PostRASchedulerList.cpp revision b6981fd4190719bff4bec382914be2acae6611df
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "llvm/CodeGen/Passes.h"
23#include "llvm/CodeGen/ScheduleDAGInstrs.h"
24#include "llvm/CodeGen/LatencyPriorityQueue.h"
25#include "llvm/CodeGen/SchedulerRegistry.h"
26#include "llvm/CodeGen/MachineFunctionPass.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetRegisterInfo.h"
30#include "llvm/Support/Compiler.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/DenseSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include <map>
36#include <climits>
37using namespace llvm;
38
39STATISTIC(NumStalls, "Number of pipeline stalls");
40
41static cl::opt<bool>
42EnableAntiDepBreaking("break-anti-dependencies",
43                      cl::desc("Break scheduling anti-dependencies"),
44                      cl::init(false));
45
46namespace {
47  class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
48  public:
49    static char ID;
50    PostRAScheduler() : MachineFunctionPass(&ID) {}
51
52    const char *getPassName() const {
53      return "Post RA top-down list latency scheduler";
54    }
55
56    bool runOnMachineFunction(MachineFunction &Fn);
57  };
58  char PostRAScheduler::ID = 0;
59
60  class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
61    /// AvailableQueue - The priority queue to use for the available SUnits.
62    ///
63    LatencyPriorityQueue AvailableQueue;
64
65    /// PendingQueue - This contains all of the instructions whose operands have
66    /// been issued, but their results are not ready yet (due to the latency of
67    /// the operation).  Once the operands becomes available, the instruction is
68    /// added to the AvailableQueue.
69    std::vector<SUnit*> PendingQueue;
70
71    /// Topo - A topological ordering for SUnits.
72    ScheduleDAGTopologicalSort Topo;
73
74  public:
75    SchedulePostRATDList(MachineBasicBlock *mbb, const TargetMachine &tm)
76      : ScheduleDAGInstrs(mbb, tm), Topo(SUnits) {}
77
78    void Schedule();
79
80  private:
81    void ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain);
82    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
83    void ListScheduleTopDown();
84    bool BreakAntiDependencies();
85  };
86}
87
88bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
89  DOUT << "PostRAScheduler\n";
90
91  // Loop over all of the basic blocks
92  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
93       MBB != MBBe; ++MBB) {
94
95    SchedulePostRATDList Scheduler(MBB, Fn.getTarget());
96
97    Scheduler.Run();
98
99    Scheduler.EmitSchedule();
100  }
101
102  return true;
103}
104
105/// Schedule - Schedule the DAG using list scheduling.
106void SchedulePostRATDList::Schedule() {
107  DOUT << "********** List Scheduling **********\n";
108
109  // Build scheduling units.
110  BuildSchedUnits();
111
112  if (EnableAntiDepBreaking) {
113    if (BreakAntiDependencies()) {
114      // We made changes. Update the dependency graph.
115      // Theoretically we could update the graph in place:
116      // When a live range is changed to use a different register, remove
117      // the def's anti-dependence *and* output-dependence edges due to
118      // that register, and add new anti-dependence and output-dependence
119      // edges based on the next live range of the register.
120      SUnits.clear();
121      BuildSchedUnits();
122    }
123  }
124
125  AvailableQueue.initNodes(SUnits);
126
127  ListScheduleTopDown();
128
129  AvailableQueue.releaseState();
130}
131
132/// getInstrOperandRegClass - Return register class of the operand of an
133/// instruction of the specified TargetInstrDesc.
134static const TargetRegisterClass*
135getInstrOperandRegClass(const TargetRegisterInfo *TRI,
136                        const TargetInstrInfo *TII, const TargetInstrDesc &II,
137                        unsigned Op) {
138  if (Op >= II.getNumOperands())
139    return NULL;
140  if (II.OpInfo[Op].isLookupPtrRegClass())
141    return TII->getPointerRegClass();
142  return TRI->getRegClass(II.OpInfo[Op].RegClass);
143}
144
145/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
146/// of the ScheduleDAG and break them by renaming registers.
147///
148bool SchedulePostRATDList::BreakAntiDependencies() {
149  // The code below assumes that there is at least one instruction,
150  // so just duck out immediately if the block is empty.
151  if (BB->empty()) return false;
152
153  Topo.InitDAGTopologicalSorting();
154
155  // Compute a critical path for the DAG.
156  SUnit *Max = 0;
157  std::vector<SDep *> CriticalPath(SUnits.size());
158  for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
159       E = Topo.end(); I != E; ++I) {
160    SUnit *SU = &SUnits[*I];
161    for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
162         P != PE; ++P) {
163      SUnit *PredSU = P->Dep;
164      // This assumes that there's no delay for reusing registers.
165      unsigned PredLatency = (P->isCtrl && P->Reg != 0) ? 1 : PredSU->Latency;
166      unsigned PredTotalLatency = PredSU->CycleBound + PredLatency;
167      if (SU->CycleBound < PredTotalLatency ||
168          (SU->CycleBound == PredTotalLatency && !P->isAntiDep)) {
169        SU->CycleBound = PredTotalLatency;
170        CriticalPath[*I] = &*P;
171      }
172    }
173    // Keep track of the node at the end of the critical path.
174    if (!Max || SU->CycleBound + SU->Latency > Max->CycleBound + Max->Latency)
175      Max = SU;
176  }
177
178  DOUT << "Critical path has total latency "
179       << (Max ? Max->CycleBound + Max->Latency : 0) << "\n";
180
181  // Walk the critical path from the bottom up. Collect all anti-dependence
182  // edges on the critical path. Skip anti-dependencies between SUnits that
183  // are connected with other edges, since such units won't be able to be
184  // scheduled past each other anyway.
185  //
186  // The heuristic is that edges on the critical path are more important to
187  // break than other edges. And since there are a limited number of
188  // registers, we don't want to waste them breaking edges that aren't
189  // important.
190  //
191  // TODO: Instructions with multiple defs could have multiple
192  // anti-dependencies. The current code here only knows how to break one
193  // edge per instruction. Note that we'd have to be able to break all of
194  // the anti-dependencies in an instruction in order to be effective.
195  BitVector AllocatableSet = TRI->getAllocatableSet(*MF);
196  DenseMap<MachineInstr *, unsigned> CriticalAntiDeps;
197  for (SUnit *SU = Max; CriticalPath[SU->NodeNum];
198       SU = CriticalPath[SU->NodeNum]->Dep) {
199    SDep *Edge = CriticalPath[SU->NodeNum];
200    SUnit *NextSU = Edge->Dep;
201    unsigned AntiDepReg = Edge->Reg;
202    // Only consider anti-dependence edges.
203    if (!Edge->isAntiDep)
204      continue;
205    assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
206    // Don't break anti-dependencies on non-allocatable registers.
207    if (!AllocatableSet.test(AntiDepReg))
208      continue;
209    // If the SUnit has other dependencies on the SUnit that it
210    // anti-depends on, don't bother breaking the anti-dependency.
211    // Also, if there are dependencies on other SUnits with the
212    // same register as the anti-dependency, don't attempt to
213    // break it.
214    for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
215         P != PE; ++P)
216      if (P->Dep == NextSU ?
217            (!P->isAntiDep || P->Reg != AntiDepReg) :
218            (!P->isCtrl && !P->isAntiDep && P->Reg == AntiDepReg)) {
219        AntiDepReg = 0;
220        break;
221      }
222    if (AntiDepReg != 0)
223      CriticalAntiDeps[SU->getInstr()] = AntiDepReg;
224  }
225
226  // For live regs that are only used in one register class in a live range,
227  // the register class. If the register is not live, the corresponding value
228  // is null. If the register is live but used in multiple register classes,
229  // the corresponding value is -1 casted to a pointer.
230  const TargetRegisterClass *
231    Classes[TargetRegisterInfo::FirstVirtualRegister] = {};
232
233  // Map registers to all their references within a live range.
234  std::multimap<unsigned, MachineOperand *> RegRefs;
235
236  // The index of the most recent kill (proceding bottom-up), or -1 if
237  // the register is not live.
238  unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
239  std::fill(KillIndices, array_endof(KillIndices), -1);
240  // The index of the most recent def (proceding bottom up), or -1 if
241  // the register is live.
242  unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
243  std::fill(DefIndices, array_endof(DefIndices), BB->size());
244
245  // Determine the live-out physregs for this block.
246  if (!BB->empty() && BB->back().getDesc().isReturn())
247    // In a return block, examine the function live-out regs.
248    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
249         E = MRI.liveout_end(); I != E; ++I) {
250      unsigned Reg = *I;
251      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
252      KillIndices[Reg] = BB->size();
253      DefIndices[Reg] = -1;
254      // Repeat, for all aliases.
255      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
256        unsigned AliasReg = *Alias;
257        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
258        KillIndices[AliasReg] = BB->size();
259        DefIndices[AliasReg] = -1;
260      }
261    }
262  else
263    // In a non-return block, examine the live-in regs of all successors.
264    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
265         SE = BB->succ_end(); SI != SE; ++SI)
266      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
267           E = (*SI)->livein_end(); I != E; ++I) {
268        unsigned Reg = *I;
269        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
270        KillIndices[Reg] = BB->size();
271        DefIndices[Reg] = -1;
272        // Repeat, for all aliases.
273        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
274          unsigned AliasReg = *Alias;
275          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
276          KillIndices[AliasReg] = BB->size();
277          DefIndices[AliasReg] = -1;
278        }
279      }
280
281  // Consider callee-saved registers as live-out, since we're running after
282  // prologue/epilogue insertion so there's no way to add additional
283  // saved registers.
284  //
285  // TODO: If the callee saves and restores these, then we can potentially
286  // use them between the save and the restore. To do that, we could scan
287  // the exit blocks to see which of these registers are defined.
288  // Alternatively, calle-saved registers that aren't saved and restored
289  // could be marked live-in in every block.
290  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
291    unsigned Reg = *I;
292    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
293    KillIndices[Reg] = BB->size();
294    DefIndices[Reg] = -1;
295    // Repeat, for all aliases.
296    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
297      unsigned AliasReg = *Alias;
298      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
299      KillIndices[AliasReg] = BB->size();
300      DefIndices[AliasReg] = -1;
301    }
302  }
303
304  // Consider this pattern:
305  //   A = ...
306  //   ... = A
307  //   A = ...
308  //   ... = A
309  //   A = ...
310  //   ... = A
311  //   A = ...
312  //   ... = A
313  // There are three anti-dependencies here, and without special care,
314  // we'd break all of them using the same register:
315  //   A = ...
316  //   ... = A
317  //   B = ...
318  //   ... = B
319  //   B = ...
320  //   ... = B
321  //   B = ...
322  //   ... = B
323  // because at each anti-dependence, B is the first register that
324  // isn't A which is free.  This re-introduces anti-dependencies
325  // at all but one of the original anti-dependencies that we were
326  // trying to break.  To avoid this, keep track of the most recent
327  // register that each register was replaced with, avoid avoid
328  // using it to repair an anti-dependence on the same register.
329  // This lets us produce this:
330  //   A = ...
331  //   ... = A
332  //   B = ...
333  //   ... = B
334  //   C = ...
335  //   ... = C
336  //   B = ...
337  //   ... = B
338  // This still has an anti-dependence on B, but at least it isn't on the
339  // original critical path.
340  //
341  // TODO: If we tracked more than one register here, we could potentially
342  // fix that remaining critical edge too. This is a little more involved,
343  // because unlike the most recent register, less recent registers should
344  // still be considered, though only if no other registers are available.
345  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
346
347  // Attempt to break anti-dependence edges on the critical path. Walk the
348  // instructions from the bottom up, tracking information about liveness
349  // as we go to help determine which registers are available.
350  bool Changed = false;
351  unsigned Count = BB->size() - 1;
352  for (MachineBasicBlock::reverse_iterator I = BB->rbegin(), E = BB->rend();
353       I != E; ++I, --Count) {
354    MachineInstr *MI = &*I;
355
356    // Check if this instruction has an anti-dependence that we're
357    // interested in.
358    DenseMap<MachineInstr *, unsigned>::iterator C = CriticalAntiDeps.find(MI);
359    unsigned AntiDepReg = C != CriticalAntiDeps.end() ?
360      C->second : 0;
361
362    // Scan the register operands for this instruction and update
363    // Classes and RegRefs.
364    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
365      MachineOperand &MO = MI->getOperand(i);
366      if (!MO.isReg()) continue;
367      unsigned Reg = MO.getReg();
368      if (Reg == 0) continue;
369      const TargetRegisterClass *NewRC =
370        getInstrOperandRegClass(TRI, TII, MI->getDesc(), i);
371
372      // If this instruction has a use of AntiDepReg, breaking it
373      // is invalid.
374      if (MO.isUse() && AntiDepReg == Reg)
375        AntiDepReg = 0;
376
377      // For now, only allow the register to be changed if its register
378      // class is consistent across all uses.
379      if (!Classes[Reg] && NewRC)
380        Classes[Reg] = NewRC;
381      else if (!NewRC || Classes[Reg] != NewRC)
382        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
383
384      // Now check for aliases.
385      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
386        // If an alias of the reg is used during the live range, give up.
387        // Note that this allows us to skip checking if AntiDepReg
388        // overlaps with any of the aliases, among other things.
389        unsigned AliasReg = *Alias;
390        if (Classes[AliasReg]) {
391          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
392          Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
393        }
394      }
395
396      // If we're still willing to consider this register, note the reference.
397      if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
398        RegRefs.insert(std::make_pair(Reg, &MO));
399    }
400
401    // Determine AntiDepReg's register class, if it is live and is
402    // consistently used within a single class.
403    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
404    assert((AntiDepReg == 0 || RC != NULL) &&
405           "Register should be live if it's causing an anti-dependence!");
406    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
407      AntiDepReg = 0;
408
409    // Look for a suitable register to use to break the anti-depenence.
410    //
411    // TODO: Instead of picking the first free register, consider which might
412    // be the best.
413    if (AntiDepReg != 0) {
414      for (TargetRegisterClass::iterator R = RC->allocation_order_begin(*MF),
415           RE = RC->allocation_order_end(*MF); R != RE; ++R) {
416        unsigned NewReg = *R;
417        // Don't replace a register with itself.
418        if (NewReg == AntiDepReg) continue;
419        // Don't replace a register with one that was recently used to repair
420        // an anti-dependence with this AntiDepReg, because that would
421        // re-introduce that anti-dependence.
422        if (NewReg == LastNewReg[AntiDepReg]) continue;
423        // If NewReg is dead and NewReg's most recent def is not before
424        // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
425        assert(((KillIndices[AntiDepReg] == -1u) != (DefIndices[AntiDepReg] == -1u)) &&
426               "Kill and Def maps aren't consistent for AntiDepReg!");
427        assert(((KillIndices[NewReg] == -1u) != (DefIndices[NewReg] == -1u)) &&
428               "Kill and Def maps aren't consistent for NewReg!");
429        if (KillIndices[NewReg] == -1u &&
430            KillIndices[AntiDepReg] <= DefIndices[NewReg]) {
431          DOUT << "Breaking anti-dependence edge on reg " << AntiDepReg
432               << " with " << RegRefs.count(AntiDepReg) << " references"
433               << " with new reg " << NewReg << "!\n";
434
435          // Update the references to the old register to refer to the new
436          // register.
437          std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
438                    std::multimap<unsigned, MachineOperand *>::iterator>
439             Range = RegRefs.equal_range(AntiDepReg);
440          for (std::multimap<unsigned, MachineOperand *>::iterator
441               Q = Range.first, QE = Range.second; Q != QE; ++Q)
442            Q->second->setReg(NewReg);
443
444          // We just went back in time and modified history; the
445          // liveness information for the anti-depenence reg is now
446          // inconsistent. Set the state as if it were dead.
447          Classes[NewReg] = Classes[AntiDepReg];
448          DefIndices[NewReg] = DefIndices[AntiDepReg];
449          KillIndices[NewReg] = KillIndices[AntiDepReg];
450
451          Classes[AntiDepReg] = 0;
452          DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
453          KillIndices[AntiDepReg] = -1;
454
455          RegRefs.erase(AntiDepReg);
456          Changed = true;
457          LastNewReg[AntiDepReg] = NewReg;
458          break;
459        }
460      }
461    }
462
463    // Update liveness.
464    // Proceding upwards, registers that are defed but not used in this
465    // instruction are now dead.
466    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
467      MachineOperand &MO = MI->getOperand(i);
468      if (!MO.isReg()) continue;
469      unsigned Reg = MO.getReg();
470      if (Reg == 0) continue;
471      if (!MO.isDef()) continue;
472      // Ignore two-addr defs.
473      if (MI->isRegReDefinedByTwoAddr(Reg, i)) continue;
474
475      DefIndices[Reg] = Count;
476      KillIndices[Reg] = -1;
477      Classes[Reg] = 0;
478      RegRefs.erase(Reg);
479      // Repeat, for all subregs.
480      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
481           *Subreg; ++Subreg) {
482        unsigned SubregReg = *Subreg;
483        DefIndices[SubregReg] = Count;
484        KillIndices[SubregReg] = -1;
485        Classes[SubregReg] = 0;
486        RegRefs.erase(SubregReg);
487      }
488    }
489    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
490      MachineOperand &MO = MI->getOperand(i);
491      if (!MO.isReg()) continue;
492      unsigned Reg = MO.getReg();
493      if (Reg == 0) continue;
494      if (!MO.isUse()) continue;
495
496      const TargetRegisterClass *NewRC =
497        getInstrOperandRegClass(TRI, TII, MI->getDesc(), i);
498
499      // For now, only allow the register to be changed if its register
500      // class is consistent across all uses.
501      if (!Classes[Reg] && NewRC)
502        Classes[Reg] = NewRC;
503      else if (!NewRC || Classes[Reg] != NewRC)
504        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
505
506      RegRefs.insert(std::make_pair(Reg, &MO));
507
508      // It wasn't previously live but now it is, this is a kill.
509      if (KillIndices[Reg] == -1u) {
510        KillIndices[Reg] = Count;
511        DefIndices[Reg] = -1u;
512      }
513      // Repeat, for all aliases.
514      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
515        unsigned AliasReg = *Alias;
516        if (KillIndices[AliasReg] == -1u) {
517          KillIndices[AliasReg] = Count;
518          DefIndices[AliasReg] = -1u;
519        }
520      }
521    }
522  }
523  assert(Count == -1u && "Count mismatch!");
524
525  return Changed;
526}
527
528//===----------------------------------------------------------------------===//
529//  Top-Down Scheduling
530//===----------------------------------------------------------------------===//
531
532/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
533/// the PendingQueue if the count reaches zero. Also update its cycle bound.
534void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain) {
535  --SuccSU->NumPredsLeft;
536
537#ifndef NDEBUG
538  if (SuccSU->NumPredsLeft < 0) {
539    cerr << "*** Scheduling failed! ***\n";
540    SuccSU->dump(this);
541    cerr << " has been released too many times!\n";
542    assert(0);
543  }
544#endif
545
546  // Compute how many cycles it will be before this actually becomes
547  // available.  This is the max of the start time of all predecessors plus
548  // their latencies.
549  // If this is a token edge, we don't need to wait for the latency of the
550  // preceeding instruction (e.g. a long-latency load) unless there is also
551  // some other data dependence.
552  unsigned PredDoneCycle = SU->Cycle;
553  if (!isChain)
554    PredDoneCycle += SU->Latency;
555  else if (SU->Latency)
556    PredDoneCycle += 1;
557  SuccSU->CycleBound = std::max(SuccSU->CycleBound, PredDoneCycle);
558
559  if (SuccSU->NumPredsLeft == 0) {
560    PendingQueue.push_back(SuccSU);
561  }
562}
563
564/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
565/// count of its successors. If a successor pending count is zero, add it to
566/// the Available queue.
567void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
568  DOUT << "*** Scheduling [" << CurCycle << "]: ";
569  DEBUG(SU->dump(this));
570
571  Sequence.push_back(SU);
572  SU->Cycle = CurCycle;
573
574  // Top down: release successors.
575  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
576       I != E; ++I)
577    ReleaseSucc(SU, I->Dep, I->isCtrl);
578
579  SU->isScheduled = true;
580  AvailableQueue.ScheduledNode(SU);
581}
582
583/// ListScheduleTopDown - The main loop of list scheduling for top-down
584/// schedulers.
585void SchedulePostRATDList::ListScheduleTopDown() {
586  unsigned CurCycle = 0;
587
588  // All leaves to Available queue.
589  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
590    // It is available if it has no predecessors.
591    if (SUnits[i].Preds.empty()) {
592      AvailableQueue.push(&SUnits[i]);
593      SUnits[i].isAvailable = true;
594    }
595  }
596
597  // While Available queue is not empty, grab the node with the highest
598  // priority. If it is not ready put it back.  Schedule the node.
599  Sequence.reserve(SUnits.size());
600  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
601    // Check to see if any of the pending instructions are ready to issue.  If
602    // so, add them to the available queue.
603    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
604      if (PendingQueue[i]->CycleBound == CurCycle) {
605        AvailableQueue.push(PendingQueue[i]);
606        PendingQueue[i]->isAvailable = true;
607        PendingQueue[i] = PendingQueue.back();
608        PendingQueue.pop_back();
609        --i; --e;
610      } else {
611        assert(PendingQueue[i]->CycleBound > CurCycle && "Negative latency?");
612      }
613    }
614
615    // If there are no instructions available, don't try to issue anything.
616    if (AvailableQueue.empty()) {
617      ++CurCycle;
618      continue;
619    }
620
621    SUnit *FoundSUnit = AvailableQueue.pop();
622
623    // If we found a node to schedule, do it now.
624    if (FoundSUnit) {
625      ScheduleNodeTopDown(FoundSUnit, CurCycle);
626
627      // If this is a pseudo-op node, we don't want to increment the current
628      // cycle.
629      if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
630        ++CurCycle;
631    } else {
632      // Otherwise, we have a pipeline stall, but no other problem, just advance
633      // the current cycle and try again.
634      DOUT << "*** Advancing cycle, no work to do\n";
635      ++NumStalls;
636      ++CurCycle;
637    }
638  }
639
640#ifndef NDEBUG
641  VerifySchedule(/*isBottomUp=*/false);
642#endif
643}
644
645//===----------------------------------------------------------------------===//
646//                         Public Constructor Functions
647//===----------------------------------------------------------------------===//
648
649FunctionPass *llvm::createPostRAScheduler() {
650  return new PostRAScheduler();
651}
652