PostRASchedulerList.cpp revision 99603bb2e0d81b55ef3f4d219a3fecc067ced3b2
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "llvm/CodeGen/Passes.h"
23#include "llvm/CodeGen/ScheduleDAGInstrs.h"
24#include "llvm/CodeGen/LatencyPriorityQueue.h"
25#include "llvm/CodeGen/SchedulerRegistry.h"
26#include "llvm/CodeGen/MachineDominators.h"
27#include "llvm/CodeGen/MachineFunctionPass.h"
28#include "llvm/CodeGen/MachineLoopInfo.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetRegisterInfo.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/ADT/Statistic.h"
37#include <map>
38using namespace llvm;
39
40STATISTIC(NumNoops, "Number of noops inserted");
41STATISTIC(NumStalls, "Number of pipeline stalls");
42
43static cl::opt<bool>
44EnableAntiDepBreaking("break-anti-dependencies",
45                      cl::desc("Break post-RA scheduling anti-dependencies"),
46                      cl::init(true), cl::Hidden);
47
48static cl::opt<bool>
49EnablePostRAHazardAvoidance("avoid-hazards",
50                      cl::desc("Enable simple hazard-avoidance"),
51                      cl::init(true), cl::Hidden);
52
53namespace {
54  class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
55  public:
56    static char ID;
57    PostRAScheduler() : MachineFunctionPass(&ID) {}
58
59    void getAnalysisUsage(AnalysisUsage &AU) const {
60      AU.addRequired<MachineDominatorTree>();
61      AU.addPreserved<MachineDominatorTree>();
62      AU.addRequired<MachineLoopInfo>();
63      AU.addPreserved<MachineLoopInfo>();
64      MachineFunctionPass::getAnalysisUsage(AU);
65    }
66
67    const char *getPassName() const {
68      return "Post RA top-down list latency scheduler";
69    }
70
71    bool runOnMachineFunction(MachineFunction &Fn);
72  };
73  char PostRAScheduler::ID = 0;
74
75  class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
76    /// AvailableQueue - The priority queue to use for the available SUnits.
77    ///
78    LatencyPriorityQueue AvailableQueue;
79
80    /// PendingQueue - This contains all of the instructions whose operands have
81    /// been issued, but their results are not ready yet (due to the latency of
82    /// the operation).  Once the operands becomes available, the instruction is
83    /// added to the AvailableQueue.
84    std::vector<SUnit*> PendingQueue;
85
86    /// Topo - A topological ordering for SUnits.
87    ScheduleDAGTopologicalSort Topo;
88
89    /// AllocatableSet - The set of allocatable registers.
90    /// We'll be ignoring anti-dependencies on non-allocatable registers,
91    /// because they may not be safe to break.
92    const BitVector AllocatableSet;
93
94    /// HazardRec - The hazard recognizer to use.
95    ScheduleHazardRecognizer *HazardRec;
96
97  public:
98    SchedulePostRATDList(MachineFunction &MF,
99                         const MachineLoopInfo &MLI,
100                         const MachineDominatorTree &MDT,
101                         ScheduleHazardRecognizer *HR)
102      : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
103        AllocatableSet(TRI->getAllocatableSet(MF)),
104        HazardRec(HR) {}
105
106    ~SchedulePostRATDList() {
107      delete HazardRec;
108    }
109
110    void Schedule();
111
112  private:
113    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
114    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
115    void ListScheduleTopDown();
116    bool BreakAntiDependencies();
117  };
118
119  /// SimpleHazardRecognizer - A *very* simple hazard recognizer. It uses
120  /// a coarse classification and attempts to avoid that instructions of
121  /// a given class aren't grouped too densely together.
122  class SimpleHazardRecognizer : public ScheduleHazardRecognizer {
123    /// Class - A simple classification for SUnits.
124    enum Class {
125      Other, Load, Store
126    };
127
128    /// Window - The Class values of the most recently issued
129    /// instructions.
130    Class Window[8];
131
132    /// getClass - Classify the given SUnit.
133    Class getClass(const SUnit *SU) {
134      const MachineInstr *MI = SU->getInstr();
135      const TargetInstrDesc &TID = MI->getDesc();
136      if (TID.mayLoad())
137        return Load;
138      if (TID.mayStore())
139        return Store;
140      return Other;
141    }
142
143    /// Step - Rotate the existing entries in Window and insert the
144    /// given class value in position as the most recent.
145    void Step(Class C) {
146      std::copy(Window+1, array_endof(Window), Window);
147      Window[array_lengthof(Window)-1] = C;
148    }
149
150  public:
151    SimpleHazardRecognizer() : Window() {}
152
153    virtual HazardType getHazardType(SUnit *SU) {
154      Class C = getClass(SU);
155      if (C == Other)
156        return NoHazard;
157      unsigned Score = 0;
158      for (int i = 0; i != array_lengthof(Window); ++i)
159        if (Window[i] == C)
160          Score += i + 1;
161      if (Score > array_lengthof(Window) * 2)
162        return Hazard;
163      return NoHazard;
164    }
165
166    virtual void EmitInstruction(SUnit *SU) {
167      Step(getClass(SU));
168    }
169
170    virtual void AdvanceCycle() {
171      Step(Other);
172    }
173  };
174}
175
176bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
177  DOUT << "PostRAScheduler\n";
178
179  const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
180  const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
181  ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ?
182                                 new SimpleHazardRecognizer :
183                                 new ScheduleHazardRecognizer();
184
185  SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR);
186
187  // Loop over all of the basic blocks
188  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
189       MBB != MBBe; ++MBB) {
190
191    Scheduler.Run(0, MBB);
192
193    Scheduler.EmitSchedule();
194  }
195
196  return true;
197}
198
199/// Schedule - Schedule the DAG using list scheduling.
200void SchedulePostRATDList::Schedule() {
201  DOUT << "********** List Scheduling **********\n";
202
203  // Build the scheduling graph.
204  BuildSchedGraph();
205
206  if (EnableAntiDepBreaking) {
207    if (BreakAntiDependencies()) {
208      // We made changes. Update the dependency graph.
209      // Theoretically we could update the graph in place:
210      // When a live range is changed to use a different register, remove
211      // the def's anti-dependence *and* output-dependence edges due to
212      // that register, and add new anti-dependence and output-dependence
213      // edges based on the next live range of the register.
214      SUnits.clear();
215      BuildSchedGraph();
216    }
217  }
218
219  AvailableQueue.initNodes(SUnits);
220
221  ListScheduleTopDown();
222
223  AvailableQueue.releaseState();
224}
225
226/// getInstrOperandRegClass - Return register class of the operand of an
227/// instruction of the specified TargetInstrDesc.
228static const TargetRegisterClass*
229getInstrOperandRegClass(const TargetRegisterInfo *TRI,
230                        const TargetInstrInfo *TII, const TargetInstrDesc &II,
231                        unsigned Op) {
232  if (Op >= II.getNumOperands())
233    return NULL;
234  if (II.OpInfo[Op].isLookupPtrRegClass())
235    return TII->getPointerRegClass();
236  return TRI->getRegClass(II.OpInfo[Op].RegClass);
237}
238
239/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
240/// critical path.
241static SDep *CriticalPathStep(SUnit *SU) {
242  SDep *Next = 0;
243  unsigned NextDepth = 0;
244  // Find the predecessor edge with the greatest depth.
245  for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
246       P != PE; ++P) {
247    SUnit *PredSU = P->getSUnit();
248    unsigned PredLatency = P->getLatency();
249    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
250    // In the case of a latency tie, prefer an anti-dependency edge over
251    // other types of edges.
252    if (NextDepth < PredTotalLatency ||
253        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
254      NextDepth = PredTotalLatency;
255      Next = &*P;
256    }
257  }
258  return Next;
259}
260
261/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
262/// of the ScheduleDAG and break them by renaming registers.
263///
264bool SchedulePostRATDList::BreakAntiDependencies() {
265  // The code below assumes that there is at least one instruction,
266  // so just duck out immediately if the block is empty.
267  if (BB->empty()) return false;
268
269  // Find the node at the bottom of the critical path.
270  SUnit *Max = 0;
271  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
272    SUnit *SU = &SUnits[i];
273    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
274      Max = SU;
275  }
276
277  DOUT << "Critical path has total latency "
278       << (Max ? Max->getDepth() + Max->Latency : 0) << "\n";
279
280  // Track progress along the critical path through the SUnit graph as we walk
281  // the instructions.
282  SUnit *CriticalPathSU = Max;
283  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
284
285  // For live regs that are only used in one register class in a live range,
286  // the register class. If the register is not live, the corresponding value
287  // is null. If the register is live but used in multiple register classes,
288  // the corresponding value is -1 casted to a pointer.
289  const TargetRegisterClass *
290    Classes[TargetRegisterInfo::FirstVirtualRegister] = {};
291
292  // Map registers to all their references within a live range.
293  std::multimap<unsigned, MachineOperand *> RegRefs;
294
295  // The index of the most recent kill (proceding bottom-up), or ~0u if
296  // the register is not live.
297  unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
298  std::fill(KillIndices, array_endof(KillIndices), ~0u);
299  // The index of the most recent complete def (proceding bottom up), or ~0u if
300  // the register is live.
301  unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
302  std::fill(DefIndices, array_endof(DefIndices), BB->size());
303
304  // Determine the live-out physregs for this block.
305  if (BB->back().getDesc().isReturn())
306    // In a return block, examine the function live-out regs.
307    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
308         E = MRI.liveout_end(); I != E; ++I) {
309      unsigned Reg = *I;
310      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
311      KillIndices[Reg] = BB->size();
312      DefIndices[Reg] = ~0u;
313      // Repeat, for all aliases.
314      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
315        unsigned AliasReg = *Alias;
316        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
317        KillIndices[AliasReg] = BB->size();
318        DefIndices[AliasReg] = ~0u;
319      }
320    }
321  else
322    // In a non-return block, examine the live-in regs of all successors.
323    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
324         SE = BB->succ_end(); SI != SE; ++SI)
325      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
326           E = (*SI)->livein_end(); I != E; ++I) {
327        unsigned Reg = *I;
328        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
329        KillIndices[Reg] = BB->size();
330        DefIndices[Reg] = ~0u;
331        // Repeat, for all aliases.
332        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
333          unsigned AliasReg = *Alias;
334          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
335          KillIndices[AliasReg] = BB->size();
336          DefIndices[AliasReg] = ~0u;
337        }
338      }
339
340  // Consider callee-saved registers as live-out, since we're running after
341  // prologue/epilogue insertion so there's no way to add additional
342  // saved registers.
343  //
344  // TODO: If the callee saves and restores these, then we can potentially
345  // use them between the save and the restore. To do that, we could scan
346  // the exit blocks to see which of these registers are defined.
347  // Alternatively, callee-saved registers that aren't saved and restored
348  // could be marked live-in in every block.
349  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
350    unsigned Reg = *I;
351    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
352    KillIndices[Reg] = BB->size();
353    DefIndices[Reg] = ~0u;
354    // Repeat, for all aliases.
355    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
356      unsigned AliasReg = *Alias;
357      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
358      KillIndices[AliasReg] = BB->size();
359      DefIndices[AliasReg] = ~0u;
360    }
361  }
362
363  // Consider this pattern:
364  //   A = ...
365  //   ... = A
366  //   A = ...
367  //   ... = A
368  //   A = ...
369  //   ... = A
370  //   A = ...
371  //   ... = A
372  // There are three anti-dependencies here, and without special care,
373  // we'd break all of them using the same register:
374  //   A = ...
375  //   ... = A
376  //   B = ...
377  //   ... = B
378  //   B = ...
379  //   ... = B
380  //   B = ...
381  //   ... = B
382  // because at each anti-dependence, B is the first register that
383  // isn't A which is free.  This re-introduces anti-dependencies
384  // at all but one of the original anti-dependencies that we were
385  // trying to break.  To avoid this, keep track of the most recent
386  // register that each register was replaced with, avoid avoid
387  // using it to repair an anti-dependence on the same register.
388  // This lets us produce this:
389  //   A = ...
390  //   ... = A
391  //   B = ...
392  //   ... = B
393  //   C = ...
394  //   ... = C
395  //   B = ...
396  //   ... = B
397  // This still has an anti-dependence on B, but at least it isn't on the
398  // original critical path.
399  //
400  // TODO: If we tracked more than one register here, we could potentially
401  // fix that remaining critical edge too. This is a little more involved,
402  // because unlike the most recent register, less recent registers should
403  // still be considered, though only if no other registers are available.
404  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
405
406  // Attempt to break anti-dependence edges on the critical path. Walk the
407  // instructions from the bottom up, tracking information about liveness
408  // as we go to help determine which registers are available.
409  bool Changed = false;
410  unsigned Count = BB->size() - 1;
411  for (MachineBasicBlock::reverse_iterator I = BB->rbegin(), E = BB->rend();
412       I != E; ++I, --Count) {
413    MachineInstr *MI = &*I;
414
415    // After regalloc, IMPLICIT_DEF instructions aren't safe to treat as
416    // dependence-breaking. In the case of an INSERT_SUBREG, the IMPLICIT_DEF
417    // is left behind appearing to clobber the super-register, while the
418    // subregister needs to remain live. So we just ignore them.
419    if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
420      continue;
421
422    // Check if this instruction has a dependence on the critical path that
423    // is an anti-dependence that we may be able to break. If it is, set
424    // AntiDepReg to the non-zero register associated with the anti-dependence.
425    //
426    // We limit our attention to the critical path as a heuristic to avoid
427    // breaking anti-dependence edges that aren't going to significantly
428    // impact the overall schedule. There are a limited number of registers
429    // and we want to save them for the important edges.
430    //
431    // TODO: Instructions with multiple defs could have multiple
432    // anti-dependencies. The current code here only knows how to break one
433    // edge per instruction. Note that we'd have to be able to break all of
434    // the anti-dependencies in an instruction in order to be effective.
435    unsigned AntiDepReg = 0;
436    if (MI == CriticalPathMI) {
437      if (SDep *Edge = CriticalPathStep(CriticalPathSU)) {
438        SUnit *NextSU = Edge->getSUnit();
439
440        // Only consider anti-dependence edges.
441        if (Edge->getKind() == SDep::Anti) {
442          AntiDepReg = Edge->getReg();
443          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
444          // Don't break anti-dependencies on non-allocatable registers.
445          if (AllocatableSet.test(AntiDepReg)) {
446            // If the SUnit has other dependencies on the SUnit that it
447            // anti-depends on, don't bother breaking the anti-dependency
448            // since those edges would prevent such units from being
449            // scheduled past each other regardless.
450            //
451            // Also, if there are dependencies on other SUnits with the
452            // same register as the anti-dependency, don't attempt to
453            // break it.
454            for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(),
455                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
456              if (P->getSUnit() == NextSU ?
457                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
458                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
459                AntiDepReg = 0;
460                break;
461              }
462          }
463        }
464        CriticalPathSU = NextSU;
465        CriticalPathMI = CriticalPathSU->getInstr();
466      } else {
467        // We've reached the end of the critical path.
468        CriticalPathSU = 0;
469        CriticalPathMI = 0;
470      }
471    }
472
473    // Scan the register operands for this instruction and update
474    // Classes and RegRefs.
475    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
476      MachineOperand &MO = MI->getOperand(i);
477      if (!MO.isReg()) continue;
478      unsigned Reg = MO.getReg();
479      if (Reg == 0) continue;
480      const TargetRegisterClass *NewRC =
481        getInstrOperandRegClass(TRI, TII, MI->getDesc(), i);
482
483      // If this instruction has a use of AntiDepReg, breaking it
484      // is invalid.
485      if (MO.isUse() && AntiDepReg == Reg)
486        AntiDepReg = 0;
487
488      // For now, only allow the register to be changed if its register
489      // class is consistent across all uses.
490      if (!Classes[Reg] && NewRC)
491        Classes[Reg] = NewRC;
492      else if (!NewRC || Classes[Reg] != NewRC)
493        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
494
495      // Now check for aliases.
496      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
497        // If an alias of the reg is used during the live range, give up.
498        // Note that this allows us to skip checking if AntiDepReg
499        // overlaps with any of the aliases, among other things.
500        unsigned AliasReg = *Alias;
501        if (Classes[AliasReg]) {
502          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
503          Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
504        }
505      }
506
507      // If we're still willing to consider this register, note the reference.
508      if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
509        RegRefs.insert(std::make_pair(Reg, &MO));
510    }
511
512    // Determine AntiDepReg's register class, if it is live and is
513    // consistently used within a single class.
514    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
515    assert((AntiDepReg == 0 || RC != NULL) &&
516           "Register should be live if it's causing an anti-dependence!");
517    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
518      AntiDepReg = 0;
519
520    // Look for a suitable register to use to break the anti-depenence.
521    //
522    // TODO: Instead of picking the first free register, consider which might
523    // be the best.
524    if (AntiDepReg != 0) {
525      for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
526           RE = RC->allocation_order_end(MF); R != RE; ++R) {
527        unsigned NewReg = *R;
528        // Don't replace a register with itself.
529        if (NewReg == AntiDepReg) continue;
530        // Don't replace a register with one that was recently used to repair
531        // an anti-dependence with this AntiDepReg, because that would
532        // re-introduce that anti-dependence.
533        if (NewReg == LastNewReg[AntiDepReg]) continue;
534        // If NewReg is dead and NewReg's most recent def is not before
535        // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
536        assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
537               "Kill and Def maps aren't consistent for AntiDepReg!");
538        assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
539               "Kill and Def maps aren't consistent for NewReg!");
540        if (KillIndices[NewReg] == ~0u &&
541            Classes[NewReg] != reinterpret_cast<TargetRegisterClass *>(-1) &&
542            KillIndices[AntiDepReg] <= DefIndices[NewReg]) {
543          DOUT << "Breaking anti-dependence edge on "
544               << TRI->getName(AntiDepReg)
545               << " with " << RegRefs.count(AntiDepReg) << " references"
546               << " using " << TRI->getName(NewReg) << "!\n";
547
548          // Update the references to the old register to refer to the new
549          // register.
550          std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
551                    std::multimap<unsigned, MachineOperand *>::iterator>
552             Range = RegRefs.equal_range(AntiDepReg);
553          for (std::multimap<unsigned, MachineOperand *>::iterator
554               Q = Range.first, QE = Range.second; Q != QE; ++Q)
555            Q->second->setReg(NewReg);
556
557          // We just went back in time and modified history; the
558          // liveness information for the anti-depenence reg is now
559          // inconsistent. Set the state as if it were dead.
560          Classes[NewReg] = Classes[AntiDepReg];
561          DefIndices[NewReg] = DefIndices[AntiDepReg];
562          KillIndices[NewReg] = KillIndices[AntiDepReg];
563
564          Classes[AntiDepReg] = 0;
565          DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
566          KillIndices[AntiDepReg] = ~0u;
567
568          RegRefs.erase(AntiDepReg);
569          Changed = true;
570          LastNewReg[AntiDepReg] = NewReg;
571          break;
572        }
573      }
574    }
575
576    // Update liveness.
577    // Proceding upwards, registers that are defed but not used in this
578    // instruction are now dead.
579    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
580      MachineOperand &MO = MI->getOperand(i);
581      if (!MO.isReg()) continue;
582      unsigned Reg = MO.getReg();
583      if (Reg == 0) continue;
584      if (!MO.isDef()) continue;
585      // Ignore two-addr defs.
586      if (MI->isRegReDefinedByTwoAddr(i)) continue;
587
588      DefIndices[Reg] = Count;
589      KillIndices[Reg] = ~0u;
590      Classes[Reg] = 0;
591      RegRefs.erase(Reg);
592      // Repeat, for all subregs.
593      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
594           *Subreg; ++Subreg) {
595        unsigned SubregReg = *Subreg;
596        DefIndices[SubregReg] = Count;
597        KillIndices[SubregReg] = ~0u;
598        Classes[SubregReg] = 0;
599        RegRefs.erase(SubregReg);
600      }
601      // Conservatively mark super-registers as unusable.
602      for (const unsigned *Super = TRI->getSuperRegisters(Reg);
603           *Super; ++Super) {
604        unsigned SuperReg = *Super;
605        Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
606      }
607    }
608    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
609      MachineOperand &MO = MI->getOperand(i);
610      if (!MO.isReg()) continue;
611      unsigned Reg = MO.getReg();
612      if (Reg == 0) continue;
613      if (!MO.isUse()) continue;
614
615      const TargetRegisterClass *NewRC =
616        getInstrOperandRegClass(TRI, TII, MI->getDesc(), i);
617
618      // For now, only allow the register to be changed if its register
619      // class is consistent across all uses.
620      if (!Classes[Reg] && NewRC)
621        Classes[Reg] = NewRC;
622      else if (!NewRC || Classes[Reg] != NewRC)
623        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
624
625      RegRefs.insert(std::make_pair(Reg, &MO));
626
627      // It wasn't previously live but now it is, this is a kill.
628      if (KillIndices[Reg] == ~0u) {
629        KillIndices[Reg] = Count;
630        DefIndices[Reg] = ~0u;
631      }
632      // Repeat, for all aliases.
633      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
634        unsigned AliasReg = *Alias;
635        if (KillIndices[AliasReg] == ~0u) {
636          KillIndices[AliasReg] = Count;
637          DefIndices[AliasReg] = ~0u;
638        }
639      }
640    }
641  }
642  assert(Count == ~0u && "Count mismatch!");
643
644  return Changed;
645}
646
647//===----------------------------------------------------------------------===//
648//  Top-Down Scheduling
649//===----------------------------------------------------------------------===//
650
651/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
652/// the PendingQueue if the count reaches zero. Also update its cycle bound.
653void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
654  SUnit *SuccSU = SuccEdge->getSUnit();
655  --SuccSU->NumPredsLeft;
656
657#ifndef NDEBUG
658  if (SuccSU->NumPredsLeft < 0) {
659    cerr << "*** Scheduling failed! ***\n";
660    SuccSU->dump(this);
661    cerr << " has been released too many times!\n";
662    assert(0);
663  }
664#endif
665
666  // Compute how many cycles it will be before this actually becomes
667  // available.  This is the max of the start time of all predecessors plus
668  // their latencies.
669  SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
670
671  if (SuccSU->NumPredsLeft == 0) {
672    PendingQueue.push_back(SuccSU);
673  }
674}
675
676/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
677/// count of its successors. If a successor pending count is zero, add it to
678/// the Available queue.
679void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
680  DOUT << "*** Scheduling [" << CurCycle << "]: ";
681  DEBUG(SU->dump(this));
682
683  Sequence.push_back(SU);
684  assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
685  SU->setDepthToAtLeast(CurCycle);
686
687  // Top down: release successors.
688  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
689       I != E; ++I)
690    ReleaseSucc(SU, &*I);
691
692  SU->isScheduled = true;
693  AvailableQueue.ScheduledNode(SU);
694}
695
696/// ListScheduleTopDown - The main loop of list scheduling for top-down
697/// schedulers.
698void SchedulePostRATDList::ListScheduleTopDown() {
699  unsigned CurCycle = 0;
700
701  // All leaves to Available queue.
702  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
703    // It is available if it has no predecessors.
704    if (SUnits[i].Preds.empty()) {
705      AvailableQueue.push(&SUnits[i]);
706      SUnits[i].isAvailable = true;
707    }
708  }
709
710  // While Available queue is not empty, grab the node with the highest
711  // priority. If it is not ready put it back.  Schedule the node.
712  std::vector<SUnit*> NotReady;
713  Sequence.reserve(SUnits.size());
714  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
715    // Check to see if any of the pending instructions are ready to issue.  If
716    // so, add them to the available queue.
717    unsigned MinDepth = ~0u;
718    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
719      if (PendingQueue[i]->getDepth() <= CurCycle) {
720        AvailableQueue.push(PendingQueue[i]);
721        PendingQueue[i]->isAvailable = true;
722        PendingQueue[i] = PendingQueue.back();
723        PendingQueue.pop_back();
724        --i; --e;
725      } else if (PendingQueue[i]->getDepth() < MinDepth)
726        MinDepth = PendingQueue[i]->getDepth();
727    }
728
729    // If there are no instructions available, don't try to issue anything, and
730    // don't advance the hazard recognizer.
731    if (AvailableQueue.empty()) {
732      CurCycle = MinDepth != ~0u ? MinDepth : CurCycle + 1;
733      continue;
734    }
735
736    SUnit *FoundSUnit = 0;
737
738    bool HasNoopHazards = false;
739    while (!AvailableQueue.empty()) {
740      SUnit *CurSUnit = AvailableQueue.pop();
741
742      ScheduleHazardRecognizer::HazardType HT =
743        HazardRec->getHazardType(CurSUnit);
744      if (HT == ScheduleHazardRecognizer::NoHazard) {
745        FoundSUnit = CurSUnit;
746        break;
747      }
748
749      // Remember if this is a noop hazard.
750      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
751
752      NotReady.push_back(CurSUnit);
753    }
754
755    // Add the nodes that aren't ready back onto the available list.
756    if (!NotReady.empty()) {
757      AvailableQueue.push_all(NotReady);
758      NotReady.clear();
759    }
760
761    // If we found a node to schedule, do it now.
762    if (FoundSUnit) {
763      ScheduleNodeTopDown(FoundSUnit, CurCycle);
764      HazardRec->EmitInstruction(FoundSUnit);
765
766      // If this is a pseudo-op node, we don't want to increment the current
767      // cycle.
768      if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
769        ++CurCycle;
770    } else if (!HasNoopHazards) {
771      // Otherwise, we have a pipeline stall, but no other problem, just advance
772      // the current cycle and try again.
773      DOUT << "*** Advancing cycle, no work to do\n";
774      HazardRec->AdvanceCycle();
775      ++NumStalls;
776      ++CurCycle;
777    } else {
778      // Otherwise, we have no instructions to issue and we have instructions
779      // that will fault if we don't do this right.  This is the case for
780      // processors without pipeline interlocks and other cases.
781      DOUT << "*** Emitting noop\n";
782      HazardRec->EmitNoop();
783      Sequence.push_back(0);   // NULL here means noop
784      ++NumNoops;
785      ++CurCycle;
786    }
787  }
788
789#ifndef NDEBUG
790  VerifySchedule(/*isBottomUp=*/false);
791#endif
792}
793
794//===----------------------------------------------------------------------===//
795//                         Public Constructor Functions
796//===----------------------------------------------------------------------===//
797
798FunctionPass *llvm::createPostRAScheduler() {
799  return new PostRAScheduler();
800}
801