555    dbgs() << " has been released too many times!\n";
556    llvm_unreachable(0);
557  }
558#endif
559  --SuccSU->NumPredsLeft;
560
561  // Compute how many cycles it will be before this actually becomes
562  // available.  This is the max of the start time of all predecessors plus
563  // their latencies.
564  SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
565
566  // If all the node's predecessors are scheduled, this node is ready
567  // to be scheduled. Ignore the special ExitSU node.
568  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
569    PendingQueue.push_back(SuccSU);
570}
571
572/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
573void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
574  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
575       I != E; ++I) {
576    ReleaseSucc(SU, &*I);
577  }
578}
579
580/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
581/// count of its successors. If a successor pending count is zero, add it to
582/// the Available queue.
583void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
584  DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
585  DEBUG(SU->dump(this));
586
587  Sequence.push_back(SU);
588  assert(CurCycle >= SU->getDepth() &&
589         "Node scheduled above its depth!");
590  SU->setDepthToAtLeast(CurCycle);
591
592  ReleaseSuccessors(SU);
593  SU->isScheduled = true;
594  AvailableQueue.ScheduledNode(SU);
595}
596
597/// ListScheduleTopDown - The main loop of list scheduling for top-down
598/// schedulers.
599void SchedulePostRATDList::ListScheduleTopDown() {
600  unsigned CurCycle = 0;
601
602  // We're scheduling top-down but we're visiting the regions in
603  // bottom-up order, so we don't know the hazards at the start of a
604  // region. So assume no hazards (this should usually be ok as most
605  // blocks are a single region).
606  HazardRec->Reset();
607
608  // Release any successors of the special Entry node.
609  ReleaseSuccessors(&EntrySU);
610
611  // Add all leaves to Available queue.
612  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
613    // It is available if it has no predecessors.
614    bool available = SUnits[i].Preds.empty();
615    if (available) {
616      AvailableQueue.push(&SUnits[i]);
617      SUnits[i].isAvailable = true;
618    }
619  }
620
621  // In any cycle where we can't schedule any instructions, we must
622  // stall or emit a noop, depending on the target.
623  bool CycleHasInsts = false;
624
625  // While Available queue is not empty, grab the node with the highest
626  // priority. If it is not ready put it back.  Schedule the node.
627  std::vector<SUnit*> NotReady;
628  Sequence.reserve(SUnits.size());
629  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
630    // Check to see if any of the pending instructions are ready to issue.  If
631    // so, add them to the available queue.
632    unsigned MinDepth = ~0u;
633    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
634      if (PendingQueue[i]->getDepth() <= CurCycle) {
635        AvailableQueue.push(PendingQueue[i]);
636        PendingQueue[i]->isAvailable = true;
637        PendingQueue[i] = PendingQueue.back();
638        PendingQueue.pop_back();
639        --i; --e;
640      } else if (PendingQueue[i]->getDepth() < MinDepth)
641        MinDepth = PendingQueue[i]->getDepth();
642    }
643
644    DEBUG(dbgs() << "\n*** Examining Available\n";
645          LatencyPriorityQueue q = AvailableQueue;
646          while (!q.empty()) {
647            SUnit *su = q.pop();
648            dbgs() << "Height " << su->getHeight() << ": ";
649            su->dump(this);
650          });
651
652    SUnit *FoundSUnit = 0;
653    bool HasNoopHazards = false;
654    while (!AvailableQueue.empty()) {
655      SUnit *CurSUnit = AvailableQueue.pop();
656
657      ScheduleHazardRecognizer::HazardType HT =
658        HazardRec->getHazardType(CurSUnit);
659      if (HT == ScheduleHazardRecognizer::NoHazard) {
660        FoundSUnit = CurSUnit;
661        break;
662      }
663
664      // Remember if this is a noop hazard.
665      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
666
667      NotReady.push_back(CurSUnit);
668    }
669
670    // Add the nodes that aren't ready back onto the available list.
671    if (!NotReady.empty()) {
672      AvailableQueue.push_all(NotReady);
673      NotReady.clear();
674    }
675
676    // If we found a node to schedule...
677    if (FoundSUnit) {
678      // ... schedule the node...
679      ScheduleNodeTopDown(FoundSUnit, CurCycle);
680      HazardRec->EmitInstruction(FoundSUnit);
681      CycleHasInsts = true;
682
683      // If we are using the target-specific hazards, then don't
684      // advance the cycle time just because we schedule a node. If
685      // the target allows it we can schedule multiple nodes in the
686      // same cycle.
687      if (!EnablePostRAHazardAvoidance) {
688        if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
689          ++CurCycle;
690      }
691    } else {
692      if (CycleHasInsts) {
693        DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
694        HazardRec->AdvanceCycle();
695      } else if (!HasNoopHazards) {
696        // Otherwise, we have a pipeline stall, but no other problem,
697        // just advance the current cycle and try again.
698        DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
699        HazardRec->AdvanceCycle();
700        ++NumStalls;
701      } else {
702        // Otherwise, we have no instructions to issue and we have instructions
703        // that will fault if we don't do this right.  This is the case for
704        // processors without pipeline interlocks and other cases.
705        DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
706        HazardRec->EmitNoop();
707        Sequence.push_back(0);   // NULL here means noop
708        ++NumNoops;
709      }
710
711      ++CurCycle;
712      CycleHasInsts = false;
713    }
714  }
715
716#ifndef NDEBUG
717  VerifySchedule(/*isBottomUp=*/false);
718#endif
719}
720
721//===----------------------------------------------------------------------===//
722//                         Public Constructor Functions
723//===----------------------------------------------------------------------===//
724
725FunctionPass *llvm::createPostRAScheduler(CodeGenOpt::Level OptLevel) {
726  return new PostRAScheduler(OptLevel);
727}
728