PostRASchedulerList.cpp revision 976647d95da89e38c66d9ed869a9d345b36d386d
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "AntiDepBreaker.h"
23#include "AggressiveAntiDepBreaker.h"
24#include "CriticalAntiDepBreaker.h"
25#include "RegisterClassInfo.h"
26#include "ScheduleDAGInstrs.h"
27#include "llvm/CodeGen/Passes.h"
28#include "llvm/CodeGen/LatencyPriorityQueue.h"
29#include "llvm/CodeGen/SchedulerRegistry.h"
30#include "llvm/CodeGen/MachineDominators.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunctionPass.h"
33#include "llvm/CodeGen/MachineLoopInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/Target/TargetLowering.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetSubtargetInfo.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/ADT/BitVector.h"
47#include "llvm/ADT/Statistic.h"
48#include <set>
49using namespace llvm;
50
51STATISTIC(NumNoops, "Number of noops inserted");
52STATISTIC(NumStalls, "Number of pipeline stalls");
53STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
54
55// Post-RA scheduling is enabled with
56// TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
57// override the target.
58static cl::opt<bool>
59EnablePostRAScheduler("post-RA-scheduler",
60                       cl::desc("Enable scheduling after register allocation"),
61                       cl::init(false), cl::Hidden);
62static cl::opt<std::string>
63EnableAntiDepBreaking("break-anti-dependencies",
64                      cl::desc("Break post-RA scheduling anti-dependencies: "
65                               "\"critical\", \"all\", or \"none\""),
66                      cl::init("none"), cl::Hidden);
67
68// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
69static cl::opt<int>
70DebugDiv("postra-sched-debugdiv",
71                      cl::desc("Debug control MBBs that are scheduled"),
72                      cl::init(0), cl::Hidden);
73static cl::opt<int>
74DebugMod("postra-sched-debugmod",
75                      cl::desc("Debug control MBBs that are scheduled"),
76                      cl::init(0), cl::Hidden);
77
78AntiDepBreaker::~AntiDepBreaker() { }
79
80namespace {
81  class PostRAScheduler : public MachineFunctionPass {
82    AliasAnalysis *AA;
83    const TargetInstrInfo *TII;
84    RegisterClassInfo RegClassInfo;
85
86  public:
87    static char ID;
88    PostRAScheduler() : MachineFunctionPass(ID) {}
89
90    void getAnalysisUsage(AnalysisUsage &AU) const {
91      AU.setPreservesCFG();
92      AU.addRequired<AliasAnalysis>();
93      AU.addRequired<TargetPassConfig>();
94      AU.addRequired<MachineDominatorTree>();
95      AU.addPreserved<MachineDominatorTree>();
96      AU.addRequired<MachineLoopInfo>();
97      AU.addPreserved<MachineLoopInfo>();
98      MachineFunctionPass::getAnalysisUsage(AU);
99    }
100
101    bool runOnMachineFunction(MachineFunction &Fn);
102  };
103  char PostRAScheduler::ID = 0;
104
105  class SchedulePostRATDList : public ScheduleDAGInstrs {
106    /// AvailableQueue - The priority queue to use for the available SUnits.
107    ///
108    LatencyPriorityQueue AvailableQueue;
109
110    /// PendingQueue - This contains all of the instructions whose operands have
111    /// been issued, but their results are not ready yet (due to the latency of
112    /// the operation).  Once the operands becomes available, the instruction is
113    /// added to the AvailableQueue.
114    std::vector<SUnit*> PendingQueue;
115
116    /// Topo - A topological ordering for SUnits.
117    ScheduleDAGTopologicalSort Topo;
118
119    /// HazardRec - The hazard recognizer to use.
120    ScheduleHazardRecognizer *HazardRec;
121
122    /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
123    AntiDepBreaker *AntiDepBreak;
124
125    /// AA - AliasAnalysis for making memory reference queries.
126    AliasAnalysis *AA;
127
128    /// KillIndices - The index of the most recent kill (proceding bottom-up),
129    /// or ~0u if the register is not live.
130    std::vector<unsigned> KillIndices;
131
132  public:
133    SchedulePostRATDList(
134      MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
135      AliasAnalysis *AA, const RegisterClassInfo&,
136      TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
137      SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs);
138
139    ~SchedulePostRATDList();
140
141    /// StartBlock - Initialize register live-range state for scheduling in
142    /// this block.
143    ///
144    void StartBlock(MachineBasicBlock *BB);
145
146    /// Schedule - Schedule the instruction range using list scheduling.
147    ///
148    void Schedule();
149
150    /// Observe - Update liveness information to account for the current
151    /// instruction, which will not be scheduled.
152    ///
153    void Observe(MachineInstr *MI, unsigned Count);
154
155    /// FinishBlock - Clean up register live-range state.
156    ///
157    void FinishBlock();
158
159    /// FixupKills - Fix register kill flags that have been made
160    /// invalid due to scheduling
161    ///
162    void FixupKills(MachineBasicBlock *MBB);
163
164  private:
165    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
166    void ReleaseSuccessors(SUnit *SU);
167    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
168    void ListScheduleTopDown();
169    void StartBlockForKills(MachineBasicBlock *BB);
170
171    // ToggleKillFlag - Toggle a register operand kill flag. Other
172    // adjustments may be made to the instruction if necessary. Return
173    // true if the operand has been deleted, false if not.
174    bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
175  };
176}
177
178char &llvm::PostRASchedulerID = PostRAScheduler::ID;
179
180INITIALIZE_PASS(PostRAScheduler, "post-RA-sched",
181                "Post RA top-down list latency scheduler", false, false)
182
183SchedulePostRATDList::SchedulePostRATDList(
184  MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
185  AliasAnalysis *AA, const RegisterClassInfo &RCI,
186  TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
187  SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs)
188  : ScheduleDAGInstrs(MF, MLI, MDT, /*IsPostRA=*/true), Topo(SUnits), AA(AA),
189    KillIndices(TRI->getNumRegs())
190{
191  const TargetMachine &TM = MF.getTarget();
192  const InstrItineraryData *InstrItins = TM.getInstrItineraryData();
193  HazardRec =
194    TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins, this);
195  AntiDepBreak =
196    ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
197     (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
198     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
199      (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : NULL));
200}
201
202SchedulePostRATDList::~SchedulePostRATDList() {
203  delete HazardRec;
204  delete AntiDepBreak;
205}
206
207bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
208  TII = Fn.getTarget().getInstrInfo();
209  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
210  MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
211  AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
212  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
213
214  RegClassInfo.runOnMachineFunction(Fn);
215
216  // Check for explicit enable/disable of post-ra scheduling.
217  TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
218    TargetSubtargetInfo::ANTIDEP_NONE;
219  SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
220  if (EnablePostRAScheduler.getPosition() > 0) {
221    if (!EnablePostRAScheduler)
222      return false;
223  } else {
224    // Check that post-RA scheduling is enabled for this target.
225    // This may upgrade the AntiDepMode.
226    const TargetSubtargetInfo &ST = Fn.getTarget().getSubtarget<TargetSubtargetInfo>();
227    if (!ST.enablePostRAScheduler(PassConfig->getOptLevel(), AntiDepMode,
228                                  CriticalPathRCs))
229      return false;
230  }
231
232  // Check for antidep breaking override...
233  if (EnableAntiDepBreaking.getPosition() > 0) {
234    AntiDepMode = (EnableAntiDepBreaking == "all")
235      ? TargetSubtargetInfo::ANTIDEP_ALL
236      : ((EnableAntiDepBreaking == "critical")
237         ? TargetSubtargetInfo::ANTIDEP_CRITICAL
238         : TargetSubtargetInfo::ANTIDEP_NONE);
239  }
240
241  DEBUG(dbgs() << "PostRAScheduler\n");
242
243  SchedulePostRATDList Scheduler(Fn, MLI, MDT, AA, RegClassInfo, AntiDepMode,
244                                 CriticalPathRCs);
245
246  // Loop over all of the basic blocks
247  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
248       MBB != MBBe; ++MBB) {
249#ifndef NDEBUG
250    // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
251    if (DebugDiv > 0) {
252      static int bbcnt = 0;
253      if (bbcnt++ % DebugDiv != DebugMod)
254        continue;
255      dbgs() << "*** DEBUG scheduling " << Fn.getFunction()->getName()
256             << ":BB#" << MBB->getNumber() << " ***\n";
257    }
258#endif
259
260    // Initialize register live-range state for scheduling in this block.
261    Scheduler.StartBlock(MBB);
262
263    // Schedule each sequence of instructions not interrupted by a label
264    // or anything else that effectively needs to shut down scheduling.
265    MachineBasicBlock::iterator Current = MBB->end();
266    unsigned Count = MBB->size(), CurrentCount = Count;
267    for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
268      MachineInstr *MI = llvm::prior(I);
269      // Calls are not scheduling boundaries before register allocation, but
270      // post-ra we don't gain anything by scheduling across calls since we
271      // don't need to worry about register pressure.
272      if (MI->isCall() || TII->isSchedulingBoundary(MI, MBB, Fn)) {
273        Scheduler.Run(MBB, I, Current, CurrentCount);
274        Scheduler.EmitSchedule();
275        Current = MI;
276        CurrentCount = Count - 1;
277        Scheduler.Observe(MI, CurrentCount);
278      }
279      I = MI;
280      --Count;
281      if (MI->isBundle())
282        Count -= MI->getBundleSize();
283    }
284    assert(Count == 0 && "Instruction count mismatch!");
285    assert((MBB->begin() == Current || CurrentCount != 0) &&
286           "Instruction count mismatch!");
287    Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
288    Scheduler.EmitSchedule();
289
290    // Clean up register live-range state.
291    Scheduler.FinishBlock();
292
293    // Update register kills
294    Scheduler.FixupKills(MBB);
295  }
296
297  return true;
298}
299
300/// StartBlock - Initialize register live-range state for scheduling in
301/// this block.
302///
303void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
304  // Call the superclass.
305  ScheduleDAGInstrs::StartBlock(BB);
306
307  // Reset the hazard recognizer and anti-dep breaker.
308  HazardRec->Reset();
309  if (AntiDepBreak != NULL)
310    AntiDepBreak->StartBlock(BB);
311}
312
313/// Schedule - Schedule the instruction range using list scheduling.
314///
315void SchedulePostRATDList::Schedule() {
316  // Build the scheduling graph.
317  BuildSchedGraph(AA);
318
319  if (AntiDepBreak != NULL) {
320    unsigned Broken =
321      AntiDepBreak->BreakAntiDependencies(SUnits, Begin, InsertPos,
322                                          InsertPosIndex, DbgValues);
323
324    if (Broken != 0) {
325      // We made changes. Update the dependency graph.
326      // Theoretically we could update the graph in place:
327      // When a live range is changed to use a different register, remove
328      // the def's anti-dependence *and* output-dependence edges due to
329      // that register, and add new anti-dependence and output-dependence
330      // edges based on the next live range of the register.
331      SUnits.clear();
332      Sequence.clear();
333      EntrySU = SUnit();
334      ExitSU = SUnit();
335      BuildSchedGraph(AA);
336
337      NumFixedAnti += Broken;
338    }
339  }
340
341  DEBUG(dbgs() << "********** List Scheduling **********\n");
342  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
343          SUnits[su].dumpAll(this));
344
345  AvailableQueue.initNodes(SUnits);
346  ListScheduleTopDown();
347  AvailableQueue.releaseState();
348}
349
350/// Observe - Update liveness information to account for the current
351/// instruction, which will not be scheduled.
352///
353void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
354  if (AntiDepBreak != NULL)
355    AntiDepBreak->Observe(MI, Count, InsertPosIndex);
356}
357
358/// FinishBlock - Clean up register live-range state.
359///
360void SchedulePostRATDList::FinishBlock() {
361  if (AntiDepBreak != NULL)
362    AntiDepBreak->FinishBlock();
363
364  // Call the superclass.
365  ScheduleDAGInstrs::FinishBlock();
366}
367
368/// StartBlockForKills - Initialize register live-range state for updating kills
369///
370void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
371  // Initialize the indices to indicate that no registers are live.
372  for (unsigned i = 0; i < TRI->getNumRegs(); ++i)
373    KillIndices[i] = ~0u;
374
375  // Determine the live-out physregs for this block.
376  if (!BB->empty() && BB->back().isReturn()) {
377    // In a return block, examine the function live-out regs.
378    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
379           E = MRI.liveout_end(); I != E; ++I) {
380      unsigned Reg = *I;
381      KillIndices[Reg] = BB->size();
382      // Repeat, for all subregs.
383      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
384           *Subreg; ++Subreg) {
385        KillIndices[*Subreg] = BB->size();
386      }
387    }
388  }
389  else {
390    // In a non-return block, examine the live-in regs of all successors.
391    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
392           SE = BB->succ_end(); SI != SE; ++SI) {
393      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
394             E = (*SI)->livein_end(); I != E; ++I) {
395        unsigned Reg = *I;
396        KillIndices[Reg] = BB->size();
397        // Repeat, for all subregs.
398        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
399             *Subreg; ++Subreg) {
400          KillIndices[*Subreg] = BB->size();
401        }
402      }
403    }
404  }
405}
406
407bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
408                                          MachineOperand &MO) {
409  // Setting kill flag...
410  if (!MO.isKill()) {
411    MO.setIsKill(true);
412    return false;
413  }
414
415  // If MO itself is live, clear the kill flag...
416  if (KillIndices[MO.getReg()] != ~0u) {
417    MO.setIsKill(false);
418    return false;
419  }
420
421  // If any subreg of MO is live, then create an imp-def for that
422  // subreg and keep MO marked as killed.
423  MO.setIsKill(false);
424  bool AllDead = true;
425  const unsigned SuperReg = MO.getReg();
426  for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg);
427       *Subreg; ++Subreg) {
428    if (KillIndices[*Subreg] != ~0u) {
429      MI->addOperand(MachineOperand::CreateReg(*Subreg,
430                                               true  /*IsDef*/,
431                                               true  /*IsImp*/,
432                                               false /*IsKill*/,
433                                               false /*IsDead*/));
434      AllDead = false;
435    }
436  }
437
438  if(AllDead)
439    MO.setIsKill(true);
440  return false;
441}
442
443/// FixupKills - Fix the register kill flags, they may have been made
444/// incorrect by instruction reordering.
445///
446void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
447  DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
448
449  std::set<unsigned> killedRegs;
450  BitVector ReservedRegs = TRI->getReservedRegs(MF);
451
452  StartBlockForKills(MBB);
453
454  // Examine block from end to start...
455  unsigned Count = MBB->size();
456  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
457       I != E; --Count) {
458    MachineInstr *MI = --I;
459    if (MI->isDebugValue())
460      continue;
461
462    // Update liveness.  Registers that are defed but not used in this
463    // instruction are now dead. Mark register and all subregs as they
464    // are completely defined.
465    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
466      MachineOperand &MO = MI->getOperand(i);
467      if (MO.isRegMask())
468        for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
469          if (MO.clobbersPhysReg(i))
470            KillIndices[i] = ~0u;
471      if (!MO.isReg()) continue;
472      unsigned Reg = MO.getReg();
473      if (Reg == 0) continue;
474      if (!MO.isDef()) continue;
475      // Ignore two-addr defs.
476      if (MI->isRegTiedToUseOperand(i)) continue;
477
478      KillIndices[Reg] = ~0u;
479
480      // Repeat for all subregs.
481      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
482           *Subreg; ++Subreg) {
483        KillIndices[*Subreg] = ~0u;
484      }
485    }
486
487    // Examine all used registers and set/clear kill flag. When a
488    // register is used multiple times we only set the kill flag on
489    // the first use.
490    killedRegs.clear();
491    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
492      MachineOperand &MO = MI->getOperand(i);
493      if (!MO.isReg() || !MO.isUse()) continue;
494      unsigned Reg = MO.getReg();
495      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
496
497      bool kill = false;
498      if (killedRegs.find(Reg) == killedRegs.end()) {
499        kill = true;
500        // A register is not killed if any subregs are live...
501        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
502             *Subreg; ++Subreg) {
503          if (KillIndices[*Subreg] != ~0u) {
504            kill = false;
505            break;
506          }
507        }
508
509        // If subreg is not live, then register is killed if it became
510        // live in this instruction
511        if (kill)
512          kill = (KillIndices[Reg] == ~0u);
513      }
514
515      if (MO.isKill() != kill) {
516        DEBUG(dbgs() << "Fixing " << MO << " in ");
517        // Warning: ToggleKillFlag may invalidate MO.
518        ToggleKillFlag(MI, MO);
519        DEBUG(MI->dump());
520      }
521
522      killedRegs.insert(Reg);
523    }
524
525    // Mark any used register (that is not using undef) and subregs as
526    // now live...
527    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
528      MachineOperand &MO = MI->getOperand(i);
529      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
530      unsigned Reg = MO.getReg();
531      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
532
533      KillIndices[Reg] = Count;
534
535      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
536           *Subreg; ++Subreg) {
537        KillIndices[*Subreg] = Count;
538      }
539    }
540  }
541}
542
543//===----------------------------------------------------------------------===//
544//  Top-Down Scheduling
545//===----------------------------------------------------------------------===//
546
547/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
548/// the PendingQueue if the count reaches zero. Also update its cycle bound.
549void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
550  SUnit *SuccSU = SuccEdge->getSUnit();
551
552#ifndef NDEBUG
553  if (SuccSU->NumPredsLeft == 0) {
554    dbgs() << "*** Scheduling failed! ***\n";
555    SuccSU->dump(this);
556    dbgs() << " has been released too many times!\n";
557    llvm_unreachable(0);
558  }
559#endif
560  --SuccSU->NumPredsLeft;
561
562  // Standard scheduler algorithms will recompute the depth of the successor
563  // here as such:
564  //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
565  //
566  // However, we lazily compute node depth instead. Note that
567  // ScheduleNodeTopDown has already updated the depth of this node which causes
568  // all descendents to be marked dirty. Setting the successor depth explicitly
569  // here would cause depth to be recomputed for all its ancestors. If the
570  // successor is not yet ready (because of a transitively redundant edge) then
571  // this causes depth computation to be quadratic in the size of the DAG.
572
573  // If all the node's predecessors are scheduled, this node is ready
574  // to be scheduled. Ignore the special ExitSU node.
575  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
576    PendingQueue.push_back(SuccSU);
577}
578
579/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
580void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
581  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
582       I != E; ++I) {
583    ReleaseSucc(SU, &*I);
584  }
585}
586
587/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
588/// count of its successors. If a successor pending count is zero, add it to
589/// the Available queue.
590void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
591  DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
592  DEBUG(SU->dump(this));
593
594  Sequence.push_back(SU);
595  assert(CurCycle >= SU->getDepth() &&
596         "Node scheduled above its depth!");
597  SU->setDepthToAtLeast(CurCycle);
598
599  ReleaseSuccessors(SU);
600  SU->isScheduled = true;
601  AvailableQueue.ScheduledNode(SU);
602}
603
604/// ListScheduleTopDown - The main loop of list scheduling for top-down
605/// schedulers.
606void SchedulePostRATDList::ListScheduleTopDown() {
607  unsigned CurCycle = 0;
608
609  // We're scheduling top-down but we're visiting the regions in
610  // bottom-up order, so we don't know the hazards at the start of a
611  // region. So assume no hazards (this should usually be ok as most
612  // blocks are a single region).
613  HazardRec->Reset();
614
615  // Release any successors of the special Entry node.
616  ReleaseSuccessors(&EntrySU);
617
618  // Add all leaves to Available queue.
619  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
620    // It is available if it has no predecessors.
621    bool available = SUnits[i].Preds.empty();
622    if (available) {
623      AvailableQueue.push(&SUnits[i]);
624      SUnits[i].isAvailable = true;
625    }
626  }
627
628  // In any cycle where we can't schedule any instructions, we must
629  // stall or emit a noop, depending on the target.
630  bool CycleHasInsts = false;
631
632  // While Available queue is not empty, grab the node with the highest
633  // priority. If it is not ready put it back.  Schedule the node.
634  std::vector<SUnit*> NotReady;
635  Sequence.reserve(SUnits.size());
636  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
637    // Check to see if any of the pending instructions are ready to issue.  If
638    // so, add them to the available queue.
639    unsigned MinDepth = ~0u;
640    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
641      if (PendingQueue[i]->getDepth() <= CurCycle) {
642        AvailableQueue.push(PendingQueue[i]);
643        PendingQueue[i]->isAvailable = true;
644        PendingQueue[i] = PendingQueue.back();
645        PendingQueue.pop_back();
646        --i; --e;
647      } else if (PendingQueue[i]->getDepth() < MinDepth)
648        MinDepth = PendingQueue[i]->getDepth();
649    }
650
651    DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));
652
653    SUnit *FoundSUnit = 0;
654    bool HasNoopHazards = false;
655    while (!AvailableQueue.empty()) {
656      SUnit *CurSUnit = AvailableQueue.pop();
657
658      ScheduleHazardRecognizer::HazardType HT =
659        HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
660      if (HT == ScheduleHazardRecognizer::NoHazard) {
661        FoundSUnit = CurSUnit;
662        break;
663      }
664
665      // Remember if this is a noop hazard.
666      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
667
668      NotReady.push_back(CurSUnit);
669    }
670
671    // Add the nodes that aren't ready back onto the available list.
672    if (!NotReady.empty()) {
673      AvailableQueue.push_all(NotReady);
674      NotReady.clear();
675    }
676
677    // If we found a node to schedule...
678    if (FoundSUnit) {
679      // ... schedule the node...
680      ScheduleNodeTopDown(FoundSUnit, CurCycle);
681      HazardRec->EmitInstruction(FoundSUnit);
682      CycleHasInsts = true;
683      if (HazardRec->atIssueLimit()) {
684        DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
685        HazardRec->AdvanceCycle();
686        ++CurCycle;
687        CycleHasInsts = false;
688      }
689    } else {
690      if (CycleHasInsts) {
691        DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
692        HazardRec->AdvanceCycle();
693      } else if (!HasNoopHazards) {
694        // Otherwise, we have a pipeline stall, but no other problem,
695        // just advance the current cycle and try again.
696        DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
697        HazardRec->AdvanceCycle();
698        ++NumStalls;
699      } else {
700        // Otherwise, we have no instructions to issue and we have instructions
701        // that will fault if we don't do this right.  This is the case for
702        // processors without pipeline interlocks and other cases.
703        DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
704        HazardRec->EmitNoop();
705        Sequence.push_back(0);   // NULL here means noop
706        ++NumNoops;
707      }
708
709      ++CurCycle;
710      CycleHasInsts = false;
711    }
712  }
713
714#ifndef NDEBUG
715  VerifySchedule(/*isBottomUp=*/false);
716#endif
717}
718