PostRASchedulerList.cpp revision cf46b5acfd6e0ab5d21ec3160cec195d0eb77b0b
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "AntiDepBreaker.h"
23#include "AggressiveAntiDepBreaker.h"
24#include "CriticalAntiDepBreaker.h"
25#include "RegisterClassInfo.h"
26#include "ScheduleDAGInstrs.h"
27#include "llvm/CodeGen/Passes.h"
28#include "llvm/CodeGen/LatencyPriorityQueue.h"
29#include "llvm/CodeGen/SchedulerRegistry.h"
30#include "llvm/CodeGen/MachineDominators.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunctionPass.h"
33#include "llvm/CodeGen/MachineLoopInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/Target/TargetLowering.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetSubtargetInfo.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/ADT/BitVector.h"
47#include "llvm/ADT/Statistic.h"
48using namespace llvm;
49
50STATISTIC(NumNoops, "Number of noops inserted");
51STATISTIC(NumStalls, "Number of pipeline stalls");
52STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
53
54// Post-RA scheduling is enabled with
55// TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
56// override the target.
57static cl::opt<bool>
58EnablePostRAScheduler("post-RA-scheduler",
59                       cl::desc("Enable scheduling after register allocation"),
60                       cl::init(false), cl::Hidden);
61static cl::opt<std::string>
62EnableAntiDepBreaking("break-anti-dependencies",
63                      cl::desc("Break post-RA scheduling anti-dependencies: "
64                               "\"critical\", \"all\", or \"none\""),
65                      cl::init("none"), cl::Hidden);
66
67// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
68static cl::opt<int>
69DebugDiv("postra-sched-debugdiv",
70                      cl::desc("Debug control MBBs that are scheduled"),
71                      cl::init(0), cl::Hidden);
72static cl::opt<int>
73DebugMod("postra-sched-debugmod",
74                      cl::desc("Debug control MBBs that are scheduled"),
75                      cl::init(0), cl::Hidden);
76
77AntiDepBreaker::~AntiDepBreaker() { }
78
79namespace {
80  class PostRAScheduler : public MachineFunctionPass {
81    AliasAnalysis *AA;
82    const TargetInstrInfo *TII;
83    RegisterClassInfo RegClassInfo;
84
85  public:
86    static char ID;
87    PostRAScheduler() : MachineFunctionPass(ID) {}
88
89    void getAnalysisUsage(AnalysisUsage &AU) const {
90      AU.setPreservesCFG();
91      AU.addRequired<AliasAnalysis>();
92      AU.addRequired<TargetPassConfig>();
93      AU.addRequired<MachineDominatorTree>();
94      AU.addPreserved<MachineDominatorTree>();
95      AU.addRequired<MachineLoopInfo>();
96      AU.addPreserved<MachineLoopInfo>();
97      MachineFunctionPass::getAnalysisUsage(AU);
98    }
99
100    bool runOnMachineFunction(MachineFunction &Fn);
101  };
102  char PostRAScheduler::ID = 0;
103
104  class SchedulePostRATDList : public ScheduleDAGInstrs {
105    /// AvailableQueue - The priority queue to use for the available SUnits.
106    ///
107    LatencyPriorityQueue AvailableQueue;
108
109    /// PendingQueue - This contains all of the instructions whose operands have
110    /// been issued, but their results are not ready yet (due to the latency of
111    /// the operation).  Once the operands becomes available, the instruction is
112    /// added to the AvailableQueue.
113    std::vector<SUnit*> PendingQueue;
114
115    /// Topo - A topological ordering for SUnits.
116    ScheduleDAGTopologicalSort Topo;
117
118    /// HazardRec - The hazard recognizer to use.
119    ScheduleHazardRecognizer *HazardRec;
120
121    /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
122    AntiDepBreaker *AntiDepBreak;
123
124    /// AA - AliasAnalysis for making memory reference queries.
125    AliasAnalysis *AA;
126
127    /// LiveRegs - true if the register is live.
128    BitVector LiveRegs;
129
130    /// The schedule. Null SUnit*'s represent noop instructions.
131    std::vector<SUnit*> Sequence;
132
133  public:
134    SchedulePostRATDList(
135      MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
136      AliasAnalysis *AA, const RegisterClassInfo&,
137      TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
138      SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs);
139
140    ~SchedulePostRATDList();
141
142    /// startBlock - Initialize register live-range state for scheduling in
143    /// this block.
144    ///
145    void startBlock(MachineBasicBlock *BB);
146
147    /// Initialize the scheduler state for the next scheduling region.
148    virtual void enterRegion(MachineBasicBlock *bb,
149                             MachineBasicBlock::iterator begin,
150                             MachineBasicBlock::iterator end,
151                             unsigned endcount);
152
153    /// Notify that the scheduler has finished scheduling the current region.
154    virtual void exitRegion();
155
156    /// Schedule - Schedule the instruction range using list scheduling.
157    ///
158    void schedule();
159
160    void EmitSchedule();
161
162    /// Observe - Update liveness information to account for the current
163    /// instruction, which will not be scheduled.
164    ///
165    void Observe(MachineInstr *MI, unsigned Count);
166
167    /// finishBlock - Clean up register live-range state.
168    ///
169    void finishBlock();
170
171    /// FixupKills - Fix register kill flags that have been made
172    /// invalid due to scheduling
173    ///
174    void FixupKills(MachineBasicBlock *MBB);
175
176  private:
177    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
178    void ReleaseSuccessors(SUnit *SU);
179    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
180    void ListScheduleTopDown();
181    void StartBlockForKills(MachineBasicBlock *BB);
182
183    // ToggleKillFlag - Toggle a register operand kill flag. Other
184    // adjustments may be made to the instruction if necessary. Return
185    // true if the operand has been deleted, false if not.
186    bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
187
188    void dumpSchedule() const;
189  };
190}
191
192char &llvm::PostRASchedulerID = PostRAScheduler::ID;
193
194INITIALIZE_PASS(PostRAScheduler, "post-RA-sched",
195                "Post RA top-down list latency scheduler", false, false)
196
197SchedulePostRATDList::SchedulePostRATDList(
198  MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
199  AliasAnalysis *AA, const RegisterClassInfo &RCI,
200  TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
201  SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs)
202  : ScheduleDAGInstrs(MF, MLI, MDT, /*IsPostRA=*/true), Topo(SUnits), AA(AA),
203    LiveRegs(TRI->getNumRegs())
204{
205  const TargetMachine &TM = MF.getTarget();
206  const InstrItineraryData *InstrItins = TM.getInstrItineraryData();
207  HazardRec =
208    TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins, this);
209  AntiDepBreak =
210    ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
211     (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
212     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
213      (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : NULL));
214}
215
216SchedulePostRATDList::~SchedulePostRATDList() {
217  delete HazardRec;
218  delete AntiDepBreak;
219}
220
221/// Initialize state associated with the next scheduling region.
222void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
223                 MachineBasicBlock::iterator begin,
224                 MachineBasicBlock::iterator end,
225                 unsigned endcount) {
226  ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
227  Sequence.clear();
228}
229
230/// Print the schedule before exiting the region.
231void SchedulePostRATDList::exitRegion() {
232  DEBUG({
233      dbgs() << "*** Final schedule ***\n";
234      dumpSchedule();
235      dbgs() << '\n';
236    });
237  ScheduleDAGInstrs::exitRegion();
238}
239
240/// dumpSchedule - dump the scheduled Sequence.
241void SchedulePostRATDList::dumpSchedule() const {
242  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
243    if (SUnit *SU = Sequence[i])
244      SU->dump(this);
245    else
246      dbgs() << "**** NOOP ****\n";
247  }
248}
249
250bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
251  TII = Fn.getTarget().getInstrInfo();
252  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
253  MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
254  AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
255  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
256
257  RegClassInfo.runOnMachineFunction(Fn);
258
259  // Check for explicit enable/disable of post-ra scheduling.
260  TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
261    TargetSubtargetInfo::ANTIDEP_NONE;
262  SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
263  if (EnablePostRAScheduler.getPosition() > 0) {
264    if (!EnablePostRAScheduler)
265      return false;
266  } else {
267    // Check that post-RA scheduling is enabled for this target.
268    // This may upgrade the AntiDepMode.
269    const TargetSubtargetInfo &ST = Fn.getTarget().getSubtarget<TargetSubtargetInfo>();
270    if (!ST.enablePostRAScheduler(PassConfig->getOptLevel(), AntiDepMode,
271                                  CriticalPathRCs))
272      return false;
273  }
274
275  // Check for antidep breaking override...
276  if (EnableAntiDepBreaking.getPosition() > 0) {
277    AntiDepMode = (EnableAntiDepBreaking == "all")
278      ? TargetSubtargetInfo::ANTIDEP_ALL
279      : ((EnableAntiDepBreaking == "critical")
280         ? TargetSubtargetInfo::ANTIDEP_CRITICAL
281         : TargetSubtargetInfo::ANTIDEP_NONE);
282  }
283
284  DEBUG(dbgs() << "PostRAScheduler\n");
285
286  SchedulePostRATDList Scheduler(Fn, MLI, MDT, AA, RegClassInfo, AntiDepMode,
287                                 CriticalPathRCs);
288
289  // Loop over all of the basic blocks
290  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
291       MBB != MBBe; ++MBB) {
292#ifndef NDEBUG
293    // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
294    if (DebugDiv > 0) {
295      static int bbcnt = 0;
296      if (bbcnt++ % DebugDiv != DebugMod)
297        continue;
298      dbgs() << "*** DEBUG scheduling " << Fn.getFunction()->getName()
299             << ":BB#" << MBB->getNumber() << " ***\n";
300    }
301#endif
302
303    // Initialize register live-range state for scheduling in this block.
304    Scheduler.startBlock(MBB);
305
306    // Schedule each sequence of instructions not interrupted by a label
307    // or anything else that effectively needs to shut down scheduling.
308    MachineBasicBlock::iterator Current = MBB->end();
309    unsigned Count = MBB->size(), CurrentCount = Count;
310    for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
311      MachineInstr *MI = llvm::prior(I);
312      // Calls are not scheduling boundaries before register allocation, but
313      // post-ra we don't gain anything by scheduling across calls since we
314      // don't need to worry about register pressure.
315      if (MI->isCall() || TII->isSchedulingBoundary(MI, MBB, Fn)) {
316        Scheduler.enterRegion(MBB, I, Current, CurrentCount);
317        Scheduler.schedule();
318        Scheduler.exitRegion();
319        Scheduler.EmitSchedule();
320        Current = MI;
321        CurrentCount = Count - 1;
322        Scheduler.Observe(MI, CurrentCount);
323      }
324      I = MI;
325      --Count;
326      if (MI->isBundle())
327        Count -= MI->getBundleSize();
328    }
329    assert(Count == 0 && "Instruction count mismatch!");
330    assert((MBB->begin() == Current || CurrentCount != 0) &&
331           "Instruction count mismatch!");
332    Scheduler.enterRegion(MBB, MBB->begin(), Current, CurrentCount);
333    Scheduler.schedule();
334    Scheduler.exitRegion();
335    Scheduler.EmitSchedule();
336
337    // Clean up register live-range state.
338    Scheduler.finishBlock();
339
340    // Update register kills
341    Scheduler.FixupKills(MBB);
342  }
343
344  return true;
345}
346
347/// StartBlock - Initialize register live-range state for scheduling in
348/// this block.
349///
350void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
351  // Call the superclass.
352  ScheduleDAGInstrs::startBlock(BB);
353
354  // Reset the hazard recognizer and anti-dep breaker.
355  HazardRec->Reset();
356  if (AntiDepBreak != NULL)
357    AntiDepBreak->StartBlock(BB);
358}
359
360/// Schedule - Schedule the instruction range using list scheduling.
361///
362void SchedulePostRATDList::schedule() {
363  // Build the scheduling graph.
364  buildSchedGraph(AA);
365
366  if (AntiDepBreak != NULL) {
367    unsigned Broken =
368      AntiDepBreak->BreakAntiDependencies(SUnits, Begin, End, EndIndex,
369                                          DbgValues);
370
371    if (Broken != 0) {
372      // We made changes. Update the dependency graph.
373      // Theoretically we could update the graph in place:
374      // When a live range is changed to use a different register, remove
375      // the def's anti-dependence *and* output-dependence edges due to
376      // that register, and add new anti-dependence and output-dependence
377      // edges based on the next live range of the register.
378      ScheduleDAG::clearDAG();
379      buildSchedGraph(AA);
380
381      NumFixedAnti += Broken;
382    }
383  }
384
385  DEBUG(dbgs() << "********** List Scheduling **********\n");
386  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
387          SUnits[su].dumpAll(this));
388
389  AvailableQueue.initNodes(SUnits);
390  ListScheduleTopDown();
391  AvailableQueue.releaseState();
392}
393
394/// Observe - Update liveness information to account for the current
395/// instruction, which will not be scheduled.
396///
397void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
398  if (AntiDepBreak != NULL)
399    AntiDepBreak->Observe(MI, Count, EndIndex);
400}
401
402/// FinishBlock - Clean up register live-range state.
403///
404void SchedulePostRATDList::finishBlock() {
405  if (AntiDepBreak != NULL)
406    AntiDepBreak->FinishBlock();
407
408  // Call the superclass.
409  ScheduleDAGInstrs::finishBlock();
410}
411
412/// StartBlockForKills - Initialize register live-range state for updating kills
413///
414void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
415  // Start with no live registers.
416  LiveRegs.reset();
417
418  // Determine the live-out physregs for this block.
419  if (!BB->empty() && BB->back().isReturn()) {
420    // In a return block, examine the function live-out regs.
421    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
422           E = MRI.liveout_end(); I != E; ++I) {
423      unsigned Reg = *I;
424      LiveRegs.set(Reg);
425      // Repeat, for all subregs.
426      for (const uint16_t *Subreg = TRI->getSubRegisters(Reg);
427           *Subreg; ++Subreg)
428        LiveRegs.set(*Subreg);
429    }
430  }
431  else {
432    // In a non-return block, examine the live-in regs of all successors.
433    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
434           SE = BB->succ_end(); SI != SE; ++SI) {
435      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
436             E = (*SI)->livein_end(); I != E; ++I) {
437        unsigned Reg = *I;
438        LiveRegs.set(Reg);
439        // Repeat, for all subregs.
440        for (const uint16_t *Subreg = TRI->getSubRegisters(Reg);
441             *Subreg; ++Subreg)
442          LiveRegs.set(*Subreg);
443      }
444    }
445  }
446}
447
448bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
449                                          MachineOperand &MO) {
450  // Setting kill flag...
451  if (!MO.isKill()) {
452    MO.setIsKill(true);
453    return false;
454  }
455
456  // If MO itself is live, clear the kill flag...
457  if (LiveRegs.test(MO.getReg())) {
458    MO.setIsKill(false);
459    return false;
460  }
461
462  // If any subreg of MO is live, then create an imp-def for that
463  // subreg and keep MO marked as killed.
464  MO.setIsKill(false);
465  bool AllDead = true;
466  const unsigned SuperReg = MO.getReg();
467  for (const uint16_t *Subreg = TRI->getSubRegisters(SuperReg);
468       *Subreg; ++Subreg) {
469    if (LiveRegs.test(*Subreg)) {
470      MI->addOperand(MachineOperand::CreateReg(*Subreg,
471                                               true  /*IsDef*/,
472                                               true  /*IsImp*/,
473                                               false /*IsKill*/,
474                                               false /*IsDead*/));
475      AllDead = false;
476    }
477  }
478
479  if(AllDead)
480    MO.setIsKill(true);
481  return false;
482}
483
484/// FixupKills - Fix the register kill flags, they may have been made
485/// incorrect by instruction reordering.
486///
487void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
488  DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
489
490  BitVector killedRegs(TRI->getNumRegs());
491  BitVector ReservedRegs = TRI->getReservedRegs(MF);
492
493  StartBlockForKills(MBB);
494
495  // Examine block from end to start...
496  unsigned Count = MBB->size();
497  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
498       I != E; --Count) {
499    MachineInstr *MI = --I;
500    if (MI->isDebugValue())
501      continue;
502
503    // Update liveness.  Registers that are defed but not used in this
504    // instruction are now dead. Mark register and all subregs as they
505    // are completely defined.
506    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
507      MachineOperand &MO = MI->getOperand(i);
508      if (MO.isRegMask())
509        LiveRegs.clearBitsNotInMask(MO.getRegMask());
510      if (!MO.isReg()) continue;
511      unsigned Reg = MO.getReg();
512      if (Reg == 0) continue;
513      if (!MO.isDef()) continue;
514      // Ignore two-addr defs.
515      if (MI->isRegTiedToUseOperand(i)) continue;
516
517      LiveRegs.reset(Reg);
518
519      // Repeat for all subregs.
520      for (const uint16_t *Subreg = TRI->getSubRegisters(Reg);
521           *Subreg; ++Subreg)
522        LiveRegs.reset(*Subreg);
523    }
524
525    // Examine all used registers and set/clear kill flag. When a
526    // register is used multiple times we only set the kill flag on
527    // the first use.
528    killedRegs.reset();
529    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
530      MachineOperand &MO = MI->getOperand(i);
531      if (!MO.isReg() || !MO.isUse()) continue;
532      unsigned Reg = MO.getReg();
533      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
534
535      bool kill = false;
536      if (!killedRegs.test(Reg)) {
537        kill = true;
538        // A register is not killed if any subregs are live...
539        for (const uint16_t *Subreg = TRI->getSubRegisters(Reg);
540             *Subreg; ++Subreg) {
541          if (LiveRegs.test(*Subreg)) {
542            kill = false;
543            break;
544          }
545        }
546
547        // If subreg is not live, then register is killed if it became
548        // live in this instruction
549        if (kill)
550          kill = !LiveRegs.test(Reg);
551      }
552
553      if (MO.isKill() != kill) {
554        DEBUG(dbgs() << "Fixing " << MO << " in ");
555        // Warning: ToggleKillFlag may invalidate MO.
556        ToggleKillFlag(MI, MO);
557        DEBUG(MI->dump());
558      }
559
560      killedRegs.set(Reg);
561    }
562
563    // Mark any used register (that is not using undef) and subregs as
564    // now live...
565    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
566      MachineOperand &MO = MI->getOperand(i);
567      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
568      unsigned Reg = MO.getReg();
569      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
570
571      LiveRegs.set(Reg);
572
573      for (const uint16_t *Subreg = TRI->getSubRegisters(Reg);
574           *Subreg; ++Subreg)
575        LiveRegs.set(*Subreg);
576    }
577  }
578}
579
580//===----------------------------------------------------------------------===//
581//  Top-Down Scheduling
582//===----------------------------------------------------------------------===//
583
584/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
585/// the PendingQueue if the count reaches zero. Also update its cycle bound.
586void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
587  SUnit *SuccSU = SuccEdge->getSUnit();
588
589#ifndef NDEBUG
590  if (SuccSU->NumPredsLeft == 0) {
591    dbgs() << "*** Scheduling failed! ***\n";
592    SuccSU->dump(this);
593    dbgs() << " has been released too many times!\n";
594    llvm_unreachable(0);
595  }
596#endif
597  --SuccSU->NumPredsLeft;
598
599  // Standard scheduler algorithms will recompute the depth of the successor
600  // here as such:
601  //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
602  //
603  // However, we lazily compute node depth instead. Note that
604  // ScheduleNodeTopDown has already updated the depth of this node which causes
605  // all descendents to be marked dirty. Setting the successor depth explicitly
606  // here would cause depth to be recomputed for all its ancestors. If the
607  // successor is not yet ready (because of a transitively redundant edge) then
608  // this causes depth computation to be quadratic in the size of the DAG.
609
610  // If all the node's predecessors are scheduled, this node is ready
611  // to be scheduled. Ignore the special ExitSU node.
612  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
613    PendingQueue.push_back(SuccSU);
614}
615
616/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
617void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
618  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
619       I != E; ++I) {
620    ReleaseSucc(SU, &*I);
621  }
622}
623
624/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
625/// count of its successors. If a successor pending count is zero, add it to
626/// the Available queue.
627void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
628  DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
629  DEBUG(SU->dump(this));
630
631  Sequence.push_back(SU);
632  assert(CurCycle >= SU->getDepth() &&
633         "Node scheduled above its depth!");
634  SU->setDepthToAtLeast(CurCycle);
635
636  ReleaseSuccessors(SU);
637  SU->isScheduled = true;
638  AvailableQueue.scheduledNode(SU);
639}
640
641/// ListScheduleTopDown - The main loop of list scheduling for top-down
642/// schedulers.
643void SchedulePostRATDList::ListScheduleTopDown() {
644  unsigned CurCycle = 0;
645
646  // We're scheduling top-down but we're visiting the regions in
647  // bottom-up order, so we don't know the hazards at the start of a
648  // region. So assume no hazards (this should usually be ok as most
649  // blocks are a single region).
650  HazardRec->Reset();
651
652  // Release any successors of the special Entry node.
653  ReleaseSuccessors(&EntrySU);
654
655  // Add all leaves to Available queue.
656  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
657    // It is available if it has no predecessors.
658    bool available = SUnits[i].Preds.empty();
659    if (available) {
660      AvailableQueue.push(&SUnits[i]);
661      SUnits[i].isAvailable = true;
662    }
663  }
664
665  // In any cycle where we can't schedule any instructions, we must
666  // stall or emit a noop, depending on the target.
667  bool CycleHasInsts = false;
668
669  // While Available queue is not empty, grab the node with the highest
670  // priority. If it is not ready put it back.  Schedule the node.
671  std::vector<SUnit*> NotReady;
672  Sequence.reserve(SUnits.size());
673  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
674    // Check to see if any of the pending instructions are ready to issue.  If
675    // so, add them to the available queue.
676    unsigned MinDepth = ~0u;
677    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
678      if (PendingQueue[i]->getDepth() <= CurCycle) {
679        AvailableQueue.push(PendingQueue[i]);
680        PendingQueue[i]->isAvailable = true;
681        PendingQueue[i] = PendingQueue.back();
682        PendingQueue.pop_back();
683        --i; --e;
684      } else if (PendingQueue[i]->getDepth() < MinDepth)
685        MinDepth = PendingQueue[i]->getDepth();
686    }
687
688    DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));
689
690    SUnit *FoundSUnit = 0;
691    bool HasNoopHazards = false;
692    while (!AvailableQueue.empty()) {
693      SUnit *CurSUnit = AvailableQueue.pop();
694
695      ScheduleHazardRecognizer::HazardType HT =
696        HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
697      if (HT == ScheduleHazardRecognizer::NoHazard) {
698        FoundSUnit = CurSUnit;
699        break;
700      }
701
702      // Remember if this is a noop hazard.
703      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
704
705      NotReady.push_back(CurSUnit);
706    }
707
708    // Add the nodes that aren't ready back onto the available list.
709    if (!NotReady.empty()) {
710      AvailableQueue.push_all(NotReady);
711      NotReady.clear();
712    }
713
714    // If we found a node to schedule...
715    if (FoundSUnit) {
716      // ... schedule the node...
717      ScheduleNodeTopDown(FoundSUnit, CurCycle);
718      HazardRec->EmitInstruction(FoundSUnit);
719      CycleHasInsts = true;
720      if (HazardRec->atIssueLimit()) {
721        DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
722        HazardRec->AdvanceCycle();
723        ++CurCycle;
724        CycleHasInsts = false;
725      }
726    } else {
727      if (CycleHasInsts) {
728        DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
729        HazardRec->AdvanceCycle();
730      } else if (!HasNoopHazards) {
731        // Otherwise, we have a pipeline stall, but no other problem,
732        // just advance the current cycle and try again.
733        DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
734        HazardRec->AdvanceCycle();
735        ++NumStalls;
736      } else {
737        // Otherwise, we have no instructions to issue and we have instructions
738        // that will fault if we don't do this right.  This is the case for
739        // processors without pipeline interlocks and other cases.
740        DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
741        HazardRec->EmitNoop();
742        Sequence.push_back(0);   // NULL here means noop
743        ++NumNoops;
744      }
745
746      ++CurCycle;
747      CycleHasInsts = false;
748    }
749  }
750
751#ifndef NDEBUG
752  unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
753  unsigned Noops = 0;
754  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
755    if (!Sequence[i])
756      ++Noops;
757  assert(Sequence.size() - Noops == ScheduledNodes &&
758         "The number of nodes scheduled doesn't match the expected number!");
759#endif // NDEBUG
760}
761
762// EmitSchedule - Emit the machine code in scheduled order.
763void SchedulePostRATDList::EmitSchedule() {
764  Begin = End;
765
766  // If first instruction was a DBG_VALUE then put it back.
767  if (FirstDbgValue)
768    BB->splice(End, BB, FirstDbgValue);
769
770  // Then re-insert them according to the given schedule.
771  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
772    if (SUnit *SU = Sequence[i])
773      BB->splice(End, BB, SU->getInstr());
774    else
775      // Null SUnit* is a noop.
776      TII->insertNoop(*BB, End);
777
778    // Update the Begin iterator, as the first instruction in the block
779    // may have been scheduled later.
780    if (i == 0)
781      Begin = prior(End);
782  }
783
784  // Reinsert any remaining debug_values.
785  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
786         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
787    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
788    MachineInstr *DbgValue = P.first;
789    MachineBasicBlock::iterator OrigPrivMI = P.second;
790    BB->splice(++OrigPrivMI, BB, DbgValue);
791  }
792  DbgValues.clear();
793  FirstDbgValue = NULL;
794}
795