PostRASchedulerList.cpp revision cf6b6131dd0da37903a6e3a5173ea12aa8263713
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "AntiDepBreaker.h"
23#include "AggressiveAntiDepBreaker.h"
24#include "CriticalAntiDepBreaker.h"
25#include "llvm/CodeGen/Passes.h"
26#include "llvm/CodeGen/LatencyPriorityQueue.h"
27#include "llvm/CodeGen/SchedulerRegistry.h"
28#include "llvm/CodeGen/MachineDominators.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunctionPass.h"
31#include "llvm/CodeGen/MachineLoopInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/RegisterClassInfo.h"
34#include "llvm/CodeGen/ScheduleDAGInstrs.h"
35#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/Target/TargetLowering.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetSubtargetInfo.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/ADT/BitVector.h"
47#include "llvm/ADT/Statistic.h"
48using namespace llvm;
49
50STATISTIC(NumNoops, "Number of noops inserted");
51STATISTIC(NumStalls, "Number of pipeline stalls");
52STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
53
54// Post-RA scheduling is enabled with
55// TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
56// override the target.
57static cl::opt<bool>
58EnablePostRAScheduler("post-RA-scheduler",
59                       cl::desc("Enable scheduling after register allocation"),
60                       cl::init(false), cl::Hidden);
61static cl::opt<std::string>
62EnableAntiDepBreaking("break-anti-dependencies",
63                      cl::desc("Break post-RA scheduling anti-dependencies: "
64                               "\"critical\", \"all\", or \"none\""),
65                      cl::init("none"), cl::Hidden);
66
67// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
68static cl::opt<int>
69DebugDiv("postra-sched-debugdiv",
70                      cl::desc("Debug control MBBs that are scheduled"),
71                      cl::init(0), cl::Hidden);
72static cl::opt<int>
73DebugMod("postra-sched-debugmod",
74                      cl::desc("Debug control MBBs that are scheduled"),
75                      cl::init(0), cl::Hidden);
76
77AntiDepBreaker::~AntiDepBreaker() { }
78
79namespace {
80  class PostRAScheduler : public MachineFunctionPass {
81    const TargetInstrInfo *TII;
82    RegisterClassInfo RegClassInfo;
83
84  public:
85    static char ID;
86    PostRAScheduler() : MachineFunctionPass(ID) {}
87
88    void getAnalysisUsage(AnalysisUsage &AU) const {
89      AU.setPreservesCFG();
90      AU.addRequired<AliasAnalysis>();
91      AU.addRequired<TargetPassConfig>();
92      AU.addRequired<MachineDominatorTree>();
93      AU.addPreserved<MachineDominatorTree>();
94      AU.addRequired<MachineLoopInfo>();
95      AU.addPreserved<MachineLoopInfo>();
96      MachineFunctionPass::getAnalysisUsage(AU);
97    }
98
99    bool runOnMachineFunction(MachineFunction &Fn);
100  };
101  char PostRAScheduler::ID = 0;
102
103  class SchedulePostRATDList : public ScheduleDAGInstrs {
104    /// AvailableQueue - The priority queue to use for the available SUnits.
105    ///
106    LatencyPriorityQueue AvailableQueue;
107
108    /// PendingQueue - This contains all of the instructions whose operands have
109    /// been issued, but their results are not ready yet (due to the latency of
110    /// the operation).  Once the operands becomes available, the instruction is
111    /// added to the AvailableQueue.
112    std::vector<SUnit*> PendingQueue;
113
114    /// HazardRec - The hazard recognizer to use.
115    ScheduleHazardRecognizer *HazardRec;
116
117    /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
118    AntiDepBreaker *AntiDepBreak;
119
120    /// AA - AliasAnalysis for making memory reference queries.
121    AliasAnalysis *AA;
122
123    /// LiveRegs - true if the register is live.
124    BitVector LiveRegs;
125
126    /// The schedule. Null SUnit*'s represent noop instructions.
127    std::vector<SUnit*> Sequence;
128
129  public:
130    SchedulePostRATDList(
131      MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
132      AliasAnalysis *AA, const RegisterClassInfo&,
133      TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
134      SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs);
135
136    ~SchedulePostRATDList();
137
138    /// startBlock - Initialize register live-range state for scheduling in
139    /// this block.
140    ///
141    void startBlock(MachineBasicBlock *BB);
142
143    /// Initialize the scheduler state for the next scheduling region.
144    virtual void enterRegion(MachineBasicBlock *bb,
145                             MachineBasicBlock::iterator begin,
146                             MachineBasicBlock::iterator end,
147                             unsigned endcount);
148
149    /// Notify that the scheduler has finished scheduling the current region.
150    virtual void exitRegion();
151
152    /// Schedule - Schedule the instruction range using list scheduling.
153    ///
154    void schedule();
155
156    void EmitSchedule();
157
158    /// Observe - Update liveness information to account for the current
159    /// instruction, which will not be scheduled.
160    ///
161    void Observe(MachineInstr *MI, unsigned Count);
162
163    /// finishBlock - Clean up register live-range state.
164    ///
165    void finishBlock();
166
167    /// FixupKills - Fix register kill flags that have been made
168    /// invalid due to scheduling
169    ///
170    void FixupKills(MachineBasicBlock *MBB);
171
172  private:
173    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
174    void ReleaseSuccessors(SUnit *SU);
175    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
176    void ListScheduleTopDown();
177    void StartBlockForKills(MachineBasicBlock *BB);
178
179    // ToggleKillFlag - Toggle a register operand kill flag. Other
180    // adjustments may be made to the instruction if necessary. Return
181    // true if the operand has been deleted, false if not.
182    bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
183
184    void dumpSchedule() const;
185  };
186}
187
188char &llvm::PostRASchedulerID = PostRAScheduler::ID;
189
190INITIALIZE_PASS(PostRAScheduler, "post-RA-sched",
191                "Post RA top-down list latency scheduler", false, false)
192
193SchedulePostRATDList::SchedulePostRATDList(
194  MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
195  AliasAnalysis *AA, const RegisterClassInfo &RCI,
196  TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
197  SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs)
198  : ScheduleDAGInstrs(MF, MLI, MDT, /*IsPostRA=*/true), AA(AA),
199    LiveRegs(TRI->getNumRegs())
200{
201  const TargetMachine &TM = MF.getTarget();
202  const InstrItineraryData *InstrItins = TM.getInstrItineraryData();
203  HazardRec =
204    TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins, this);
205
206  assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
207          MRI.tracksLiveness()) &&
208         "Live-ins must be accurate for anti-dependency breaking");
209  AntiDepBreak =
210    ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
211     (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
212     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
213      (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : NULL));
214}
215
216SchedulePostRATDList::~SchedulePostRATDList() {
217  delete HazardRec;
218  delete AntiDepBreak;
219}
220
221/// Initialize state associated with the next scheduling region.
222void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
223                 MachineBasicBlock::iterator begin,
224                 MachineBasicBlock::iterator end,
225                 unsigned endcount) {
226  ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
227  Sequence.clear();
228}
229
230/// Print the schedule before exiting the region.
231void SchedulePostRATDList::exitRegion() {
232  DEBUG({
233      dbgs() << "*** Final schedule ***\n";
234      dumpSchedule();
235      dbgs() << '\n';
236    });
237  ScheduleDAGInstrs::exitRegion();
238}
239
240#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
241/// dumpSchedule - dump the scheduled Sequence.
242void SchedulePostRATDList::dumpSchedule() const {
243  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
244    if (SUnit *SU = Sequence[i])
245      SU->dump(this);
246    else
247      dbgs() << "**** NOOP ****\n";
248  }
249}
250#endif
251
252bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
253  TII = Fn.getTarget().getInstrInfo();
254  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
255  MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
256  AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
257  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
258
259  RegClassInfo.runOnMachineFunction(Fn);
260
261  // Check for explicit enable/disable of post-ra scheduling.
262  TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
263    TargetSubtargetInfo::ANTIDEP_NONE;
264  SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
265  if (EnablePostRAScheduler.getPosition() > 0) {
266    if (!EnablePostRAScheduler)
267      return false;
268  } else {
269    // Check that post-RA scheduling is enabled for this target.
270    // This may upgrade the AntiDepMode.
271    const TargetSubtargetInfo &ST = Fn.getTarget().getSubtarget<TargetSubtargetInfo>();
272    if (!ST.enablePostRAScheduler(PassConfig->getOptLevel(), AntiDepMode,
273                                  CriticalPathRCs))
274      return false;
275  }
276
277  // Check for antidep breaking override...
278  if (EnableAntiDepBreaking.getPosition() > 0) {
279    AntiDepMode = (EnableAntiDepBreaking == "all")
280      ? TargetSubtargetInfo::ANTIDEP_ALL
281      : ((EnableAntiDepBreaking == "critical")
282         ? TargetSubtargetInfo::ANTIDEP_CRITICAL
283         : TargetSubtargetInfo::ANTIDEP_NONE);
284  }
285
286  DEBUG(dbgs() << "PostRAScheduler\n");
287
288  SchedulePostRATDList Scheduler(Fn, MLI, MDT, AA, RegClassInfo, AntiDepMode,
289                                 CriticalPathRCs);
290
291  // Loop over all of the basic blocks
292  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
293       MBB != MBBe; ++MBB) {
294#ifndef NDEBUG
295    // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
296    if (DebugDiv > 0) {
297      static int bbcnt = 0;
298      if (bbcnt++ % DebugDiv != DebugMod)
299        continue;
300      dbgs() << "*** DEBUG scheduling " << Fn.getName()
301             << ":BB#" << MBB->getNumber() << " ***\n";
302    }
303#endif
304
305    // Initialize register live-range state for scheduling in this block.
306    Scheduler.startBlock(MBB);
307
308    // Schedule each sequence of instructions not interrupted by a label
309    // or anything else that effectively needs to shut down scheduling.
310    MachineBasicBlock::iterator Current = MBB->end();
311    unsigned Count = MBB->size(), CurrentCount = Count;
312    for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
313      MachineInstr *MI = llvm::prior(I);
314      // Calls are not scheduling boundaries before register allocation, but
315      // post-ra we don't gain anything by scheduling across calls since we
316      // don't need to worry about register pressure.
317      if (MI->isCall() || TII->isSchedulingBoundary(MI, MBB, Fn)) {
318        Scheduler.enterRegion(MBB, I, Current, CurrentCount);
319        Scheduler.schedule();
320        Scheduler.exitRegion();
321        Scheduler.EmitSchedule();
322        Current = MI;
323        CurrentCount = Count - 1;
324        Scheduler.Observe(MI, CurrentCount);
325      }
326      I = MI;
327      --Count;
328      if (MI->isBundle())
329        Count -= MI->getBundleSize();
330    }
331    assert(Count == 0 && "Instruction count mismatch!");
332    assert((MBB->begin() == Current || CurrentCount != 0) &&
333           "Instruction count mismatch!");
334    Scheduler.enterRegion(MBB, MBB->begin(), Current, CurrentCount);
335    Scheduler.schedule();
336    Scheduler.exitRegion();
337    Scheduler.EmitSchedule();
338
339    // Clean up register live-range state.
340    Scheduler.finishBlock();
341
342    // Update register kills
343    Scheduler.FixupKills(MBB);
344  }
345
346  return true;
347}
348
349/// StartBlock - Initialize register live-range state for scheduling in
350/// this block.
351///
352void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
353  // Call the superclass.
354  ScheduleDAGInstrs::startBlock(BB);
355
356  // Reset the hazard recognizer and anti-dep breaker.
357  HazardRec->Reset();
358  if (AntiDepBreak != NULL)
359    AntiDepBreak->StartBlock(BB);
360}
361
362/// Schedule - Schedule the instruction range using list scheduling.
363///
364void SchedulePostRATDList::schedule() {
365  // Build the scheduling graph.
366  buildSchedGraph(AA);
367
368  if (AntiDepBreak != NULL) {
369    unsigned Broken =
370      AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd,
371                                          EndIndex, DbgValues);
372
373    if (Broken != 0) {
374      // We made changes. Update the dependency graph.
375      // Theoretically we could update the graph in place:
376      // When a live range is changed to use a different register, remove
377      // the def's anti-dependence *and* output-dependence edges due to
378      // that register, and add new anti-dependence and output-dependence
379      // edges based on the next live range of the register.
380      ScheduleDAG::clearDAG();
381      buildSchedGraph(AA);
382
383      NumFixedAnti += Broken;
384    }
385  }
386
387  DEBUG(dbgs() << "********** List Scheduling **********\n");
388  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
389          SUnits[su].dumpAll(this));
390
391  AvailableQueue.initNodes(SUnits);
392  ListScheduleTopDown();
393  AvailableQueue.releaseState();
394}
395
396/// Observe - Update liveness information to account for the current
397/// instruction, which will not be scheduled.
398///
399void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
400  if (AntiDepBreak != NULL)
401    AntiDepBreak->Observe(MI, Count, EndIndex);
402}
403
404/// FinishBlock - Clean up register live-range state.
405///
406void SchedulePostRATDList::finishBlock() {
407  if (AntiDepBreak != NULL)
408    AntiDepBreak->FinishBlock();
409
410  // Call the superclass.
411  ScheduleDAGInstrs::finishBlock();
412}
413
414/// StartBlockForKills - Initialize register live-range state for updating kills
415///
416void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
417  // Start with no live registers.
418  LiveRegs.reset();
419
420  // Determine the live-out physregs for this block.
421  if (!BB->empty() && BB->back().isReturn()) {
422    // In a return block, examine the function live-out regs.
423    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
424           E = MRI.liveout_end(); I != E; ++I) {
425      unsigned Reg = *I;
426      LiveRegs.set(Reg);
427      // Repeat, for all subregs.
428      for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
429        LiveRegs.set(*SubRegs);
430    }
431  }
432  else {
433    // In a non-return block, examine the live-in regs of all successors.
434    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
435           SE = BB->succ_end(); SI != SE; ++SI) {
436      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
437             E = (*SI)->livein_end(); I != E; ++I) {
438        unsigned Reg = *I;
439        LiveRegs.set(Reg);
440        // Repeat, for all subregs.
441        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
442          LiveRegs.set(*SubRegs);
443      }
444    }
445  }
446}
447
448bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
449                                          MachineOperand &MO) {
450  // Setting kill flag...
451  if (!MO.isKill()) {
452    MO.setIsKill(true);
453    return false;
454  }
455
456  // If MO itself is live, clear the kill flag...
457  if (LiveRegs.test(MO.getReg())) {
458    MO.setIsKill(false);
459    return false;
460  }
461
462  // If any subreg of MO is live, then create an imp-def for that
463  // subreg and keep MO marked as killed.
464  MO.setIsKill(false);
465  bool AllDead = true;
466  const unsigned SuperReg = MO.getReg();
467  for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
468    if (LiveRegs.test(*SubRegs)) {
469      MI->addOperand(MachineOperand::CreateReg(*SubRegs,
470                                               true  /*IsDef*/,
471                                               true  /*IsImp*/,
472                                               false /*IsKill*/,
473                                               false /*IsDead*/));
474      AllDead = false;
475    }
476  }
477
478  if(AllDead)
479    MO.setIsKill(true);
480  return false;
481}
482
483/// FixupKills - Fix the register kill flags, they may have been made
484/// incorrect by instruction reordering.
485///
486void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
487  DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
488
489  BitVector killedRegs(TRI->getNumRegs());
490
491  StartBlockForKills(MBB);
492
493  // Examine block from end to start...
494  unsigned Count = MBB->size();
495  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
496       I != E; --Count) {
497    MachineInstr *MI = --I;
498    if (MI->isDebugValue())
499      continue;
500
501    // Update liveness.  Registers that are defed but not used in this
502    // instruction are now dead. Mark register and all subregs as they
503    // are completely defined.
504    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
505      MachineOperand &MO = MI->getOperand(i);
506      if (MO.isRegMask())
507        LiveRegs.clearBitsNotInMask(MO.getRegMask());
508      if (!MO.isReg()) continue;
509      unsigned Reg = MO.getReg();
510      if (Reg == 0) continue;
511      if (!MO.isDef()) continue;
512      // Ignore two-addr defs.
513      if (MI->isRegTiedToUseOperand(i)) continue;
514
515      LiveRegs.reset(Reg);
516
517      // Repeat for all subregs.
518      for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
519        LiveRegs.reset(*SubRegs);
520    }
521
522    // Examine all used registers and set/clear kill flag. When a
523    // register is used multiple times we only set the kill flag on
524    // the first use.
525    killedRegs.reset();
526    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
527      MachineOperand &MO = MI->getOperand(i);
528      if (!MO.isReg() || !MO.isUse()) continue;
529      unsigned Reg = MO.getReg();
530      if ((Reg == 0) || MRI.isReserved(Reg)) continue;
531
532      bool kill = false;
533      if (!killedRegs.test(Reg)) {
534        kill = true;
535        // A register is not killed if any subregs are live...
536        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
537          if (LiveRegs.test(*SubRegs)) {
538            kill = false;
539            break;
540          }
541        }
542
543        // If subreg is not live, then register is killed if it became
544        // live in this instruction
545        if (kill)
546          kill = !LiveRegs.test(Reg);
547      }
548
549      if (MO.isKill() != kill) {
550        DEBUG(dbgs() << "Fixing " << MO << " in ");
551        // Warning: ToggleKillFlag may invalidate MO.
552        ToggleKillFlag(MI, MO);
553        DEBUG(MI->dump());
554      }
555
556      killedRegs.set(Reg);
557    }
558
559    // Mark any used register (that is not using undef) and subregs as
560    // now live...
561    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
562      MachineOperand &MO = MI->getOperand(i);
563      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
564      unsigned Reg = MO.getReg();
565      if ((Reg == 0) || MRI.isReserved(Reg)) continue;
566
567      LiveRegs.set(Reg);
568
569      for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
570        LiveRegs.set(*SubRegs);
571    }
572  }
573}
574
575//===----------------------------------------------------------------------===//
576//  Top-Down Scheduling
577//===----------------------------------------------------------------------===//
578
579/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
580/// the PendingQueue if the count reaches zero.
581void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
582  SUnit *SuccSU = SuccEdge->getSUnit();
583
584  if (SuccEdge->isWeak()) {
585    --SuccSU->WeakPredsLeft;
586    return;
587  }
588#ifndef NDEBUG
589  if (SuccSU->NumPredsLeft == 0) {
590    dbgs() << "*** Scheduling failed! ***\n";
591    SuccSU->dump(this);
592    dbgs() << " has been released too many times!\n";
593    llvm_unreachable(0);
594  }
595#endif
596  --SuccSU->NumPredsLeft;
597
598  // Standard scheduler algorithms will recompute the depth of the successor
599  // here as such:
600  //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
601  //
602  // However, we lazily compute node depth instead. Note that
603  // ScheduleNodeTopDown has already updated the depth of this node which causes
604  // all descendents to be marked dirty. Setting the successor depth explicitly
605  // here would cause depth to be recomputed for all its ancestors. If the
606  // successor is not yet ready (because of a transitively redundant edge) then
607  // this causes depth computation to be quadratic in the size of the DAG.
608
609  // If all the node's predecessors are scheduled, this node is ready
610  // to be scheduled. Ignore the special ExitSU node.
611  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
612    PendingQueue.push_back(SuccSU);
613}
614
615/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
616void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
617  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
618       I != E; ++I) {
619    ReleaseSucc(SU, &*I);
620  }
621}
622
623/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
624/// count of its successors. If a successor pending count is zero, add it to
625/// the Available queue.
626void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
627  DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
628  DEBUG(SU->dump(this));
629
630  Sequence.push_back(SU);
631  assert(CurCycle >= SU->getDepth() &&
632         "Node scheduled above its depth!");
633  SU->setDepthToAtLeast(CurCycle);
634
635  ReleaseSuccessors(SU);
636  SU->isScheduled = true;
637  AvailableQueue.scheduledNode(SU);
638}
639
640/// ListScheduleTopDown - The main loop of list scheduling for top-down
641/// schedulers.
642void SchedulePostRATDList::ListScheduleTopDown() {
643  unsigned CurCycle = 0;
644
645  // We're scheduling top-down but we're visiting the regions in
646  // bottom-up order, so we don't know the hazards at the start of a
647  // region. So assume no hazards (this should usually be ok as most
648  // blocks are a single region).
649  HazardRec->Reset();
650
651  // Release any successors of the special Entry node.
652  ReleaseSuccessors(&EntrySU);
653
654  // Add all leaves to Available queue.
655  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
656    // It is available if it has no predecessors.
657    if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) {
658      AvailableQueue.push(&SUnits[i]);
659      SUnits[i].isAvailable = true;
660    }
661  }
662
663  // In any cycle where we can't schedule any instructions, we must
664  // stall or emit a noop, depending on the target.
665  bool CycleHasInsts = false;
666
667  // While Available queue is not empty, grab the node with the highest
668  // priority. If it is not ready put it back.  Schedule the node.
669  std::vector<SUnit*> NotReady;
670  Sequence.reserve(SUnits.size());
671  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
672    // Check to see if any of the pending instructions are ready to issue.  If
673    // so, add them to the available queue.
674    unsigned MinDepth = ~0u;
675    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
676      if (PendingQueue[i]->getDepth() <= CurCycle) {
677        AvailableQueue.push(PendingQueue[i]);
678        PendingQueue[i]->isAvailable = true;
679        PendingQueue[i] = PendingQueue.back();
680        PendingQueue.pop_back();
681        --i; --e;
682      } else if (PendingQueue[i]->getDepth() < MinDepth)
683        MinDepth = PendingQueue[i]->getDepth();
684    }
685
686    DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));
687
688    SUnit *FoundSUnit = 0;
689    bool HasNoopHazards = false;
690    while (!AvailableQueue.empty()) {
691      SUnit *CurSUnit = AvailableQueue.pop();
692
693      ScheduleHazardRecognizer::HazardType HT =
694        HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
695      if (HT == ScheduleHazardRecognizer::NoHazard) {
696        FoundSUnit = CurSUnit;
697        break;
698      }
699
700      // Remember if this is a noop hazard.
701      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
702
703      NotReady.push_back(CurSUnit);
704    }
705
706    // Add the nodes that aren't ready back onto the available list.
707    if (!NotReady.empty()) {
708      AvailableQueue.push_all(NotReady);
709      NotReady.clear();
710    }
711
712    // If we found a node to schedule...
713    if (FoundSUnit) {
714      // ... schedule the node...
715      ScheduleNodeTopDown(FoundSUnit, CurCycle);
716      HazardRec->EmitInstruction(FoundSUnit);
717      CycleHasInsts = true;
718      if (HazardRec->atIssueLimit()) {
719        DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
720        HazardRec->AdvanceCycle();
721        ++CurCycle;
722        CycleHasInsts = false;
723      }
724    } else {
725      if (CycleHasInsts) {
726        DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
727        HazardRec->AdvanceCycle();
728      } else if (!HasNoopHazards) {
729        // Otherwise, we have a pipeline stall, but no other problem,
730        // just advance the current cycle and try again.
731        DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
732        HazardRec->AdvanceCycle();
733        ++NumStalls;
734      } else {
735        // Otherwise, we have no instructions to issue and we have instructions
736        // that will fault if we don't do this right.  This is the case for
737        // processors without pipeline interlocks and other cases.
738        DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
739        HazardRec->EmitNoop();
740        Sequence.push_back(0);   // NULL here means noop
741        ++NumNoops;
742      }
743
744      ++CurCycle;
745      CycleHasInsts = false;
746    }
747  }
748
749#ifndef NDEBUG
750  unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
751  unsigned Noops = 0;
752  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
753    if (!Sequence[i])
754      ++Noops;
755  assert(Sequence.size() - Noops == ScheduledNodes &&
756         "The number of nodes scheduled doesn't match the expected number!");
757#endif // NDEBUG
758}
759
760// EmitSchedule - Emit the machine code in scheduled order.
761void SchedulePostRATDList::EmitSchedule() {
762  RegionBegin = RegionEnd;
763
764  // If first instruction was a DBG_VALUE then put it back.
765  if (FirstDbgValue)
766    BB->splice(RegionEnd, BB, FirstDbgValue);
767
768  // Then re-insert them according to the given schedule.
769  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
770    if (SUnit *SU = Sequence[i])
771      BB->splice(RegionEnd, BB, SU->getInstr());
772    else
773      // Null SUnit* is a noop.
774      TII->insertNoop(*BB, RegionEnd);
775
776    // Update the Begin iterator, as the first instruction in the block
777    // may have been scheduled later.
778    if (i == 0)
779      RegionBegin = prior(RegionEnd);
780  }
781
782  // Reinsert any remaining debug_values.
783  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
784         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
785    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
786    MachineInstr *DbgValue = P.first;
787    MachineBasicBlock::iterator OrigPrivMI = P.second;
788    BB->splice(++OrigPrivMI, BB, DbgValue);
789  }
790  DbgValues.clear();
791  FirstDbgValue = NULL;
792}
793