PostRASchedulerList.cpp revision aa644ea6cd8b6c4fa5d0442c91267cdfdab43eab
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "AggressiveAntiDepBreaker.h"
23#include "CriticalAntiDepBreaker.h"
24#include "ExactHazardRecognizer.h"
25#include "SimpleHazardRecognizer.h"
26#include "ScheduleDAGInstrs.h"
27#include "llvm/CodeGen/AntiDepBreaker.h"
28#include "llvm/CodeGen/Passes.h"
29#include "llvm/CodeGen/LatencyPriorityQueue.h"
30#include "llvm/CodeGen/SchedulerRegistry.h"
31#include "llvm/CodeGen/MachineDominators.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunctionPass.h"
34#include "llvm/CodeGen/MachineLoopInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
37#include "llvm/Analysis/AliasAnalysis.h"
38#include "llvm/Target/TargetLowering.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Target/TargetSubtarget.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/ADT/BitVector.h"
48#include "llvm/ADT/Statistic.h"
49#include <map>
50#include <set>
51using namespace llvm;
52
53STATISTIC(NumNoops, "Number of noops inserted");
54STATISTIC(NumStalls, "Number of pipeline stalls");
55STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
56
57// Post-RA scheduling is enabled with
58// TargetSubtarget.enablePostRAScheduler(). This flag can be used to
59// override the target.
60static cl::opt<bool>
61EnablePostRAScheduler("post-RA-scheduler",
62                       cl::desc("Enable scheduling after register allocation"),
63                       cl::init(false), cl::Hidden);
64static cl::opt<std::string>
65EnableAntiDepBreaking("break-anti-dependencies",
66                      cl::desc("Break post-RA scheduling anti-dependencies: "
67                               "\"critical\", \"all\", or \"none\""),
68                      cl::init("none"), cl::Hidden);
69static cl::opt<bool>
70EnablePostRAHazardAvoidance("avoid-hazards",
71                      cl::desc("Enable exact hazard avoidance"),
72                      cl::init(true), cl::Hidden);
73
74// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
75static cl::opt<int>
76DebugDiv("postra-sched-debugdiv",
77                      cl::desc("Debug control MBBs that are scheduled"),
78                      cl::init(0), cl::Hidden);
79static cl::opt<int>
80DebugMod("postra-sched-debugmod",
81                      cl::desc("Debug control MBBs that are scheduled"),
82                      cl::init(0), cl::Hidden);
83
84AntiDepBreaker::~AntiDepBreaker() { }
85
86namespace {
87  class PostRAScheduler : public MachineFunctionPass {
88    AliasAnalysis *AA;
89    CodeGenOpt::Level OptLevel;
90
91  public:
92    static char ID;
93    PostRAScheduler(CodeGenOpt::Level ol) :
94      MachineFunctionPass(&ID), OptLevel(ol) {}
95
96    void getAnalysisUsage(AnalysisUsage &AU) const {
97      AU.setPreservesCFG();
98      AU.addRequired<AliasAnalysis>();
99      AU.addRequired<MachineDominatorTree>();
100      AU.addPreserved<MachineDominatorTree>();
101      AU.addRequired<MachineLoopInfo>();
102      AU.addPreserved<MachineLoopInfo>();
103      MachineFunctionPass::getAnalysisUsage(AU);
104    }
105
106    const char *getPassName() const {
107      return "Post RA top-down list latency scheduler";
108    }
109
110    bool runOnMachineFunction(MachineFunction &Fn);
111  };
112  char PostRAScheduler::ID = 0;
113
114  class SchedulePostRATDList : public ScheduleDAGInstrs {
115    /// AvailableQueue - The priority queue to use for the available SUnits.
116    ///
117    LatencyPriorityQueue AvailableQueue;
118
119    /// PendingQueue - This contains all of the instructions whose operands have
120    /// been issued, but their results are not ready yet (due to the latency of
121    /// the operation).  Once the operands becomes available, the instruction is
122    /// added to the AvailableQueue.
123    std::vector<SUnit*> PendingQueue;
124
125    /// Topo - A topological ordering for SUnits.
126    ScheduleDAGTopologicalSort Topo;
127
128    /// HazardRec - The hazard recognizer to use.
129    ScheduleHazardRecognizer *HazardRec;
130
131    /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
132    AntiDepBreaker *AntiDepBreak;
133
134    /// AA - AliasAnalysis for making memory reference queries.
135    AliasAnalysis *AA;
136
137    /// KillIndices - The index of the most recent kill (proceding bottom-up),
138    /// or ~0u if the register is not live.
139    unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
140
141  public:
142    SchedulePostRATDList(MachineFunction &MF,
143                         const MachineLoopInfo &MLI,
144                         const MachineDominatorTree &MDT,
145                         ScheduleHazardRecognizer *HR,
146                         AntiDepBreaker *ADB,
147                         AliasAnalysis *aa)
148      : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
149      HazardRec(HR), AntiDepBreak(ADB), AA(aa) {}
150
151    ~SchedulePostRATDList() {
152    }
153
154    /// StartBlock - Initialize register live-range state for scheduling in
155    /// this block.
156    ///
157    void StartBlock(MachineBasicBlock *BB);
158
159    /// Schedule - Schedule the instruction range using list scheduling.
160    ///
161    void Schedule();
162
163    /// Observe - Update liveness information to account for the current
164    /// instruction, which will not be scheduled.
165    ///
166    void Observe(MachineInstr *MI, unsigned Count);
167
168    /// FinishBlock - Clean up register live-range state.
169    ///
170    void FinishBlock();
171
172    /// FixupKills - Fix register kill flags that have been made
173    /// invalid due to scheduling
174    ///
175    void FixupKills(MachineBasicBlock *MBB);
176
177  private:
178    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
179    void ReleaseSuccessors(SUnit *SU);
180    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
181    void ListScheduleTopDown();
182    void StartBlockForKills(MachineBasicBlock *BB);
183
184    // ToggleKillFlag - Toggle a register operand kill flag. Other
185    // adjustments may be made to the instruction if necessary. Return
186    // true if the operand has been deleted, false if not.
187    bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
188  };
189}
190
191/// isSchedulingBoundary - Test if the given instruction should be
192/// considered a scheduling boundary. This primarily includes labels
193/// and terminators.
194///
195static bool isSchedulingBoundary(const MachineInstr *MI,
196                                 const MachineFunction &MF) {
197  // Terminators and labels can't be scheduled around.
198  if (MI->getDesc().isTerminator() || MI->isLabel())
199    return true;
200
201  // Don't attempt to schedule around any instruction that modifies
202  // a stack-oriented pointer, as it's unlikely to be profitable. This
203  // saves compile time, because it doesn't require every single
204  // stack slot reference to depend on the instruction that does the
205  // modification.
206  const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
207  if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore()))
208    return true;
209
210  return false;
211}
212
213bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
214  AA = &getAnalysis<AliasAnalysis>();
215
216  // Check for explicit enable/disable of post-ra scheduling.
217  TargetSubtarget::AntiDepBreakMode AntiDepMode = TargetSubtarget::ANTIDEP_NONE;
218  if (EnablePostRAScheduler.getPosition() > 0) {
219    if (!EnablePostRAScheduler)
220      return false;
221  } else {
222    // Check that post-RA scheduling is enabled for this target.
223    const TargetSubtarget &ST = Fn.getTarget().getSubtarget<TargetSubtarget>();
224    if (!ST.enablePostRAScheduler(OptLevel, AntiDepMode))
225      return false;
226  }
227
228  // Check for antidep breaking override...
229  if (EnableAntiDepBreaking.getPosition() > 0) {
230    AntiDepMode = (EnableAntiDepBreaking == "all") ? TargetSubtarget::ANTIDEP_ALL :
231      (EnableAntiDepBreaking == "critical") ? TargetSubtarget::ANTIDEP_CRITICAL :
232      TargetSubtarget::ANTIDEP_NONE;
233  }
234
235  DEBUG(errs() << "PostRAScheduler\n");
236
237  const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
238  const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
239  const InstrItineraryData &InstrItins = Fn.getTarget().getInstrItineraryData();
240  ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ?
241    (ScheduleHazardRecognizer *)new ExactHazardRecognizer(InstrItins) :
242    (ScheduleHazardRecognizer *)new SimpleHazardRecognizer();
243  AntiDepBreaker *ADB =
244    ((AntiDepMode == TargetSubtarget::ANTIDEP_ALL) ?
245     (AntiDepBreaker *)new AggressiveAntiDepBreaker(Fn) :
246     ((AntiDepMode == TargetSubtarget::ANTIDEP_CRITICAL) ?
247      (AntiDepBreaker *)new CriticalAntiDepBreaker(Fn) : NULL));
248
249  SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR, ADB, AA);
250
251  // Loop over all of the basic blocks
252  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
253       MBB != MBBe; ++MBB) {
254#ifndef NDEBUG
255    // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
256    if (DebugDiv > 0) {
257      static int bbcnt = 0;
258      if (bbcnt++ % DebugDiv != DebugMod)
259        continue;
260      errs() << "*** DEBUG scheduling " << Fn.getFunction()->getNameStr() <<
261        ":MBB ID#" << MBB->getNumber() << " ***\n";
262    }
263#endif
264
265    // Initialize register live-range state for scheduling in this block.
266    Scheduler.StartBlock(MBB);
267
268    // Schedule each sequence of instructions not interrupted by a label
269    // or anything else that effectively needs to shut down scheduling.
270    MachineBasicBlock::iterator Current = MBB->end();
271    unsigned Count = MBB->size(), CurrentCount = Count;
272    for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
273      MachineInstr *MI = prior(I);
274      if (isSchedulingBoundary(MI, Fn)) {
275        Scheduler.Run(MBB, I, Current, CurrentCount);
276        Scheduler.EmitSchedule(0);
277        Current = MI;
278        CurrentCount = Count - 1;
279        Scheduler.Observe(MI, CurrentCount);
280      }
281      I = MI;
282      --Count;
283    }
284    assert(Count == 0 && "Instruction count mismatch!");
285    assert((MBB->begin() == Current || CurrentCount != 0) &&
286           "Instruction count mismatch!");
287    Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
288    Scheduler.EmitSchedule(0);
289
290    // Clean up register live-range state.
291    Scheduler.FinishBlock();
292
293    // Update register kills
294    Scheduler.FixupKills(MBB);
295  }
296
297  delete HR;
298  delete ADB;
299
300  return true;
301}
302
303/// StartBlock - Initialize register live-range state for scheduling in
304/// this block.
305///
306void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
307  // Call the superclass.
308  ScheduleDAGInstrs::StartBlock(BB);
309
310  // Reset the hazard recognizer and anti-dep breaker.
311  HazardRec->Reset();
312  if (AntiDepBreak != NULL)
313    AntiDepBreak->StartBlock(BB);
314}
315
316/// Schedule - Schedule the instruction range using list scheduling.
317///
318void SchedulePostRATDList::Schedule() {
319  // Build the scheduling graph.
320  BuildSchedGraph(AA);
321
322  if (AntiDepBreak != NULL) {
323    for (unsigned i = 0, Trials = AntiDepBreak->GetMaxTrials();
324         i < Trials; ++i) {
325      DEBUG(errs() << "********** Break Anti-Deps, Trial " <<
326            i << " **********\n");
327      unsigned Broken =
328        AntiDepBreak->BreakAntiDependencies(SUnits, Begin, InsertPos,
329                                            InsertPosIndex);
330      if (Broken == 0)
331        break;
332
333      // We made changes. Update the dependency graph.
334      // Theoretically we could update the graph in place:
335      // When a live range is changed to use a different register, remove
336      // the def's anti-dependence *and* output-dependence edges due to
337      // that register, and add new anti-dependence and output-dependence
338      // edges based on the next live range of the register.
339      SUnits.clear();
340      EntrySU = SUnit();
341      ExitSU = SUnit();
342      BuildSchedGraph(AA);
343
344      NumFixedAnti += Broken;
345    }
346  }
347
348  DEBUG(errs() << "********** List Scheduling **********\n");
349
350  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
351          SUnits[su].dumpAll(this));
352
353  AvailableQueue.initNodes(SUnits);
354
355  ListScheduleTopDown();
356
357  AvailableQueue.releaseState();
358}
359
360/// Observe - Update liveness information to account for the current
361/// instruction, which will not be scheduled.
362///
363void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
364  if (AntiDepBreak != NULL)
365    AntiDepBreak->Observe(MI, Count, InsertPosIndex);
366}
367
368/// FinishBlock - Clean up register live-range state.
369///
370void SchedulePostRATDList::FinishBlock() {
371  if (AntiDepBreak != NULL)
372    AntiDepBreak->FinishBlock();
373
374  // Call the superclass.
375  ScheduleDAGInstrs::FinishBlock();
376}
377
378/// StartBlockForKills - Initialize register live-range state for updating kills
379///
380void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
381  // Initialize the indices to indicate that no registers are live.
382  std::fill(KillIndices, array_endof(KillIndices), ~0u);
383
384  // Determine the live-out physregs for this block.
385  if (!BB->empty() && BB->back().getDesc().isReturn()) {
386    // In a return block, examine the function live-out regs.
387    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
388           E = MRI.liveout_end(); I != E; ++I) {
389      unsigned Reg = *I;
390      KillIndices[Reg] = BB->size();
391      // Repeat, for all subregs.
392      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
393           *Subreg; ++Subreg) {
394        KillIndices[*Subreg] = BB->size();
395      }
396    }
397  }
398  else {
399    // In a non-return block, examine the live-in regs of all successors.
400    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
401           SE = BB->succ_end(); SI != SE; ++SI) {
402      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
403             E = (*SI)->livein_end(); I != E; ++I) {
404        unsigned Reg = *I;
405        KillIndices[Reg] = BB->size();
406        // Repeat, for all subregs.
407        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
408             *Subreg; ++Subreg) {
409          KillIndices[*Subreg] = BB->size();
410        }
411      }
412    }
413  }
414}
415
416bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
417                                          MachineOperand &MO) {
418  // Setting kill flag...
419  if (!MO.isKill()) {
420    MO.setIsKill(true);
421    return false;
422  }
423
424  // If MO itself is live, clear the kill flag...
425  if (KillIndices[MO.getReg()] != ~0u) {
426    MO.setIsKill(false);
427    return false;
428  }
429
430  // If any subreg of MO is live, then create an imp-def for that
431  // subreg and keep MO marked as killed.
432  MO.setIsKill(false);
433  bool AllDead = true;
434  const unsigned SuperReg = MO.getReg();
435  for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg);
436       *Subreg; ++Subreg) {
437    if (KillIndices[*Subreg] != ~0u) {
438      MI->addOperand(MachineOperand::CreateReg(*Subreg,
439                                               true  /*IsDef*/,
440                                               true  /*IsImp*/,
441                                               false /*IsKill*/,
442                                               false /*IsDead*/));
443      AllDead = false;
444    }
445  }
446
447  if(AllDead)
448    MO.setIsKill(true);
449  return false;
450}
451
452/// FixupKills - Fix the register kill flags, they may have been made
453/// incorrect by instruction reordering.
454///
455void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
456  DEBUG(errs() << "Fixup kills for BB ID#" << MBB->getNumber() << '\n');
457
458  std::set<unsigned> killedRegs;
459  BitVector ReservedRegs = TRI->getReservedRegs(MF);
460
461  StartBlockForKills(MBB);
462
463  // Examine block from end to start...
464  unsigned Count = MBB->size();
465  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
466       I != E; --Count) {
467    MachineInstr *MI = --I;
468
469    // Update liveness.  Registers that are defed but not used in this
470    // instruction are now dead. Mark register and all subregs as they
471    // are completely defined.
472    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
473      MachineOperand &MO = MI->getOperand(i);
474      if (!MO.isReg()) continue;
475      unsigned Reg = MO.getReg();
476      if (Reg == 0) continue;
477      if (!MO.isDef()) continue;
478      // Ignore two-addr defs.
479      if (MI->isRegTiedToUseOperand(i)) continue;
480
481      KillIndices[Reg] = ~0u;
482
483      // Repeat for all subregs.
484      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
485           *Subreg; ++Subreg) {
486        KillIndices[*Subreg] = ~0u;
487      }
488    }
489
490    // Examine all used registers and set/clear kill flag. When a
491    // register is used multiple times we only set the kill flag on
492    // the first use.
493    killedRegs.clear();
494    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
495      MachineOperand &MO = MI->getOperand(i);
496      if (!MO.isReg() || !MO.isUse()) continue;
497      unsigned Reg = MO.getReg();
498      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
499
500      bool kill = false;
501      if (killedRegs.find(Reg) == killedRegs.end()) {
502        kill = true;
503        // A register is not killed if any subregs are live...
504        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
505             *Subreg; ++Subreg) {
506          if (KillIndices[*Subreg] != ~0u) {
507            kill = false;
508            break;
509          }
510        }
511
512        // If subreg is not live, then register is killed if it became
513        // live in this instruction
514        if (kill)
515          kill = (KillIndices[Reg] == ~0u);
516      }
517
518      if (MO.isKill() != kill) {
519        bool removed = ToggleKillFlag(MI, MO);
520        if (removed) {
521          DEBUG(errs() << "Fixed <removed> in ");
522        } else {
523          DEBUG(errs() << "Fixed " << MO << " in ");
524        }
525        DEBUG(MI->dump());
526      }
527
528      killedRegs.insert(Reg);
529    }
530
531    // Mark any used register (that is not using undef) and subregs as
532    // now live...
533    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
534      MachineOperand &MO = MI->getOperand(i);
535      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
536      unsigned Reg = MO.getReg();
537      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
538
539      KillIndices[Reg] = Count;
540
541      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
542           *Subreg; ++Subreg) {
543        KillIndices[*Subreg] = Count;
544      }
545    }
546  }
547}
548
549//===----------------------------------------------------------------------===//
550//  Top-Down Scheduling
551//===----------------------------------------------------------------------===//
552
553/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
554/// the PendingQueue if the count reaches zero. Also update its cycle bound.
555void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
556  SUnit *SuccSU = SuccEdge->getSUnit();
557
558#ifndef NDEBUG
559  if (SuccSU->NumPredsLeft == 0) {
560    errs() << "*** Scheduling failed! ***\n";
561    SuccSU->dump(this);
562    errs() << " has been released too many times!\n";
563    llvm_unreachable(0);
564  }
565#endif
566  --SuccSU->NumPredsLeft;
567
568  // Compute how many cycles it will be before this actually becomes
569  // available.  This is the max of the start time of all predecessors plus
570  // their latencies.
571  SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
572
573  // If all the node's predecessors are scheduled, this node is ready
574  // to be scheduled. Ignore the special ExitSU node.
575  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
576    PendingQueue.push_back(SuccSU);
577}
578
579/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
580void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
581  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
582       I != E; ++I)
583    ReleaseSucc(SU, &*I);
584}
585
586/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
587/// count of its successors. If a successor pending count is zero, add it to
588/// the Available queue.
589void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
590  DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: ");
591  DEBUG(SU->dump(this));
592
593  Sequence.push_back(SU);
594  assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
595  SU->setDepthToAtLeast(CurCycle);
596
597  ReleaseSuccessors(SU);
598  SU->isScheduled = true;
599  AvailableQueue.ScheduledNode(SU);
600}
601
602/// ListScheduleTopDown - The main loop of list scheduling for top-down
603/// schedulers.
604void SchedulePostRATDList::ListScheduleTopDown() {
605  unsigned CurCycle = 0;
606
607  // Release any successors of the special Entry node.
608  ReleaseSuccessors(&EntrySU);
609
610  // All leaves to Available queue.
611  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
612    // It is available if it has no predecessors.
613    if (SUnits[i].Preds.empty()) {
614      AvailableQueue.push(&SUnits[i]);
615      SUnits[i].isAvailable = true;
616    }
617  }
618
619  // In any cycle where we can't schedule any instructions, we must
620  // stall or emit a noop, depending on the target.
621  bool CycleHasInsts = false;
622
623  // While Available queue is not empty, grab the node with the highest
624  // priority. If it is not ready put it back.  Schedule the node.
625  std::vector<SUnit*> NotReady;
626  Sequence.reserve(SUnits.size());
627  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
628    // Check to see if any of the pending instructions are ready to issue.  If
629    // so, add them to the available queue.
630    unsigned MinDepth = ~0u;
631    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
632      if (PendingQueue[i]->getDepth() <= CurCycle) {
633        AvailableQueue.push(PendingQueue[i]);
634        PendingQueue[i]->isAvailable = true;
635        PendingQueue[i] = PendingQueue.back();
636        PendingQueue.pop_back();
637        --i; --e;
638      } else if (PendingQueue[i]->getDepth() < MinDepth)
639        MinDepth = PendingQueue[i]->getDepth();
640    }
641
642    DEBUG(errs() << "\n*** Examining Available\n";
643          LatencyPriorityQueue q = AvailableQueue;
644          while (!q.empty()) {
645            SUnit *su = q.pop();
646            errs() << "Height " << su->getHeight() << ": ";
647            su->dump(this);
648          });
649
650    SUnit *FoundSUnit = 0;
651
652    bool HasNoopHazards = false;
653    while (!AvailableQueue.empty()) {
654      SUnit *CurSUnit = AvailableQueue.pop();
655
656      ScheduleHazardRecognizer::HazardType HT =
657        HazardRec->getHazardType(CurSUnit);
658      if (HT == ScheduleHazardRecognizer::NoHazard) {
659        FoundSUnit = CurSUnit;
660        break;
661      }
662
663      // Remember if this is a noop hazard.
664      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
665
666      NotReady.push_back(CurSUnit);
667    }
668
669    // Add the nodes that aren't ready back onto the available list.
670    if (!NotReady.empty()) {
671      AvailableQueue.push_all(NotReady);
672      NotReady.clear();
673    }
674
675    // If we found a node to schedule, do it now.
676    if (FoundSUnit) {
677      ScheduleNodeTopDown(FoundSUnit, CurCycle);
678      HazardRec->EmitInstruction(FoundSUnit);
679      CycleHasInsts = true;
680
681      // If we are using the target-specific hazards, then don't
682      // advance the cycle time just because we schedule a node. If
683      // the target allows it we can schedule multiple nodes in the
684      // same cycle.
685      if (!EnablePostRAHazardAvoidance) {
686        if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
687          ++CurCycle;
688      }
689    } else {
690      if (CycleHasInsts) {
691        DEBUG(errs() << "*** Finished cycle " << CurCycle << '\n');
692        HazardRec->AdvanceCycle();
693      } else if (!HasNoopHazards) {
694        // Otherwise, we have a pipeline stall, but no other problem,
695        // just advance the current cycle and try again.
696        DEBUG(errs() << "*** Stall in cycle " << CurCycle << '\n');
697        HazardRec->AdvanceCycle();
698        ++NumStalls;
699      } else {
700        // Otherwise, we have no instructions to issue and we have instructions
701        // that will fault if we don't do this right.  This is the case for
702        // processors without pipeline interlocks and other cases.
703        DEBUG(errs() << "*** Emitting noop in cycle " << CurCycle << '\n');
704        HazardRec->EmitNoop();
705        Sequence.push_back(0);   // NULL here means noop
706        ++NumNoops;
707      }
708
709      ++CurCycle;
710      CycleHasInsts = false;
711    }
712  }
713
714#ifndef NDEBUG
715  VerifySchedule(/*isBottomUp=*/false);
716#endif
717}
718
719//===----------------------------------------------------------------------===//
720//                         Public Constructor Functions
721//===----------------------------------------------------------------------===//
722
723FunctionPass *llvm::createPostRAScheduler(CodeGenOpt::Level OptLevel) {
724  return new PostRAScheduler(OptLevel);
725}
726