PostRASchedulerList.cpp revision afca4630b4689e3fd3997682add43f86a6e67a5c
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "ScheduleDAGInstrs.h"
23#include "llvm/CodeGen/Passes.h"
24#include "llvm/CodeGen/LatencyPriorityQueue.h"
25#include "llvm/CodeGen/SchedulerRegistry.h"
26#include "llvm/CodeGen/MachineDominators.h"
27#include "llvm/CodeGen/MachineFunctionPass.h"
28#include "llvm/CodeGen/MachineLoopInfo.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetRegisterInfo.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/ADT/Statistic.h"
37#include <map>
38using namespace llvm;
39
40STATISTIC(NumNoops, "Number of noops inserted");
41STATISTIC(NumStalls, "Number of pipeline stalls");
42
43static cl::opt<bool>
44EnableAntiDepBreaking("break-anti-dependencies",
45                      cl::desc("Break post-RA scheduling anti-dependencies"),
46                      cl::init(true), cl::Hidden);
47
48static cl::opt<bool>
49EnablePostRAHazardAvoidance("avoid-hazards",
50                      cl::desc("Enable simple hazard-avoidance"),
51                      cl::init(true), cl::Hidden);
52
53namespace {
54  class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
55  public:
56    static char ID;
57    PostRAScheduler() : MachineFunctionPass(&ID) {}
58
59    void getAnalysisUsage(AnalysisUsage &AU) const {
60      AU.addRequired<MachineDominatorTree>();
61      AU.addPreserved<MachineDominatorTree>();
62      AU.addRequired<MachineLoopInfo>();
63      AU.addPreserved<MachineLoopInfo>();
64      MachineFunctionPass::getAnalysisUsage(AU);
65    }
66
67    const char *getPassName() const {
68      return "Post RA top-down list latency scheduler";
69    }
70
71    bool runOnMachineFunction(MachineFunction &Fn);
72  };
73  char PostRAScheduler::ID = 0;
74
75  class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
76    /// AvailableQueue - The priority queue to use for the available SUnits.
77    ///
78    LatencyPriorityQueue AvailableQueue;
79
80    /// PendingQueue - This contains all of the instructions whose operands have
81    /// been issued, but their results are not ready yet (due to the latency of
82    /// the operation).  Once the operands becomes available, the instruction is
83    /// added to the AvailableQueue.
84    std::vector<SUnit*> PendingQueue;
85
86    /// Topo - A topological ordering for SUnits.
87    ScheduleDAGTopologicalSort Topo;
88
89    /// AllocatableSet - The set of allocatable registers.
90    /// We'll be ignoring anti-dependencies on non-allocatable registers,
91    /// because they may not be safe to break.
92    const BitVector AllocatableSet;
93
94    /// HazardRec - The hazard recognizer to use.
95    ScheduleHazardRecognizer *HazardRec;
96
97  public:
98    SchedulePostRATDList(MachineFunction &MF,
99                         const MachineLoopInfo &MLI,
100                         const MachineDominatorTree &MDT,
101                         ScheduleHazardRecognizer *HR)
102      : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
103        AllocatableSet(TRI->getAllocatableSet(MF)),
104        HazardRec(HR) {}
105
106    ~SchedulePostRATDList() {
107      delete HazardRec;
108    }
109
110    void Schedule();
111
112  private:
113    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
114    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
115    void ListScheduleTopDown();
116    bool BreakAntiDependencies();
117  };
118
119  /// SimpleHazardRecognizer - A *very* simple hazard recognizer. It uses
120  /// a coarse classification and attempts to avoid that instructions of
121  /// a given class aren't grouped too densely together.
122  class SimpleHazardRecognizer : public ScheduleHazardRecognizer {
123    /// Class - A simple classification for SUnits.
124    enum Class {
125      Other, Load, Store
126    };
127
128    /// Window - The Class values of the most recently issued
129    /// instructions.
130    Class Window[8];
131
132    /// getClass - Classify the given SUnit.
133    Class getClass(const SUnit *SU) {
134      const MachineInstr *MI = SU->getInstr();
135      const TargetInstrDesc &TID = MI->getDesc();
136      if (TID.mayLoad())
137        return Load;
138      if (TID.mayStore())
139        return Store;
140      return Other;
141    }
142
143    /// Step - Rotate the existing entries in Window and insert the
144    /// given class value in position as the most recent.
145    void Step(Class C) {
146      std::copy(Window+1, array_endof(Window), Window);
147      Window[array_lengthof(Window)-1] = C;
148    }
149
150  public:
151    SimpleHazardRecognizer() : Window() {}
152
153    virtual HazardType getHazardType(SUnit *SU) {
154      Class C = getClass(SU);
155      if (C == Other)
156        return NoHazard;
157      unsigned Score = 0;
158      for (unsigned i = 0; i != array_lengthof(Window); ++i)
159        if (Window[i] == C)
160          Score += i + 1;
161      if (Score > array_lengthof(Window) * 2)
162        return Hazard;
163      return NoHazard;
164    }
165
166    virtual void EmitInstruction(SUnit *SU) {
167      Step(getClass(SU));
168    }
169
170    virtual void AdvanceCycle() {
171      Step(Other);
172    }
173  };
174}
175
176bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
177  DOUT << "PostRAScheduler\n";
178
179  const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
180  const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
181  ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ?
182                                 new SimpleHazardRecognizer :
183                                 new ScheduleHazardRecognizer();
184
185  SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR);
186
187  // Loop over all of the basic blocks
188  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
189       MBB != MBBe; ++MBB) {
190    // Schedule each sequence of instructions not interrupted by a label
191    // or anything else that effectively needs to shut down scheduling.
192    MachineBasicBlock::iterator Current = MBB->end(), Top = MBB->begin();
193    for (MachineBasicBlock::iterator I = Current; I != Top; ) {
194      MachineInstr *MI = --I;
195      if (MI->getDesc().isTerminator() || MI->isLabel()) {
196        Scheduler.Run(0, MBB, next(I), Current);
197        Scheduler.EmitSchedule();
198        Current = I;
199      }
200    }
201
202    Scheduler.Run(0, MBB, Top, Current);
203    Scheduler.EmitSchedule();
204  }
205
206  return true;
207}
208
209/// Schedule - Schedule the DAG using list scheduling.
210void SchedulePostRATDList::Schedule() {
211  DOUT << "********** List Scheduling **********\n";
212
213  // Build the scheduling graph.
214  BuildSchedGraph();
215
216  if (EnableAntiDepBreaking) {
217    if (BreakAntiDependencies()) {
218      // We made changes. Update the dependency graph.
219      // Theoretically we could update the graph in place:
220      // When a live range is changed to use a different register, remove
221      // the def's anti-dependence *and* output-dependence edges due to
222      // that register, and add new anti-dependence and output-dependence
223      // edges based on the next live range of the register.
224      SUnits.clear();
225      BuildSchedGraph();
226    }
227  }
228
229  AvailableQueue.initNodes(SUnits);
230
231  ListScheduleTopDown();
232
233  AvailableQueue.releaseState();
234}
235
236/// getInstrOperandRegClass - Return register class of the operand of an
237/// instruction of the specified TargetInstrDesc.
238static const TargetRegisterClass*
239getInstrOperandRegClass(const TargetRegisterInfo *TRI,
240                         const TargetInstrDesc &II, unsigned Op) {
241  if (Op >= II.getNumOperands())
242    return NULL;
243  if (II.OpInfo[Op].isLookupPtrRegClass())
244    return TRI->getPointerRegClass();
245  return TRI->getRegClass(II.OpInfo[Op].RegClass);
246}
247
248/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
249/// critical path.
250static SDep *CriticalPathStep(SUnit *SU) {
251  SDep *Next = 0;
252  unsigned NextDepth = 0;
253  // Find the predecessor edge with the greatest depth.
254  for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
255       P != PE; ++P) {
256    SUnit *PredSU = P->getSUnit();
257    unsigned PredLatency = P->getLatency();
258    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
259    // In the case of a latency tie, prefer an anti-dependency edge over
260    // other types of edges.
261    if (NextDepth < PredTotalLatency ||
262        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
263      NextDepth = PredTotalLatency;
264      Next = &*P;
265    }
266  }
267  return Next;
268}
269
270/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
271/// of the ScheduleDAG and break them by renaming registers.
272///
273bool SchedulePostRATDList::BreakAntiDependencies() {
274  // The code below assumes that there is at least one instruction,
275  // so just duck out immediately if the block is empty.
276  if (SUnits.empty()) return false;
277
278  // Find the node at the bottom of the critical path.
279  SUnit *Max = 0;
280  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
281    SUnit *SU = &SUnits[i];
282    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
283      Max = SU;
284  }
285
286  DOUT << "Critical path has total latency "
287       << (Max->getDepth() + Max->Latency) << "\n";
288
289  // Track progress along the critical path through the SUnit graph as we walk
290  // the instructions.
291  SUnit *CriticalPathSU = Max;
292  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
293
294  // For live regs that are only used in one register class in a live range,
295  // the register class. If the register is not live, the corresponding value
296  // is null. If the register is live but used in multiple register classes,
297  // the corresponding value is -1 casted to a pointer.
298  const TargetRegisterClass *
299    Classes[TargetRegisterInfo::FirstVirtualRegister] = {};
300
301  // Map registers to all their references within a live range.
302  std::multimap<unsigned, MachineOperand *> RegRefs;
303
304  // The index of the most recent kill (proceding bottom-up), or ~0u if
305  // the register is not live.
306  unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
307  std::fill(KillIndices, array_endof(KillIndices), ~0u);
308  // The index of the most recent complete def (proceding bottom up), or ~0u if
309  // the register is live.
310  unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
311  std::fill(DefIndices, array_endof(DefIndices), BB->size());
312
313  // Determine the live-out physregs for this block.
314  if (BB->back().getDesc().isReturn())
315    // In a return block, examine the function live-out regs.
316    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
317         E = MRI.liveout_end(); I != E; ++I) {
318      unsigned Reg = *I;
319      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
320      KillIndices[Reg] = BB->size();
321      DefIndices[Reg] = ~0u;
322      // Repeat, for all aliases.
323      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
324        unsigned AliasReg = *Alias;
325        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
326        KillIndices[AliasReg] = BB->size();
327        DefIndices[AliasReg] = ~0u;
328      }
329    }
330  else
331    // In a non-return block, examine the live-in regs of all successors.
332    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
333         SE = BB->succ_end(); SI != SE; ++SI)
334      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
335           E = (*SI)->livein_end(); I != E; ++I) {
336        unsigned Reg = *I;
337        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
338        KillIndices[Reg] = BB->size();
339        DefIndices[Reg] = ~0u;
340        // Repeat, for all aliases.
341        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
342          unsigned AliasReg = *Alias;
343          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
344          KillIndices[AliasReg] = BB->size();
345          DefIndices[AliasReg] = ~0u;
346        }
347      }
348
349  // Consider callee-saved registers as live-out, since we're running after
350  // prologue/epilogue insertion so there's no way to add additional
351  // saved registers.
352  //
353  // TODO: If the callee saves and restores these, then we can potentially
354  // use them between the save and the restore. To do that, we could scan
355  // the exit blocks to see which of these registers are defined.
356  // Alternatively, callee-saved registers that aren't saved and restored
357  // could be marked live-in in every block.
358  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
359    unsigned Reg = *I;
360    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
361    KillIndices[Reg] = BB->size();
362    DefIndices[Reg] = ~0u;
363    // Repeat, for all aliases.
364    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
365      unsigned AliasReg = *Alias;
366      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
367      KillIndices[AliasReg] = BB->size();
368      DefIndices[AliasReg] = ~0u;
369    }
370  }
371
372  // Consider this pattern:
373  //   A = ...
374  //   ... = A
375  //   A = ...
376  //   ... = A
377  //   A = ...
378  //   ... = A
379  //   A = ...
380  //   ... = A
381  // There are three anti-dependencies here, and without special care,
382  // we'd break all of them using the same register:
383  //   A = ...
384  //   ... = A
385  //   B = ...
386  //   ... = B
387  //   B = ...
388  //   ... = B
389  //   B = ...
390  //   ... = B
391  // because at each anti-dependence, B is the first register that
392  // isn't A which is free.  This re-introduces anti-dependencies
393  // at all but one of the original anti-dependencies that we were
394  // trying to break.  To avoid this, keep track of the most recent
395  // register that each register was replaced with, avoid avoid
396  // using it to repair an anti-dependence on the same register.
397  // This lets us produce this:
398  //   A = ...
399  //   ... = A
400  //   B = ...
401  //   ... = B
402  //   C = ...
403  //   ... = C
404  //   B = ...
405  //   ... = B
406  // This still has an anti-dependence on B, but at least it isn't on the
407  // original critical path.
408  //
409  // TODO: If we tracked more than one register here, we could potentially
410  // fix that remaining critical edge too. This is a little more involved,
411  // because unlike the most recent register, less recent registers should
412  // still be considered, though only if no other registers are available.
413  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
414
415  // Attempt to break anti-dependence edges on the critical path. Walk the
416  // instructions from the bottom up, tracking information about liveness
417  // as we go to help determine which registers are available.
418  bool Changed = false;
419  unsigned Count = SUnits.size() - 1;
420  for (MachineBasicBlock::iterator I = End, E = Begin;
421       I != E; --Count) {
422    MachineInstr *MI = --I;
423
424    // After regalloc, IMPLICIT_DEF instructions aren't safe to treat as
425    // dependence-breaking. In the case of an INSERT_SUBREG, the IMPLICIT_DEF
426    // is left behind appearing to clobber the super-register, while the
427    // subregister needs to remain live. So we just ignore them.
428    if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
429      continue;
430
431    // Check if this instruction has a dependence on the critical path that
432    // is an anti-dependence that we may be able to break. If it is, set
433    // AntiDepReg to the non-zero register associated with the anti-dependence.
434    //
435    // We limit our attention to the critical path as a heuristic to avoid
436    // breaking anti-dependence edges that aren't going to significantly
437    // impact the overall schedule. There are a limited number of registers
438    // and we want to save them for the important edges.
439    //
440    // TODO: Instructions with multiple defs could have multiple
441    // anti-dependencies. The current code here only knows how to break one
442    // edge per instruction. Note that we'd have to be able to break all of
443    // the anti-dependencies in an instruction in order to be effective.
444    unsigned AntiDepReg = 0;
445    if (MI == CriticalPathMI) {
446      if (SDep *Edge = CriticalPathStep(CriticalPathSU)) {
447        SUnit *NextSU = Edge->getSUnit();
448
449        // Only consider anti-dependence edges.
450        if (Edge->getKind() == SDep::Anti) {
451          AntiDepReg = Edge->getReg();
452          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
453          // Don't break anti-dependencies on non-allocatable registers.
454          if (!AllocatableSet.test(AntiDepReg))
455            AntiDepReg = 0;
456          else {
457            // If the SUnit has other dependencies on the SUnit that it
458            // anti-depends on, don't bother breaking the anti-dependency
459            // since those edges would prevent such units from being
460            // scheduled past each other regardless.
461            //
462            // Also, if there are dependencies on other SUnits with the
463            // same register as the anti-dependency, don't attempt to
464            // break it.
465            for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(),
466                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
467              if (P->getSUnit() == NextSU ?
468                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
469                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
470                AntiDepReg = 0;
471                break;
472              }
473          }
474        }
475        CriticalPathSU = NextSU;
476        CriticalPathMI = CriticalPathSU->getInstr();
477      } else {
478        // We've reached the end of the critical path.
479        CriticalPathSU = 0;
480        CriticalPathMI = 0;
481      }
482    }
483
484    // Scan the register operands for this instruction and update
485    // Classes and RegRefs.
486    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
487      MachineOperand &MO = MI->getOperand(i);
488      if (!MO.isReg()) continue;
489      unsigned Reg = MO.getReg();
490      if (Reg == 0) continue;
491      const TargetRegisterClass *NewRC =
492        getInstrOperandRegClass(TRI, MI->getDesc(), i);
493
494      // If this instruction has a use of AntiDepReg, breaking it
495      // is invalid.
496      if (MO.isUse() && AntiDepReg == Reg)
497        AntiDepReg = 0;
498
499      // For now, only allow the register to be changed if its register
500      // class is consistent across all uses.
501      if (!Classes[Reg] && NewRC)
502        Classes[Reg] = NewRC;
503      else if (!NewRC || Classes[Reg] != NewRC)
504        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
505
506      // Now check for aliases.
507      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
508        // If an alias of the reg is used during the live range, give up.
509        // Note that this allows us to skip checking if AntiDepReg
510        // overlaps with any of the aliases, among other things.
511        unsigned AliasReg = *Alias;
512        if (Classes[AliasReg]) {
513          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
514          Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
515        }
516      }
517
518      // If we're still willing to consider this register, note the reference.
519      if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
520        RegRefs.insert(std::make_pair(Reg, &MO));
521    }
522
523    // Determine AntiDepReg's register class, if it is live and is
524    // consistently used within a single class.
525    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
526    assert((AntiDepReg == 0 || RC != NULL) &&
527           "Register should be live if it's causing an anti-dependence!");
528    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
529      AntiDepReg = 0;
530
531    // Look for a suitable register to use to break the anti-depenence.
532    //
533    // TODO: Instead of picking the first free register, consider which might
534    // be the best.
535    if (AntiDepReg != 0) {
536      for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
537           RE = RC->allocation_order_end(MF); R != RE; ++R) {
538        unsigned NewReg = *R;
539        // Don't replace a register with itself.
540        if (NewReg == AntiDepReg) continue;
541        // Don't replace a register with one that was recently used to repair
542        // an anti-dependence with this AntiDepReg, because that would
543        // re-introduce that anti-dependence.
544        if (NewReg == LastNewReg[AntiDepReg]) continue;
545        // If NewReg is dead and NewReg's most recent def is not before
546        // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
547        assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
548               "Kill and Def maps aren't consistent for AntiDepReg!");
549        assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
550               "Kill and Def maps aren't consistent for NewReg!");
551        if (KillIndices[NewReg] == ~0u &&
552            Classes[NewReg] != reinterpret_cast<TargetRegisterClass *>(-1) &&
553            KillIndices[AntiDepReg] <= DefIndices[NewReg]) {
554          DOUT << "Breaking anti-dependence edge on "
555               << TRI->getName(AntiDepReg)
556               << " with " << RegRefs.count(AntiDepReg) << " references"
557               << " using " << TRI->getName(NewReg) << "!\n";
558
559          // Update the references to the old register to refer to the new
560          // register.
561          std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
562                    std::multimap<unsigned, MachineOperand *>::iterator>
563             Range = RegRefs.equal_range(AntiDepReg);
564          for (std::multimap<unsigned, MachineOperand *>::iterator
565               Q = Range.first, QE = Range.second; Q != QE; ++Q)
566            Q->second->setReg(NewReg);
567
568          // We just went back in time and modified history; the
569          // liveness information for the anti-depenence reg is now
570          // inconsistent. Set the state as if it were dead.
571          Classes[NewReg] = Classes[AntiDepReg];
572          DefIndices[NewReg] = DefIndices[AntiDepReg];
573          KillIndices[NewReg] = KillIndices[AntiDepReg];
574
575          Classes[AntiDepReg] = 0;
576          DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
577          KillIndices[AntiDepReg] = ~0u;
578
579          RegRefs.erase(AntiDepReg);
580          Changed = true;
581          LastNewReg[AntiDepReg] = NewReg;
582          break;
583        }
584      }
585    }
586
587    // Update liveness.
588    // Proceding upwards, registers that are defed but not used in this
589    // instruction are now dead.
590    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
591      MachineOperand &MO = MI->getOperand(i);
592      if (!MO.isReg()) continue;
593      unsigned Reg = MO.getReg();
594      if (Reg == 0) continue;
595      if (!MO.isDef()) continue;
596      // Ignore two-addr defs.
597      if (MI->isRegReDefinedByTwoAddr(i)) continue;
598
599      DefIndices[Reg] = Count;
600      KillIndices[Reg] = ~0u;
601      Classes[Reg] = 0;
602      RegRefs.erase(Reg);
603      // Repeat, for all subregs.
604      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
605           *Subreg; ++Subreg) {
606        unsigned SubregReg = *Subreg;
607        DefIndices[SubregReg] = Count;
608        KillIndices[SubregReg] = ~0u;
609        Classes[SubregReg] = 0;
610        RegRefs.erase(SubregReg);
611      }
612      // Conservatively mark super-registers as unusable.
613      for (const unsigned *Super = TRI->getSuperRegisters(Reg);
614           *Super; ++Super) {
615        unsigned SuperReg = *Super;
616        Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
617      }
618    }
619    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
620      MachineOperand &MO = MI->getOperand(i);
621      if (!MO.isReg()) continue;
622      unsigned Reg = MO.getReg();
623      if (Reg == 0) continue;
624      if (!MO.isUse()) continue;
625
626      const TargetRegisterClass *NewRC =
627        getInstrOperandRegClass(TRI, MI->getDesc(), i);
628
629      // For now, only allow the register to be changed if its register
630      // class is consistent across all uses.
631      if (!Classes[Reg] && NewRC)
632        Classes[Reg] = NewRC;
633      else if (!NewRC || Classes[Reg] != NewRC)
634        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
635
636      RegRefs.insert(std::make_pair(Reg, &MO));
637
638      // It wasn't previously live but now it is, this is a kill.
639      if (KillIndices[Reg] == ~0u) {
640        KillIndices[Reg] = Count;
641        DefIndices[Reg] = ~0u;
642      }
643      // Repeat, for all aliases.
644      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
645        unsigned AliasReg = *Alias;
646        if (KillIndices[AliasReg] == ~0u) {
647          KillIndices[AliasReg] = Count;
648          DefIndices[AliasReg] = ~0u;
649        }
650      }
651    }
652  }
653  assert(Count == ~0u && "Count mismatch!");
654
655  return Changed;
656}
657
658//===----------------------------------------------------------------------===//
659//  Top-Down Scheduling
660//===----------------------------------------------------------------------===//
661
662/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
663/// the PendingQueue if the count reaches zero. Also update its cycle bound.
664void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
665  SUnit *SuccSU = SuccEdge->getSUnit();
666  --SuccSU->NumPredsLeft;
667
668#ifndef NDEBUG
669  if (SuccSU->NumPredsLeft < 0) {
670    cerr << "*** Scheduling failed! ***\n";
671    SuccSU->dump(this);
672    cerr << " has been released too many times!\n";
673    assert(0);
674  }
675#endif
676
677  // Compute how many cycles it will be before this actually becomes
678  // available.  This is the max of the start time of all predecessors plus
679  // their latencies.
680  SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
681
682  if (SuccSU->NumPredsLeft == 0) {
683    PendingQueue.push_back(SuccSU);
684  }
685}
686
687/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
688/// count of its successors. If a successor pending count is zero, add it to
689/// the Available queue.
690void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
691  DOUT << "*** Scheduling [" << CurCycle << "]: ";
692  DEBUG(SU->dump(this));
693
694  Sequence.push_back(SU);
695  assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
696  SU->setDepthToAtLeast(CurCycle);
697
698  // Top down: release successors.
699  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
700       I != E; ++I)
701    ReleaseSucc(SU, &*I);
702
703  SU->isScheduled = true;
704  AvailableQueue.ScheduledNode(SU);
705}
706
707/// ListScheduleTopDown - The main loop of list scheduling for top-down
708/// schedulers.
709void SchedulePostRATDList::ListScheduleTopDown() {
710  unsigned CurCycle = 0;
711
712  // All leaves to Available queue.
713  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
714    // It is available if it has no predecessors.
715    if (SUnits[i].Preds.empty()) {
716      AvailableQueue.push(&SUnits[i]);
717      SUnits[i].isAvailable = true;
718    }
719  }
720
721  // While Available queue is not empty, grab the node with the highest
722  // priority. If it is not ready put it back.  Schedule the node.
723  std::vector<SUnit*> NotReady;
724  Sequence.reserve(SUnits.size());
725  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
726    // Check to see if any of the pending instructions are ready to issue.  If
727    // so, add them to the available queue.
728    unsigned MinDepth = ~0u;
729    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
730      if (PendingQueue[i]->getDepth() <= CurCycle) {
731        AvailableQueue.push(PendingQueue[i]);
732        PendingQueue[i]->isAvailable = true;
733        PendingQueue[i] = PendingQueue.back();
734        PendingQueue.pop_back();
735        --i; --e;
736      } else if (PendingQueue[i]->getDepth() < MinDepth)
737        MinDepth = PendingQueue[i]->getDepth();
738    }
739
740    // If there are no instructions available, don't try to issue anything, and
741    // don't advance the hazard recognizer.
742    if (AvailableQueue.empty()) {
743      CurCycle = MinDepth != ~0u ? MinDepth : CurCycle + 1;
744      continue;
745    }
746
747    SUnit *FoundSUnit = 0;
748
749    bool HasNoopHazards = false;
750    while (!AvailableQueue.empty()) {
751      SUnit *CurSUnit = AvailableQueue.pop();
752
753      ScheduleHazardRecognizer::HazardType HT =
754        HazardRec->getHazardType(CurSUnit);
755      if (HT == ScheduleHazardRecognizer::NoHazard) {
756        FoundSUnit = CurSUnit;
757        break;
758      }
759
760      // Remember if this is a noop hazard.
761      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
762
763      NotReady.push_back(CurSUnit);
764    }
765
766    // Add the nodes that aren't ready back onto the available list.
767    if (!NotReady.empty()) {
768      AvailableQueue.push_all(NotReady);
769      NotReady.clear();
770    }
771
772    // If we found a node to schedule, do it now.
773    if (FoundSUnit) {
774      ScheduleNodeTopDown(FoundSUnit, CurCycle);
775      HazardRec->EmitInstruction(FoundSUnit);
776
777      // If this is a pseudo-op node, we don't want to increment the current
778      // cycle.
779      if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
780        ++CurCycle;
781    } else if (!HasNoopHazards) {
782      // Otherwise, we have a pipeline stall, but no other problem, just advance
783      // the current cycle and try again.
784      DOUT << "*** Advancing cycle, no work to do\n";
785      HazardRec->AdvanceCycle();
786      ++NumStalls;
787      ++CurCycle;
788    } else {
789      // Otherwise, we have no instructions to issue and we have instructions
790      // that will fault if we don't do this right.  This is the case for
791      // processors without pipeline interlocks and other cases.
792      DOUT << "*** Emitting noop\n";
793      HazardRec->EmitNoop();
794      Sequence.push_back(0);   // NULL here means noop
795      ++NumNoops;
796      ++CurCycle;
797    }
798  }
799
800#ifndef NDEBUG
801  VerifySchedule(/*isBottomUp=*/false);
802#endif
803}
804
805//===----------------------------------------------------------------------===//
806//                         Public Constructor Functions
807//===----------------------------------------------------------------------===//
808
809FunctionPass *llvm::createPostRAScheduler() {
810  return new PostRAScheduler();
811}
812