PostRASchedulerList.cpp revision 8bff4af61219031345e7dae0c1840315e6bfab7f
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "ExactHazardRecognizer.h"
23#include "SimpleHazardRecognizer.h"
24#include "ScheduleDAGInstrs.h"
25#include "llvm/CodeGen/Passes.h"
26#include "llvm/CodeGen/LatencyPriorityQueue.h"
27#include "llvm/CodeGen/SchedulerRegistry.h"
28#include "llvm/CodeGen/MachineDominators.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunctionPass.h"
31#include "llvm/CodeGen/MachineLoopInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetRegisterInfo.h"
38#include "llvm/Target/TargetSubtarget.h"
39#include "llvm/Support/Compiler.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/ADT/Statistic.h"
44#include <map>
45#include <set>
46using namespace llvm;
47
48STATISTIC(NumNoops, "Number of noops inserted");
49STATISTIC(NumStalls, "Number of pipeline stalls");
50
51// Post-RA scheduling is enabled with
52// TargetSubtarget.enablePostRAScheduler(). This flag can be used to
53// override the target.
54static cl::opt<bool>
55EnablePostRAScheduler("post-RA-scheduler",
56                       cl::desc("Enable scheduling after register allocation"),
57                       cl::init(false), cl::Hidden);
58static cl::opt<bool>
59EnableAntiDepBreaking("break-anti-dependencies",
60                      cl::desc("Break post-RA scheduling anti-dependencies"),
61                      cl::init(true), cl::Hidden);
62static cl::opt<bool>
63EnablePostRAHazardAvoidance("avoid-hazards",
64                      cl::desc("Enable exact hazard avoidance"),
65                      cl::init(true), cl::Hidden);
66
67// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
68static cl::opt<int>
69DebugDiv("postra-sched-debugdiv",
70                      cl::desc("Debug control MBBs that are scheduled"),
71                      cl::init(0), cl::Hidden);
72static cl::opt<int>
73DebugMod("postra-sched-debugmod",
74                      cl::desc("Debug control MBBs that are scheduled"),
75                      cl::init(0), cl::Hidden);
76
77namespace {
78  class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
79  public:
80    static char ID;
81    PostRAScheduler() : MachineFunctionPass(&ID) {}
82
83    void getAnalysisUsage(AnalysisUsage &AU) const {
84      AU.setPreservesCFG();
85      AU.addRequired<MachineDominatorTree>();
86      AU.addPreserved<MachineDominatorTree>();
87      AU.addRequired<MachineLoopInfo>();
88      AU.addPreserved<MachineLoopInfo>();
89      MachineFunctionPass::getAnalysisUsage(AU);
90    }
91
92    const char *getPassName() const {
93      return "Post RA top-down list latency scheduler";
94    }
95
96    bool runOnMachineFunction(MachineFunction &Fn);
97  };
98  char PostRAScheduler::ID = 0;
99
100  class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
101    /// AvailableQueue - The priority queue to use for the available SUnits.
102    ///
103    LatencyPriorityQueue AvailableQueue;
104
105    /// PendingQueue - This contains all of the instructions whose operands have
106    /// been issued, but their results are not ready yet (due to the latency of
107    /// the operation).  Once the operands becomes available, the instruction is
108    /// added to the AvailableQueue.
109    std::vector<SUnit*> PendingQueue;
110
111    /// Topo - A topological ordering for SUnits.
112    ScheduleDAGTopologicalSort Topo;
113
114    /// AllocatableSet - The set of allocatable registers.
115    /// We'll be ignoring anti-dependencies on non-allocatable registers,
116    /// because they may not be safe to break.
117    const BitVector AllocatableSet;
118
119    /// HazardRec - The hazard recognizer to use.
120    ScheduleHazardRecognizer *HazardRec;
121
122    /// Classes - For live regs that are only used in one register class in a
123    /// live range, the register class. If the register is not live, the
124    /// corresponding value is null. If the register is live but used in
125    /// multiple register classes, the corresponding value is -1 casted to a
126    /// pointer.
127    const TargetRegisterClass *
128      Classes[TargetRegisterInfo::FirstVirtualRegister];
129
130    /// RegRegs - Map registers to all their references within a live range.
131    std::multimap<unsigned, MachineOperand *> RegRefs;
132
133    /// KillIndices - The index of the most recent kill (proceding bottom-up),
134    /// or ~0u if the register is not live.
135    unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
136
137    /// DefIndices - The index of the most recent complete def (proceding bottom
138    /// up), or ~0u if the register is live.
139    unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
140
141    /// KeepRegs - A set of registers which are live and cannot be changed to
142    /// break anti-dependencies.
143    SmallSet<unsigned, 4> KeepRegs;
144
145  public:
146    SchedulePostRATDList(MachineFunction &MF,
147                         const MachineLoopInfo &MLI,
148                         const MachineDominatorTree &MDT,
149                         ScheduleHazardRecognizer *HR)
150      : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
151        AllocatableSet(TRI->getAllocatableSet(MF)),
152        HazardRec(HR) {}
153
154    ~SchedulePostRATDList() {
155      delete HazardRec;
156    }
157
158    /// StartBlock - Initialize register live-range state for scheduling in
159    /// this block.
160    ///
161    void StartBlock(MachineBasicBlock *BB);
162
163    /// Schedule - Schedule the instruction range using list scheduling.
164    ///
165    void Schedule();
166
167    /// FixupKills - Fix register kill flags that have been made
168    /// invalid due to scheduling
169    ///
170    void FixupKills(MachineBasicBlock *MBB);
171
172    /// Observe - Update liveness information to account for the current
173    /// instruction, which will not be scheduled.
174    ///
175    void Observe(MachineInstr *MI, unsigned Count);
176
177    /// FinishBlock - Clean up register live-range state.
178    ///
179    void FinishBlock();
180
181  private:
182    void PrescanInstruction(MachineInstr *MI);
183    void ScanInstruction(MachineInstr *MI, unsigned Count);
184    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
185    void ReleaseSuccessors(SUnit *SU);
186    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
187    void ListScheduleTopDown();
188    bool BreakAntiDependencies();
189    unsigned findSuitableFreeRegister(unsigned AntiDepReg,
190                                      unsigned LastNewReg,
191                                      const TargetRegisterClass *);
192    void StartBlockForKills(MachineBasicBlock *BB);
193
194    // ToggleKillFlag - Toggle a register operand kill flag. Other
195    // adjustments may be made to the instruction if necessary. Return
196    // true if the operand has been deleted, false if not.
197    bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
198  };
199}
200
201/// isSchedulingBoundary - Test if the given instruction should be
202/// considered a scheduling boundary. This primarily includes labels
203/// and terminators.
204///
205static bool isSchedulingBoundary(const MachineInstr *MI,
206                                 const MachineFunction &MF) {
207  // Terminators and labels can't be scheduled around.
208  if (MI->getDesc().isTerminator() || MI->isLabel())
209    return true;
210
211  // Don't attempt to schedule around any instruction that modifies
212  // a stack-oriented pointer, as it's unlikely to be profitable. This
213  // saves compile time, because it doesn't require every single
214  // stack slot reference to depend on the instruction that does the
215  // modification.
216  const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
217  if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore()))
218    return true;
219
220  return false;
221}
222
223bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
224  // Check for explicit enable/disable of post-ra scheduling.
225  if (EnablePostRAScheduler.getPosition() > 0) {
226    if (!EnablePostRAScheduler)
227      return true;
228  } else {
229    // Check that post-RA scheduling is enabled for this function
230    const TargetSubtarget &ST = Fn.getTarget().getSubtarget<TargetSubtarget>();
231    if (!ST.enablePostRAScheduler())
232      return true;
233  }
234
235  DEBUG(errs() << "PostRAScheduler\n");
236
237  const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
238  const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
239  const InstrItineraryData &InstrItins = Fn.getTarget().getInstrItineraryData();
240  ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ?
241    (ScheduleHazardRecognizer *)new ExactHazardRecognizer(InstrItins) :
242    (ScheduleHazardRecognizer *)new SimpleHazardRecognizer();
243
244  SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR);
245
246  // Loop over all of the basic blocks
247  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
248       MBB != MBBe; ++MBB) {
249#ifndef NDEBUG
250    // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
251    if (DebugDiv > 0) {
252      static int bbcnt = 0;
253      if (bbcnt++ % DebugDiv != DebugMod)
254        continue;
255      errs() << "*** DEBUG scheduling " << Fn.getFunction()->getNameStr() <<
256        ":MBB ID#" << MBB->getNumber() << " ***\n";
257    }
258#endif
259
260    // Initialize register live-range state for scheduling in this block.
261    Scheduler.StartBlock(MBB);
262
263    // Schedule each sequence of instructions not interrupted by a label
264    // or anything else that effectively needs to shut down scheduling.
265    MachineBasicBlock::iterator Current = MBB->end();
266    unsigned Count = MBB->size(), CurrentCount = Count;
267    for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
268      MachineInstr *MI = prior(I);
269      if (isSchedulingBoundary(MI, Fn)) {
270        Scheduler.Run(MBB, I, Current, CurrentCount);
271        Scheduler.EmitSchedule(0);
272        Current = MI;
273        CurrentCount = Count - 1;
274        Scheduler.Observe(MI, CurrentCount);
275      }
276      I = MI;
277      --Count;
278    }
279    assert(Count == 0 && "Instruction count mismatch!");
280    assert((MBB->begin() == Current || CurrentCount != 0) &&
281           "Instruction count mismatch!");
282    Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
283    Scheduler.EmitSchedule(0);
284
285    // Clean up register live-range state.
286    Scheduler.FinishBlock();
287
288    // Update register kills
289    Scheduler.FixupKills(MBB);
290  }
291
292  return true;
293}
294
295/// StartBlock - Initialize register live-range state for scheduling in
296/// this block.
297///
298void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
299  // Call the superclass.
300  ScheduleDAGInstrs::StartBlock(BB);
301
302  // Reset the hazard recognizer.
303  HazardRec->Reset();
304
305  // Clear out the register class data.
306  std::fill(Classes, array_endof(Classes),
307            static_cast<const TargetRegisterClass *>(0));
308
309  // Initialize the indices to indicate that no registers are live.
310  std::fill(KillIndices, array_endof(KillIndices), ~0u);
311  std::fill(DefIndices, array_endof(DefIndices), BB->size());
312
313  // Clear "do not change" set.
314  KeepRegs.clear();
315
316  bool IsReturnBlock = (!BB->empty() && BB->back().getDesc().isReturn());
317
318  // Determine the live-out physregs for this block.
319  if (IsReturnBlock) {
320    // In a return block, examine the function live-out regs.
321    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
322         E = MRI.liveout_end(); I != E; ++I) {
323      unsigned Reg = *I;
324      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
325      KillIndices[Reg] = BB->size();
326      DefIndices[Reg] = ~0u;
327      // Repeat, for all aliases.
328      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
329        unsigned AliasReg = *Alias;
330        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
331        KillIndices[AliasReg] = BB->size();
332        DefIndices[AliasReg] = ~0u;
333      }
334    }
335  } else {
336    // In a non-return block, examine the live-in regs of all successors.
337    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
338         SE = BB->succ_end(); SI != SE; ++SI)
339      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
340           E = (*SI)->livein_end(); I != E; ++I) {
341        unsigned Reg = *I;
342        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
343        KillIndices[Reg] = BB->size();
344        DefIndices[Reg] = ~0u;
345        // Repeat, for all aliases.
346        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
347          unsigned AliasReg = *Alias;
348          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
349          KillIndices[AliasReg] = BB->size();
350          DefIndices[AliasReg] = ~0u;
351        }
352      }
353  }
354
355  // Mark live-out callee-saved registers. In a return block this is
356  // all callee-saved registers. In non-return this is any
357  // callee-saved register that is not saved in the prolog.
358  const MachineFrameInfo *MFI = MF.getFrameInfo();
359  BitVector Pristine = MFI->getPristineRegs(BB);
360  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
361    unsigned Reg = *I;
362    if (!IsReturnBlock && !Pristine.test(Reg)) continue;
363    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
364    KillIndices[Reg] = BB->size();
365    DefIndices[Reg] = ~0u;
366    // Repeat, for all aliases.
367    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
368      unsigned AliasReg = *Alias;
369      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
370      KillIndices[AliasReg] = BB->size();
371      DefIndices[AliasReg] = ~0u;
372    }
373  }
374}
375
376/// Schedule - Schedule the instruction range using list scheduling.
377///
378void SchedulePostRATDList::Schedule() {
379  DEBUG(errs() << "********** List Scheduling **********\n");
380
381  // Build the scheduling graph.
382  BuildSchedGraph();
383
384  if (EnableAntiDepBreaking) {
385    if (BreakAntiDependencies()) {
386      // We made changes. Update the dependency graph.
387      // Theoretically we could update the graph in place:
388      // When a live range is changed to use a different register, remove
389      // the def's anti-dependence *and* output-dependence edges due to
390      // that register, and add new anti-dependence and output-dependence
391      // edges based on the next live range of the register.
392      SUnits.clear();
393      EntrySU = SUnit();
394      ExitSU = SUnit();
395      BuildSchedGraph();
396    }
397  }
398
399  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
400          SUnits[su].dumpAll(this));
401
402  AvailableQueue.initNodes(SUnits);
403
404  ListScheduleTopDown();
405
406  AvailableQueue.releaseState();
407}
408
409/// Observe - Update liveness information to account for the current
410/// instruction, which will not be scheduled.
411///
412void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
413  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
414
415  // Any register which was defined within the previous scheduling region
416  // may have been rescheduled and its lifetime may overlap with registers
417  // in ways not reflected in our current liveness state. For each such
418  // register, adjust the liveness state to be conservatively correct.
419  for (unsigned Reg = 0; Reg != TargetRegisterInfo::FirstVirtualRegister; ++Reg)
420    if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
421      assert(KillIndices[Reg] == ~0u && "Clobbered register is live!");
422      // Mark this register to be non-renamable.
423      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
424      // Move the def index to the end of the previous region, to reflect
425      // that the def could theoretically have been scheduled at the end.
426      DefIndices[Reg] = InsertPosIndex;
427    }
428
429  PrescanInstruction(MI);
430  ScanInstruction(MI, Count);
431}
432
433/// FinishBlock - Clean up register live-range state.
434///
435void SchedulePostRATDList::FinishBlock() {
436  RegRefs.clear();
437
438  // Call the superclass.
439  ScheduleDAGInstrs::FinishBlock();
440}
441
442/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
443/// critical path.
444static SDep *CriticalPathStep(SUnit *SU) {
445  SDep *Next = 0;
446  unsigned NextDepth = 0;
447  // Find the predecessor edge with the greatest depth.
448  for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
449       P != PE; ++P) {
450    SUnit *PredSU = P->getSUnit();
451    unsigned PredLatency = P->getLatency();
452    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
453    // In the case of a latency tie, prefer an anti-dependency edge over
454    // other types of edges.
455    if (NextDepth < PredTotalLatency ||
456        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
457      NextDepth = PredTotalLatency;
458      Next = &*P;
459    }
460  }
461  return Next;
462}
463
464void SchedulePostRATDList::PrescanInstruction(MachineInstr *MI) {
465  // Scan the register operands for this instruction and update
466  // Classes and RegRefs.
467  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
468    MachineOperand &MO = MI->getOperand(i);
469    if (!MO.isReg()) continue;
470    unsigned Reg = MO.getReg();
471    if (Reg == 0) continue;
472    const TargetRegisterClass *NewRC = 0;
473
474    if (i < MI->getDesc().getNumOperands())
475      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
476
477    // For now, only allow the register to be changed if its register
478    // class is consistent across all uses.
479    if (!Classes[Reg] && NewRC)
480      Classes[Reg] = NewRC;
481    else if (!NewRC || Classes[Reg] != NewRC)
482      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
483
484    // Now check for aliases.
485    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
486      // If an alias of the reg is used during the live range, give up.
487      // Note that this allows us to skip checking if AntiDepReg
488      // overlaps with any of the aliases, among other things.
489      unsigned AliasReg = *Alias;
490      if (Classes[AliasReg]) {
491        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
492        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
493      }
494    }
495
496    // If we're still willing to consider this register, note the reference.
497    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
498      RegRefs.insert(std::make_pair(Reg, &MO));
499
500    // It's not safe to change register allocation for source operands of
501    // that have special allocation requirements.
502    if (MO.isUse() && MI->getDesc().hasExtraSrcRegAllocReq()) {
503      if (KeepRegs.insert(Reg)) {
504        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
505             *Subreg; ++Subreg)
506          KeepRegs.insert(*Subreg);
507      }
508    }
509  }
510}
511
512void SchedulePostRATDList::ScanInstruction(MachineInstr *MI,
513                                           unsigned Count) {
514  // Update liveness.
515  // Proceding upwards, registers that are defed but not used in this
516  // instruction are now dead.
517  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
518    MachineOperand &MO = MI->getOperand(i);
519    if (!MO.isReg()) continue;
520    unsigned Reg = MO.getReg();
521    if (Reg == 0) continue;
522    if (!MO.isDef()) continue;
523    // Ignore two-addr defs.
524    if (MI->isRegTiedToUseOperand(i)) continue;
525
526    DefIndices[Reg] = Count;
527    KillIndices[Reg] = ~0u;
528    assert(((KillIndices[Reg] == ~0u) !=
529            (DefIndices[Reg] == ~0u)) &&
530           "Kill and Def maps aren't consistent for Reg!");
531    KeepRegs.erase(Reg);
532    Classes[Reg] = 0;
533    RegRefs.erase(Reg);
534    // Repeat, for all subregs.
535    for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
536         *Subreg; ++Subreg) {
537      unsigned SubregReg = *Subreg;
538      DefIndices[SubregReg] = Count;
539      KillIndices[SubregReg] = ~0u;
540      KeepRegs.erase(SubregReg);
541      Classes[SubregReg] = 0;
542      RegRefs.erase(SubregReg);
543    }
544    // Conservatively mark super-registers as unusable.
545    for (const unsigned *Super = TRI->getSuperRegisters(Reg);
546         *Super; ++Super) {
547      unsigned SuperReg = *Super;
548      Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
549    }
550  }
551  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
552    MachineOperand &MO = MI->getOperand(i);
553    if (!MO.isReg()) continue;
554    unsigned Reg = MO.getReg();
555    if (Reg == 0) continue;
556    if (!MO.isUse()) continue;
557
558    const TargetRegisterClass *NewRC = 0;
559    if (i < MI->getDesc().getNumOperands())
560      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
561
562    // For now, only allow the register to be changed if its register
563    // class is consistent across all uses.
564    if (!Classes[Reg] && NewRC)
565      Classes[Reg] = NewRC;
566    else if (!NewRC || Classes[Reg] != NewRC)
567      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
568
569    RegRefs.insert(std::make_pair(Reg, &MO));
570
571    // It wasn't previously live but now it is, this is a kill.
572    if (KillIndices[Reg] == ~0u) {
573      KillIndices[Reg] = Count;
574      DefIndices[Reg] = ~0u;
575          assert(((KillIndices[Reg] == ~0u) !=
576                  (DefIndices[Reg] == ~0u)) &&
577               "Kill and Def maps aren't consistent for Reg!");
578    }
579    // Repeat, for all aliases.
580    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
581      unsigned AliasReg = *Alias;
582      if (KillIndices[AliasReg] == ~0u) {
583        KillIndices[AliasReg] = Count;
584        DefIndices[AliasReg] = ~0u;
585      }
586    }
587  }
588}
589
590unsigned
591SchedulePostRATDList::findSuitableFreeRegister(unsigned AntiDepReg,
592                                               unsigned LastNewReg,
593                                               const TargetRegisterClass *RC) {
594  for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
595       RE = RC->allocation_order_end(MF); R != RE; ++R) {
596    unsigned NewReg = *R;
597    // Don't replace a register with itself.
598    if (NewReg == AntiDepReg) continue;
599    // Don't replace a register with one that was recently used to repair
600    // an anti-dependence with this AntiDepReg, because that would
601    // re-introduce that anti-dependence.
602    if (NewReg == LastNewReg) continue;
603    // If NewReg is dead and NewReg's most recent def is not before
604    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
605    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
606           "Kill and Def maps aren't consistent for AntiDepReg!");
607    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
608           "Kill and Def maps aren't consistent for NewReg!");
609    if (KillIndices[NewReg] != ~0u ||
610        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
611        KillIndices[AntiDepReg] > DefIndices[NewReg])
612      continue;
613    return NewReg;
614  }
615
616  // No registers are free and available!
617  return 0;
618}
619
620/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
621/// of the ScheduleDAG and break them by renaming registers.
622///
623bool SchedulePostRATDList::BreakAntiDependencies() {
624  // The code below assumes that there is at least one instruction,
625  // so just duck out immediately if the block is empty.
626  if (SUnits.empty()) return false;
627
628  // Find the node at the bottom of the critical path.
629  SUnit *Max = 0;
630  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
631    SUnit *SU = &SUnits[i];
632    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
633      Max = SU;
634  }
635
636  DEBUG(errs() << "Critical path has total latency "
637        << (Max->getDepth() + Max->Latency) << "\n");
638
639  // Track progress along the critical path through the SUnit graph as we walk
640  // the instructions.
641  SUnit *CriticalPathSU = Max;
642  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
643
644  // Consider this pattern:
645  //   A = ...
646  //   ... = A
647  //   A = ...
648  //   ... = A
649  //   A = ...
650  //   ... = A
651  //   A = ...
652  //   ... = A
653  // There are three anti-dependencies here, and without special care,
654  // we'd break all of them using the same register:
655  //   A = ...
656  //   ... = A
657  //   B = ...
658  //   ... = B
659  //   B = ...
660  //   ... = B
661  //   B = ...
662  //   ... = B
663  // because at each anti-dependence, B is the first register that
664  // isn't A which is free.  This re-introduces anti-dependencies
665  // at all but one of the original anti-dependencies that we were
666  // trying to break.  To avoid this, keep track of the most recent
667  // register that each register was replaced with, avoid
668  // using it to repair an anti-dependence on the same register.
669  // This lets us produce this:
670  //   A = ...
671  //   ... = A
672  //   B = ...
673  //   ... = B
674  //   C = ...
675  //   ... = C
676  //   B = ...
677  //   ... = B
678  // This still has an anti-dependence on B, but at least it isn't on the
679  // original critical path.
680  //
681  // TODO: If we tracked more than one register here, we could potentially
682  // fix that remaining critical edge too. This is a little more involved,
683  // because unlike the most recent register, less recent registers should
684  // still be considered, though only if no other registers are available.
685  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
686
687  // Attempt to break anti-dependence edges on the critical path. Walk the
688  // instructions from the bottom up, tracking information about liveness
689  // as we go to help determine which registers are available.
690  bool Changed = false;
691  unsigned Count = InsertPosIndex - 1;
692  for (MachineBasicBlock::iterator I = InsertPos, E = Begin;
693       I != E; --Count) {
694    MachineInstr *MI = --I;
695
696    // Check if this instruction has a dependence on the critical path that
697    // is an anti-dependence that we may be able to break. If it is, set
698    // AntiDepReg to the non-zero register associated with the anti-dependence.
699    //
700    // We limit our attention to the critical path as a heuristic to avoid
701    // breaking anti-dependence edges that aren't going to significantly
702    // impact the overall schedule. There are a limited number of registers
703    // and we want to save them for the important edges.
704    //
705    // TODO: Instructions with multiple defs could have multiple
706    // anti-dependencies. The current code here only knows how to break one
707    // edge per instruction. Note that we'd have to be able to break all of
708    // the anti-dependencies in an instruction in order to be effective.
709    unsigned AntiDepReg = 0;
710    if (MI == CriticalPathMI) {
711      if (SDep *Edge = CriticalPathStep(CriticalPathSU)) {
712        SUnit *NextSU = Edge->getSUnit();
713
714        // Only consider anti-dependence edges.
715        if (Edge->getKind() == SDep::Anti) {
716          AntiDepReg = Edge->getReg();
717          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
718          if (!AllocatableSet.test(AntiDepReg))
719            // Don't break anti-dependencies on non-allocatable registers.
720            AntiDepReg = 0;
721          else if (KeepRegs.count(AntiDepReg))
722            // Don't break anti-dependencies if an use down below requires
723            // this exact register.
724            AntiDepReg = 0;
725          else {
726            // If the SUnit has other dependencies on the SUnit that it
727            // anti-depends on, don't bother breaking the anti-dependency
728            // since those edges would prevent such units from being
729            // scheduled past each other regardless.
730            //
731            // Also, if there are dependencies on other SUnits with the
732            // same register as the anti-dependency, don't attempt to
733            // break it.
734            for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(),
735                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
736              if (P->getSUnit() == NextSU ?
737                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
738                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
739                AntiDepReg = 0;
740                break;
741              }
742          }
743        }
744        CriticalPathSU = NextSU;
745        CriticalPathMI = CriticalPathSU->getInstr();
746      } else {
747        // We've reached the end of the critical path.
748        CriticalPathSU = 0;
749        CriticalPathMI = 0;
750      }
751    }
752
753    PrescanInstruction(MI);
754
755    if (MI->getDesc().hasExtraDefRegAllocReq())
756      // If this instruction's defs have special allocation requirement, don't
757      // break this anti-dependency.
758      AntiDepReg = 0;
759    else if (AntiDepReg) {
760      // If this instruction has a use of AntiDepReg, breaking it
761      // is invalid.
762      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
763        MachineOperand &MO = MI->getOperand(i);
764        if (!MO.isReg()) continue;
765        unsigned Reg = MO.getReg();
766        if (Reg == 0) continue;
767        if (MO.isUse() && AntiDepReg == Reg) {
768          AntiDepReg = 0;
769          break;
770        }
771      }
772    }
773
774    // Determine AntiDepReg's register class, if it is live and is
775    // consistently used within a single class.
776    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
777    assert((AntiDepReg == 0 || RC != NULL) &&
778           "Register should be live if it's causing an anti-dependence!");
779    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
780      AntiDepReg = 0;
781
782    // Look for a suitable register to use to break the anti-depenence.
783    //
784    // TODO: Instead of picking the first free register, consider which might
785    // be the best.
786    if (AntiDepReg != 0) {
787      if (unsigned NewReg = findSuitableFreeRegister(AntiDepReg,
788                                                     LastNewReg[AntiDepReg],
789                                                     RC)) {
790        DEBUG(errs() << "Breaking anti-dependence edge on "
791              << TRI->getName(AntiDepReg)
792              << " with " << RegRefs.count(AntiDepReg) << " references"
793              << " using " << TRI->getName(NewReg) << "!\n");
794
795        // Update the references to the old register to refer to the new
796        // register.
797        std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
798                  std::multimap<unsigned, MachineOperand *>::iterator>
799           Range = RegRefs.equal_range(AntiDepReg);
800        for (std::multimap<unsigned, MachineOperand *>::iterator
801             Q = Range.first, QE = Range.second; Q != QE; ++Q)
802          Q->second->setReg(NewReg);
803
804        // We just went back in time and modified history; the
805        // liveness information for the anti-depenence reg is now
806        // inconsistent. Set the state as if it were dead.
807        Classes[NewReg] = Classes[AntiDepReg];
808        DefIndices[NewReg] = DefIndices[AntiDepReg];
809        KillIndices[NewReg] = KillIndices[AntiDepReg];
810        assert(((KillIndices[NewReg] == ~0u) !=
811                (DefIndices[NewReg] == ~0u)) &&
812             "Kill and Def maps aren't consistent for NewReg!");
813
814        Classes[AntiDepReg] = 0;
815        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
816        KillIndices[AntiDepReg] = ~0u;
817        assert(((KillIndices[AntiDepReg] == ~0u) !=
818                (DefIndices[AntiDepReg] == ~0u)) &&
819             "Kill and Def maps aren't consistent for AntiDepReg!");
820
821        RegRefs.erase(AntiDepReg);
822        Changed = true;
823        LastNewReg[AntiDepReg] = NewReg;
824      }
825    }
826
827    ScanInstruction(MI, Count);
828  }
829
830  return Changed;
831}
832
833/// StartBlockForKills - Initialize register live-range state for updating kills
834///
835void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
836  // Initialize the indices to indicate that no registers are live.
837  std::fill(KillIndices, array_endof(KillIndices), ~0u);
838
839  // Determine the live-out physregs for this block.
840  if (!BB->empty() && BB->back().getDesc().isReturn()) {
841    // In a return block, examine the function live-out regs.
842    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
843           E = MRI.liveout_end(); I != E; ++I) {
844      unsigned Reg = *I;
845      KillIndices[Reg] = BB->size();
846      // Repeat, for all subregs.
847      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
848           *Subreg; ++Subreg) {
849        KillIndices[*Subreg] = BB->size();
850      }
851    }
852  }
853  else {
854    // In a non-return block, examine the live-in regs of all successors.
855    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
856           SE = BB->succ_end(); SI != SE; ++SI) {
857      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
858             E = (*SI)->livein_end(); I != E; ++I) {
859        unsigned Reg = *I;
860        KillIndices[Reg] = BB->size();
861        // Repeat, for all subregs.
862        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
863             *Subreg; ++Subreg) {
864          KillIndices[*Subreg] = BB->size();
865        }
866      }
867    }
868  }
869}
870
871bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
872                                          MachineOperand &MO) {
873  // Setting kill flag...
874  if (!MO.isKill()) {
875    MO.setIsKill(true);
876    return false;
877  }
878
879  // If MO itself is live, clear the kill flag...
880  if (KillIndices[MO.getReg()] != ~0u) {
881    MO.setIsKill(false);
882    return false;
883  }
884
885  // If any subreg of MO is live, then create an imp-def for that
886  // subreg and keep MO marked as killed.
887  MO.setIsKill(false);
888  bool AllDead = true;
889  const unsigned SuperReg = MO.getReg();
890  for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg);
891       *Subreg; ++Subreg) {
892    if (KillIndices[*Subreg] != ~0u) {
893      MI->addOperand(MachineOperand::CreateReg(*Subreg,
894                                               true  /*IsDef*/,
895                                               true  /*IsImp*/,
896                                               false /*IsKill*/,
897                                               false /*IsDead*/));
898      AllDead = false;
899    }
900  }
901
902  if(AllDead)
903    MO.setIsKill(true);
904  return false;
905}
906
907/// FixupKills - Fix the register kill flags, they may have been made
908/// incorrect by instruction reordering.
909///
910void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
911  DEBUG(errs() << "Fixup kills for BB ID#" << MBB->getNumber() << '\n');
912
913  std::set<unsigned> killedRegs;
914  BitVector ReservedRegs = TRI->getReservedRegs(MF);
915
916  StartBlockForKills(MBB);
917
918  // Examine block from end to start...
919  unsigned Count = MBB->size();
920  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
921       I != E; --Count) {
922    MachineInstr *MI = --I;
923
924    // Update liveness.  Registers that are defed but not used in this
925    // instruction are now dead. Mark register and all subregs as they
926    // are completely defined.
927    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
928      MachineOperand &MO = MI->getOperand(i);
929      if (!MO.isReg()) continue;
930      unsigned Reg = MO.getReg();
931      if (Reg == 0) continue;
932      if (!MO.isDef()) continue;
933      // Ignore two-addr defs.
934      if (MI->isRegTiedToUseOperand(i)) continue;
935
936      KillIndices[Reg] = ~0u;
937
938      // Repeat for all subregs.
939      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
940           *Subreg; ++Subreg) {
941        KillIndices[*Subreg] = ~0u;
942      }
943    }
944
945    // Examine all used registers and set/clear kill flag. When a
946    // register is used multiple times we only set the kill flag on
947    // the first use.
948    killedRegs.clear();
949    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
950      MachineOperand &MO = MI->getOperand(i);
951      if (!MO.isReg() || !MO.isUse()) continue;
952      unsigned Reg = MO.getReg();
953      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
954
955      bool kill = false;
956      if (killedRegs.find(Reg) == killedRegs.end()) {
957        kill = true;
958        // A register is not killed if any subregs are live...
959        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
960             *Subreg; ++Subreg) {
961          if (KillIndices[*Subreg] != ~0u) {
962            kill = false;
963            break;
964          }
965        }
966
967        // If subreg is not live, then register is killed if it became
968        // live in this instruction
969        if (kill)
970          kill = (KillIndices[Reg] == ~0u);
971      }
972
973      if (MO.isKill() != kill) {
974        bool removed = ToggleKillFlag(MI, MO);
975        if (removed) {
976          DEBUG(errs() << "Fixed <removed> in ");
977        } else {
978          DEBUG(errs() << "Fixed " << MO << " in ");
979        }
980        DEBUG(MI->dump());
981      }
982
983      killedRegs.insert(Reg);
984    }
985
986    // Mark any used register (that is not using undef) and subregs as
987    // now live...
988    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
989      MachineOperand &MO = MI->getOperand(i);
990      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
991      unsigned Reg = MO.getReg();
992      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
993
994      KillIndices[Reg] = Count;
995
996      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
997           *Subreg; ++Subreg) {
998        KillIndices[*Subreg] = Count;
999      }
1000    }
1001  }
1002}
1003
1004//===----------------------------------------------------------------------===//
1005//  Top-Down Scheduling
1006//===----------------------------------------------------------------------===//
1007
1008/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
1009/// the PendingQueue if the count reaches zero. Also update its cycle bound.
1010void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
1011  SUnit *SuccSU = SuccEdge->getSUnit();
1012
1013#ifndef NDEBUG
1014  if (SuccSU->NumPredsLeft == 0) {
1015    errs() << "*** Scheduling failed! ***\n";
1016    SuccSU->dump(this);
1017    errs() << " has been released too many times!\n";
1018    llvm_unreachable(0);
1019  }
1020#endif
1021  --SuccSU->NumPredsLeft;
1022
1023  // Compute how many cycles it will be before this actually becomes
1024  // available.  This is the max of the start time of all predecessors plus
1025  // their latencies.
1026  SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
1027
1028  // If all the node's predecessors are scheduled, this node is ready
1029  // to be scheduled. Ignore the special ExitSU node.
1030  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
1031    PendingQueue.push_back(SuccSU);
1032}
1033
1034/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
1035void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
1036  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1037       I != E; ++I)
1038    ReleaseSucc(SU, &*I);
1039}
1040
1041/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
1042/// count of its successors. If a successor pending count is zero, add it to
1043/// the Available queue.
1044void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
1045  DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: ");
1046  DEBUG(SU->dump(this));
1047
1048  Sequence.push_back(SU);
1049  assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
1050  SU->setDepthToAtLeast(CurCycle);
1051
1052  ReleaseSuccessors(SU);
1053  SU->isScheduled = true;
1054  AvailableQueue.ScheduledNode(SU);
1055}
1056
1057/// ListScheduleTopDown - The main loop of list scheduling for top-down
1058/// schedulers.
1059void SchedulePostRATDList::ListScheduleTopDown() {
1060  unsigned CurCycle = 0;
1061
1062  // Release any successors of the special Entry node.
1063  ReleaseSuccessors(&EntrySU);
1064
1065  // All leaves to Available queue.
1066  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1067    // It is available if it has no predecessors.
1068    if (SUnits[i].Preds.empty()) {
1069      AvailableQueue.push(&SUnits[i]);
1070      SUnits[i].isAvailable = true;
1071    }
1072  }
1073
1074  // In any cycle where we can't schedule any instructions, we must
1075  // stall or emit a noop, depending on the target.
1076  bool CycleHasInsts = false;
1077
1078  // While Available queue is not empty, grab the node with the highest
1079  // priority. If it is not ready put it back.  Schedule the node.
1080  std::vector<SUnit*> NotReady;
1081  Sequence.reserve(SUnits.size());
1082  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
1083    // Check to see if any of the pending instructions are ready to issue.  If
1084    // so, add them to the available queue.
1085    unsigned MinDepth = ~0u;
1086    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
1087      if (PendingQueue[i]->getDepth() <= CurCycle) {
1088        AvailableQueue.push(PendingQueue[i]);
1089        PendingQueue[i]->isAvailable = true;
1090        PendingQueue[i] = PendingQueue.back();
1091        PendingQueue.pop_back();
1092        --i; --e;
1093      } else if (PendingQueue[i]->getDepth() < MinDepth)
1094        MinDepth = PendingQueue[i]->getDepth();
1095    }
1096
1097    DEBUG(errs() << "\n*** Examining Available\n";
1098          LatencyPriorityQueue q = AvailableQueue;
1099          while (!q.empty()) {
1100            SUnit *su = q.pop();
1101            errs() << "Height " << su->getHeight() << ": ";
1102            su->dump(this);
1103          });
1104
1105    SUnit *FoundSUnit = 0;
1106
1107    bool HasNoopHazards = false;
1108    while (!AvailableQueue.empty()) {
1109      SUnit *CurSUnit = AvailableQueue.pop();
1110
1111      ScheduleHazardRecognizer::HazardType HT =
1112        HazardRec->getHazardType(CurSUnit);
1113      if (HT == ScheduleHazardRecognizer::NoHazard) {
1114        FoundSUnit = CurSUnit;
1115        break;
1116      }
1117
1118      // Remember if this is a noop hazard.
1119      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
1120
1121      NotReady.push_back(CurSUnit);
1122    }
1123
1124    // Add the nodes that aren't ready back onto the available list.
1125    if (!NotReady.empty()) {
1126      AvailableQueue.push_all(NotReady);
1127      NotReady.clear();
1128    }
1129
1130    // If we found a node to schedule, do it now.
1131    if (FoundSUnit) {
1132      ScheduleNodeTopDown(FoundSUnit, CurCycle);
1133      HazardRec->EmitInstruction(FoundSUnit);
1134      CycleHasInsts = true;
1135
1136      // If we are using the target-specific hazards, then don't
1137      // advance the cycle time just because we schedule a node. If
1138      // the target allows it we can schedule multiple nodes in the
1139      // same cycle.
1140      if (!EnablePostRAHazardAvoidance) {
1141        if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
1142          ++CurCycle;
1143      }
1144    } else {
1145      if (CycleHasInsts) {
1146        DEBUG(errs() << "*** Finished cycle " << CurCycle << '\n');
1147        HazardRec->AdvanceCycle();
1148      } else if (!HasNoopHazards) {
1149        // Otherwise, we have a pipeline stall, but no other problem,
1150        // just advance the current cycle and try again.
1151        DEBUG(errs() << "*** Stall in cycle " << CurCycle << '\n');
1152        HazardRec->AdvanceCycle();
1153        ++NumStalls;
1154      } else {
1155        // Otherwise, we have no instructions to issue and we have instructions
1156        // that will fault if we don't do this right.  This is the case for
1157        // processors without pipeline interlocks and other cases.
1158        DEBUG(errs() << "*** Emitting noop in cycle " << CurCycle << '\n');
1159        HazardRec->EmitNoop();
1160        Sequence.push_back(0);   // NULL here means noop
1161        ++NumNoops;
1162      }
1163
1164      ++CurCycle;
1165      CycleHasInsts = false;
1166    }
1167  }
1168
1169#ifndef NDEBUG
1170  VerifySchedule(/*isBottomUp=*/false);
1171#endif
1172}
1173
1174//===----------------------------------------------------------------------===//
1175//                         Public Constructor Functions
1176//===----------------------------------------------------------------------===//
1177
1178FunctionPass *llvm::createPostRAScheduler() {
1179  return new PostRAScheduler();
1180}
1181