PostRASchedulerList.cpp revision f4fba53483a529e8f3adc304a811dd7bd3937854
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "AntiDepBreaker.h"
23#include "AggressiveAntiDepBreaker.h"
24#include "CriticalAntiDepBreaker.h"
25#include "ExactHazardRecognizer.h"
26#include "SimpleHazardRecognizer.h"
27#include "ScheduleDAGInstrs.h"
28#include "llvm/CodeGen/Passes.h"
29#include "llvm/CodeGen/LatencyPriorityQueue.h"
30#include "llvm/CodeGen/SchedulerRegistry.h"
31#include "llvm/CodeGen/MachineDominators.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunctionPass.h"
34#include "llvm/CodeGen/MachineLoopInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
37#include "llvm/Analysis/AliasAnalysis.h"
38#include "llvm/Target/TargetLowering.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Target/TargetSubtarget.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/ADT/BitVector.h"
48#include "llvm/ADT/Statistic.h"
49#include <set>
50using namespace llvm;
51
52STATISTIC(NumNoops, "Number of noops inserted");
53STATISTIC(NumStalls, "Number of pipeline stalls");
54STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
55
56// Post-RA scheduling is enabled with
57// TargetSubtarget.enablePostRAScheduler(). This flag can be used to
58// override the target.
59static cl::opt<bool>
60EnablePostRAScheduler("post-RA-scheduler",
61                       cl::desc("Enable scheduling after register allocation"),
62                       cl::init(false), cl::Hidden);
63static cl::opt<std::string>
64EnableAntiDepBreaking("break-anti-dependencies",
65                      cl::desc("Break post-RA scheduling anti-dependencies: "
66                               "\"critical\", \"all\", or \"none\""),
67                      cl::init("none"), cl::Hidden);
68static cl::opt<bool>
69EnablePostRAHazardAvoidance("avoid-hazards",
70                            cl::desc("Enable exact hazard avoidance"),
71                            cl::init(true), cl::Hidden);
72
73// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
74static cl::opt<int>
75DebugDiv("postra-sched-debugdiv",
76                      cl::desc("Debug control MBBs that are scheduled"),
77                      cl::init(0), cl::Hidden);
78static cl::opt<int>
79DebugMod("postra-sched-debugmod",
80                      cl::desc("Debug control MBBs that are scheduled"),
81                      cl::init(0), cl::Hidden);
82
83AntiDepBreaker::~AntiDepBreaker() { }
84
85namespace {
86  class PostRAScheduler : public MachineFunctionPass {
87    AliasAnalysis *AA;
88    CodeGenOpt::Level OptLevel;
89
90  public:
91    static char ID;
92    PostRAScheduler(CodeGenOpt::Level ol) :
93      MachineFunctionPass(&ID), OptLevel(ol) {}
94
95    void getAnalysisUsage(AnalysisUsage &AU) const {
96      AU.setPreservesCFG();
97      AU.addRequired<AliasAnalysis>();
98      AU.addRequired<MachineDominatorTree>();
99      AU.addPreserved<MachineDominatorTree>();
100      AU.addRequired<MachineLoopInfo>();
101      AU.addPreserved<MachineLoopInfo>();
102      MachineFunctionPass::getAnalysisUsage(AU);
103    }
104
105    const char *getPassName() const {
106      return "Post RA top-down list latency scheduler";
107    }
108
109    bool runOnMachineFunction(MachineFunction &Fn);
110  };
111  char PostRAScheduler::ID = 0;
112
113  class SchedulePostRATDList : public ScheduleDAGInstrs {
114    /// AvailableQueue - The priority queue to use for the available SUnits.
115    ///
116    LatencyPriorityQueue AvailableQueue;
117
118    /// PendingQueue - This contains all of the instructions whose operands have
119    /// been issued, but their results are not ready yet (due to the latency of
120    /// the operation).  Once the operands becomes available, the instruction is
121    /// added to the AvailableQueue.
122    std::vector<SUnit*> PendingQueue;
123
124    /// Topo - A topological ordering for SUnits.
125    ScheduleDAGTopologicalSort Topo;
126
127    /// HazardRec - The hazard recognizer to use.
128    ScheduleHazardRecognizer *HazardRec;
129
130    /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
131    AntiDepBreaker *AntiDepBreak;
132
133    /// AA - AliasAnalysis for making memory reference queries.
134    AliasAnalysis *AA;
135
136    /// KillIndices - The index of the most recent kill (proceding bottom-up),
137    /// or ~0u if the register is not live.
138    unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
139
140  public:
141    SchedulePostRATDList(MachineFunction &MF,
142                         const MachineLoopInfo &MLI,
143                         const MachineDominatorTree &MDT,
144                         ScheduleHazardRecognizer *HR,
145                         AntiDepBreaker *ADB,
146                         AliasAnalysis *aa)
147      : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
148      HazardRec(HR), AntiDepBreak(ADB), AA(aa) {}
149
150    ~SchedulePostRATDList() {
151    }
152
153    /// StartBlock - Initialize register live-range state for scheduling in
154    /// this block.
155    ///
156    void StartBlock(MachineBasicBlock *BB);
157
158    /// Schedule - Schedule the instruction range using list scheduling.
159    ///
160    void Schedule();
161
162    /// Observe - Update liveness information to account for the current
163    /// instruction, which will not be scheduled.
164    ///
165    void Observe(MachineInstr *MI, unsigned Count);
166
167    /// FinishBlock - Clean up register live-range state.
168    ///
169    void FinishBlock();
170
171    /// FixupKills - Fix register kill flags that have been made
172    /// invalid due to scheduling
173    ///
174    void FixupKills(MachineBasicBlock *MBB);
175
176  private:
177    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
178    void ReleaseSuccessors(SUnit *SU);
179    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
180    void ListScheduleTopDown();
181    void StartBlockForKills(MachineBasicBlock *BB);
182
183    // ToggleKillFlag - Toggle a register operand kill flag. Other
184    // adjustments may be made to the instruction if necessary. Return
185    // true if the operand has been deleted, false if not.
186    bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
187  };
188}
189
190/// isSchedulingBoundary - Test if the given instruction should be
191/// considered a scheduling boundary. This primarily includes labels
192/// and terminators.
193///
194static bool isSchedulingBoundary(const MachineInstr *MI,
195                                 const MachineFunction &MF) {
196  // Terminators and labels can't be scheduled around.
197  if (MI->getDesc().isTerminator() || MI->isLabel())
198    return true;
199
200  // Don't attempt to schedule around any instruction that defines
201  // a stack-oriented pointer, as it's unlikely to be profitable. This
202  // saves compile time, because it doesn't require every single
203  // stack slot reference to depend on the instruction that does the
204  // modification.
205  const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
206  if (MI->definesRegister(TLI.getStackPointerRegisterToSaveRestore()))
207    return true;
208
209  return false;
210}
211
212bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
213  AA = &getAnalysis<AliasAnalysis>();
214
215  // Check for explicit enable/disable of post-ra scheduling.
216  TargetSubtarget::AntiDepBreakMode AntiDepMode = TargetSubtarget::ANTIDEP_NONE;
217  SmallVector<TargetRegisterClass*, 4> CriticalPathRCs;
218  if (EnablePostRAScheduler.getPosition() > 0) {
219    if (!EnablePostRAScheduler)
220      return false;
221  } else {
222    // Check that post-RA scheduling is enabled for this target.
223    const TargetSubtarget &ST = Fn.getTarget().getSubtarget<TargetSubtarget>();
224    if (!ST.enablePostRAScheduler(OptLevel, AntiDepMode, CriticalPathRCs))
225      return false;
226  }
227
228  // Check for antidep breaking override...
229  if (EnableAntiDepBreaking.getPosition() > 0) {
230    AntiDepMode = (EnableAntiDepBreaking == "all") ?
231      TargetSubtarget::ANTIDEP_ALL :
232        (EnableAntiDepBreaking == "critical")
233           ? TargetSubtarget::ANTIDEP_CRITICAL : TargetSubtarget::ANTIDEP_NONE;
234  }
235
236  DEBUG(dbgs() << "PostRAScheduler\n");
237
238  const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
239  const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
240  const TargetMachine &TM = Fn.getTarget();
241  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
242  ScheduleHazardRecognizer *HR =
243    TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins);
244  AntiDepBreaker *ADB =
245    ((AntiDepMode == TargetSubtarget::ANTIDEP_ALL) ?
246     (AntiDepBreaker *)new AggressiveAntiDepBreaker(Fn, CriticalPathRCs) :
247     ((AntiDepMode == TargetSubtarget::ANTIDEP_CRITICAL) ?
248      (AntiDepBreaker *)new CriticalAntiDepBreaker(Fn) : NULL));
249
250  SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR, ADB, AA);
251
252  // Loop over all of the basic blocks
253  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
254       MBB != MBBe; ++MBB) {
255#ifndef NDEBUG
256    // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
257    if (DebugDiv > 0) {
258      static int bbcnt = 0;
259      if (bbcnt++ % DebugDiv != DebugMod)
260        continue;
261      dbgs() << "*** DEBUG scheduling " << Fn.getFunction()->getNameStr() <<
262        ":BB#" << MBB->getNumber() << " ***\n";
263    }
264#endif
265
266    // Initialize register live-range state for scheduling in this block.
267    Scheduler.StartBlock(MBB);
268
269    // Schedule each sequence of instructions not interrupted by a label
270    // or anything else that effectively needs to shut down scheduling.
271    MachineBasicBlock::iterator Current = MBB->end();
272    unsigned Count = MBB->size(), CurrentCount = Count;
273    for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
274      MachineInstr *MI = prior(I);
275      if (isSchedulingBoundary(MI, Fn)) {
276        Scheduler.Run(MBB, I, Current, CurrentCount);
277        Scheduler.EmitSchedule();
278        Current = MI;
279        CurrentCount = Count - 1;
280        Scheduler.Observe(MI, CurrentCount);
281      }
282      I = MI;
283      --Count;
284    }
285    assert(Count == 0 && "Instruction count mismatch!");
286    assert((MBB->begin() == Current || CurrentCount != 0) &&
287           "Instruction count mismatch!");
288    Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
289    Scheduler.EmitSchedule();
290
291    // Clean up register live-range state.
292    Scheduler.FinishBlock();
293
294    // Update register kills
295    Scheduler.FixupKills(MBB);
296  }
297
298  delete HR;
299  delete ADB;
300
301  return true;
302}
303
304/// StartBlock - Initialize register live-range state for scheduling in
305/// this block.
306///
307void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
308  // Call the superclass.
309  ScheduleDAGInstrs::StartBlock(BB);
310
311  // Reset the hazard recognizer and anti-dep breaker.
312  HazardRec->Reset();
313  if (AntiDepBreak != NULL)
314    AntiDepBreak->StartBlock(BB);
315}
316
317/// Schedule - Schedule the instruction range using list scheduling.
318///
319void SchedulePostRATDList::Schedule() {
320  // Build the scheduling graph.
321  BuildSchedGraph(AA);
322
323  if (AntiDepBreak != NULL) {
324    unsigned Broken =
325      AntiDepBreak->BreakAntiDependencies(SUnits, Begin, InsertPos,
326                                          InsertPosIndex);
327
328    if (Broken != 0) {
329      // We made changes. Update the dependency graph.
330      // Theoretically we could update the graph in place:
331      // When a live range is changed to use a different register, remove
332      // the def's anti-dependence *and* output-dependence edges due to
333      // that register, and add new anti-dependence and output-dependence
334      // edges based on the next live range of the register.
335      SUnits.clear();
336      Sequence.clear();
337      EntrySU = SUnit();
338      ExitSU = SUnit();
339      BuildSchedGraph(AA);
340
341      NumFixedAnti += Broken;
342    }
343  }
344
345  DEBUG(dbgs() << "********** List Scheduling **********\n");
346  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
347          SUnits[su].dumpAll(this));
348
349  AvailableQueue.initNodes(SUnits);
350  ListScheduleTopDown();
351  AvailableQueue.releaseState();
352}
353
354/// Observe - Update liveness information to account for the current
355/// instruction, which will not be scheduled.
356///
357void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
358  if (AntiDepBreak != NULL)
359    AntiDepBreak->Observe(MI, Count, InsertPosIndex);
360}
361
362/// FinishBlock - Clean up register live-range state.
363///
364void SchedulePostRATDList::FinishBlock() {
365  if (AntiDepBreak != NULL)
366    AntiDepBreak->FinishBlock();
367
368  // Call the superclass.
369  ScheduleDAGInstrs::FinishBlock();
370}
371
372/// StartBlockForKills - Initialize register live-range state for updating kills
373///
374void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
375  // Initialize the indices to indicate that no registers are live.
376  for (unsigned i = 0; i < TRI->getNumRegs(); ++i)
377    KillIndices[i] = ~0u;
378
379  // Determine the live-out physregs for this block.
380  if (!BB->empty() && BB->back().getDesc().isReturn()) {
381    // In a return block, examine the function live-out regs.
382    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
383           E = MRI.liveout_end(); I != E; ++I) {
384      unsigned Reg = *I;
385      KillIndices[Reg] = BB->size();
386      // Repeat, for all subregs.
387      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
388           *Subreg; ++Subreg) {
389        KillIndices[*Subreg] = BB->size();
390      }
391    }
392  }
393  else {
394    // In a non-return block, examine the live-in regs of all successors.
395    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
396           SE = BB->succ_end(); SI != SE; ++SI) {
397      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
398             E = (*SI)->livein_end(); I != E; ++I) {
399        unsigned Reg = *I;
400        KillIndices[Reg] = BB->size();
401        // Repeat, for all subregs.
402        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
403             *Subreg; ++Subreg) {
404          KillIndices[*Subreg] = BB->size();
405        }
406      }
407    }
408  }
409}
410
411bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
412                                          MachineOperand &MO) {
413  // Setting kill flag...
414  if (!MO.isKill()) {
415    MO.setIsKill(true);
416    return false;
417  }
418
419  // If MO itself is live, clear the kill flag...
420  if (KillIndices[MO.getReg()] != ~0u) {
421    MO.setIsKill(false);
422    return false;
423  }
424
425  // If any subreg of MO is live, then create an imp-def for that
426  // subreg and keep MO marked as killed.
427  MO.setIsKill(false);
428  bool AllDead = true;
429  const unsigned SuperReg = MO.getReg();
430  for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg);
431       *Subreg; ++Subreg) {
432    if (KillIndices[*Subreg] != ~0u) {
433      MI->addOperand(MachineOperand::CreateReg(*Subreg,
434                                               true  /*IsDef*/,
435                                               true  /*IsImp*/,
436                                               false /*IsKill*/,
437                                               false /*IsDead*/));
438      AllDead = false;
439    }
440  }
441
442  if(AllDead)
443    MO.setIsKill(true);
444  return false;
445}
446
447/// FixupKills - Fix the register kill flags, they may have been made
448/// incorrect by instruction reordering.
449///
450void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
451  DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
452
453  std::set<unsigned> killedRegs;
454  BitVector ReservedRegs = TRI->getReservedRegs(MF);
455
456  StartBlockForKills(MBB);
457
458  // Examine block from end to start...
459  unsigned Count = MBB->size();
460  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
461       I != E; --Count) {
462    MachineInstr *MI = --I;
463    if (MI->isDebugValue())
464      continue;
465
466    // Update liveness.  Registers that are defed but not used in this
467    // instruction are now dead. Mark register and all subregs as they
468    // are completely defined.
469    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
470      MachineOperand &MO = MI->getOperand(i);
471      if (!MO.isReg()) continue;
472      unsigned Reg = MO.getReg();
473      if (Reg == 0) continue;
474      if (!MO.isDef()) continue;
475      // Ignore two-addr defs.
476      if (MI->isRegTiedToUseOperand(i)) continue;
477
478      KillIndices[Reg] = ~0u;
479
480      // Repeat for all subregs.
481      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
482           *Subreg; ++Subreg) {
483        KillIndices[*Subreg] = ~0u;
484      }
485    }
486
487    // Examine all used registers and set/clear kill flag. When a
488    // register is used multiple times we only set the kill flag on
489    // the first use.
490    killedRegs.clear();
491    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
492      MachineOperand &MO = MI->getOperand(i);
493      if (!MO.isReg() || !MO.isUse()) continue;
494      unsigned Reg = MO.getReg();
495      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
496
497      bool kill = false;
498      if (killedRegs.find(Reg) == killedRegs.end()) {
499        kill = true;
500        // A register is not killed if any subregs are live...
501        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
502             *Subreg; ++Subreg) {
503          if (KillIndices[*Subreg] != ~0u) {
504            kill = false;
505            break;
506          }
507        }
508
509        // If subreg is not live, then register is killed if it became
510        // live in this instruction
511        if (kill)
512          kill = (KillIndices[Reg] == ~0u);
513      }
514
515      if (MO.isKill() != kill) {
516        DEBUG(dbgs() << "Fixing " << MO << " in ");
517        // Warning: ToggleKillFlag may invalidate MO.
518        ToggleKillFlag(MI, MO);
519        DEBUG(MI->dump());
520      }
521
522      killedRegs.insert(Reg);
523    }
524
525    // Mark any used register (that is not using undef) and subregs as
526    // now live...
527    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
528      MachineOperand &MO = MI->getOperand(i);
529      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
530      unsigned Reg = MO.getReg();
531      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
532
533      KillIndices[Reg] = Count;
534
535      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
536           *Subreg; ++Subreg) {
537        KillIndices[*Subreg] = Count;
538      }
539    }
540  }
541}
542
543//===----------------------------------------------------------------------===//
544//  Top-Down Scheduling
545//===----------------------------------------------------------------------===//
546
547/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
548/// the PendingQueue if the count reaches zero. Also update its cycle bound.
549void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
550  SUnit *SuccSU = SuccEdge->getSUnit();
551
552#ifndef NDEBUG
553  if (SuccSU->NumPredsLeft == 0) {
554    dbgs() << "*** Scheduling failed! ***\n";
555    SuccSU->dump(this);
556    dbgs() << " has been released too many times!\n";
557    llvm_unreachable(0);
558  }
559#endif
560  --SuccSU->NumPredsLeft;
561
562  // Compute how many cycles it will be before this actually becomes
563  // available.  This is the max of the start time of all predecessors plus
564  // their latencies.
565  SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
566
567  // If all the node's predecessors are scheduled, this node is ready
568  // to be scheduled. Ignore the special ExitSU node.
569  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
570    PendingQueue.push_back(SuccSU);
571}
572
573/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
574void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
575  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
576       I != E; ++I) {
577    ReleaseSucc(SU, &*I);
578  }
579}
580
581/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
582/// count of its successors. If a successor pending count is zero, add it to
583/// the Available queue.
584void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
585  DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
586  DEBUG(SU->dump(this));
587
588  Sequence.push_back(SU);
589  assert(CurCycle >= SU->getDepth() &&
590         "Node scheduled above its depth!");
591  SU->setDepthToAtLeast(CurCycle);
592
593  ReleaseSuccessors(SU);
594  SU->isScheduled = true;
595  AvailableQueue.ScheduledNode(SU);
596}
597
598/// ListScheduleTopDown - The main loop of list scheduling for top-down
599/// schedulers.
600void SchedulePostRATDList::ListScheduleTopDown() {
601  unsigned CurCycle = 0;
602
603  // We're scheduling top-down but we're visiting the regions in
604  // bottom-up order, so we don't know the hazards at the start of a
605  // region. So assume no hazards (this should usually be ok as most
606  // blocks are a single region).
607  HazardRec->Reset();
608
609  // Release any successors of the special Entry node.
610  ReleaseSuccessors(&EntrySU);
611
612  // Add all leaves to Available queue.
613  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
614    // It is available if it has no predecessors.
615    bool available = SUnits[i].Preds.empty();
616    if (available) {
617      AvailableQueue.push(&SUnits[i]);
618      SUnits[i].isAvailable = true;
619    }
620  }
621
622  // In any cycle where we can't schedule any instructions, we must
623  // stall or emit a noop, depending on the target.
624  bool CycleHasInsts = false;
625
626  // While Available queue is not empty, grab the node with the highest
627  // priority. If it is not ready put it back.  Schedule the node.
628  std::vector<SUnit*> NotReady;
629  Sequence.reserve(SUnits.size());
630  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
631    // Check to see if any of the pending instructions are ready to issue.  If
632    // so, add them to the available queue.
633    unsigned MinDepth = ~0u;
634    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
635      if (PendingQueue[i]->getDepth() <= CurCycle) {
636        AvailableQueue.push(PendingQueue[i]);
637        PendingQueue[i]->isAvailable = true;
638        PendingQueue[i] = PendingQueue.back();
639        PendingQueue.pop_back();
640        --i; --e;
641      } else if (PendingQueue[i]->getDepth() < MinDepth)
642        MinDepth = PendingQueue[i]->getDepth();
643    }
644
645    DEBUG(dbgs() << "\n*** Examining Available\n";
646          LatencyPriorityQueue q = AvailableQueue;
647          while (!q.empty()) {
648            SUnit *su = q.pop();
649            dbgs() << "Height " << su->getHeight() << ": ";
650            su->dump(this);
651          });
652
653    SUnit *FoundSUnit = 0;
654    bool HasNoopHazards = false;
655    while (!AvailableQueue.empty()) {
656      SUnit *CurSUnit = AvailableQueue.pop();
657
658      ScheduleHazardRecognizer::HazardType HT =
659        HazardRec->getHazardType(CurSUnit);
660      if (HT == ScheduleHazardRecognizer::NoHazard) {
661        FoundSUnit = CurSUnit;
662        break;
663      }
664
665      // Remember if this is a noop hazard.
666      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
667
668      NotReady.push_back(CurSUnit);
669    }
670
671    // Add the nodes that aren't ready back onto the available list.
672    if (!NotReady.empty()) {
673      AvailableQueue.push_all(NotReady);
674      NotReady.clear();
675    }
676
677    // If we found a node to schedule...
678    if (FoundSUnit) {
679      // ... schedule the node...
680      ScheduleNodeTopDown(FoundSUnit, CurCycle);
681      HazardRec->EmitInstruction(FoundSUnit);
682      CycleHasInsts = true;
683
684      // If we are using the target-specific hazards, then don't
685      // advance the cycle time just because we schedule a node. If
686      // the target allows it we can schedule multiple nodes in the
687      // same cycle.
688      if (!EnablePostRAHazardAvoidance) {
689        if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
690          ++CurCycle;
691      }
692    } else {
693      if (CycleHasInsts) {
694        DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
695        HazardRec->AdvanceCycle();
696      } else if (!HasNoopHazards) {
697        // Otherwise, we have a pipeline stall, but no other problem,
698        // just advance the current cycle and try again.
699        DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
700        HazardRec->AdvanceCycle();
701        ++NumStalls;
702      } else {
703        // Otherwise, we have no instructions to issue and we have instructions
704        // that will fault if we don't do this right.  This is the case for
705        // processors without pipeline interlocks and other cases.
706        DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
707        HazardRec->EmitNoop();
708        Sequence.push_back(0);   // NULL here means noop
709        ++NumNoops;
710      }
711
712      ++CurCycle;
713      CycleHasInsts = false;
714    }
715  }
716
717#ifndef NDEBUG
718  VerifySchedule(/*isBottomUp=*/false);
719#endif
720}
721
722// Default implementation of CreateTargetPostRAHazardRecognizer. This should
723// be in TargetInstrInfoImpl.cpp except it reference local command line
724// option EnablePostRAHazardAvoidance
725ScheduleHazardRecognizer *TargetInstrInfoImpl::
726CreateTargetPostRAHazardRecognizer(const InstrItineraryData &II) const {
727  if (EnablePostRAHazardAvoidance)
728    return (ScheduleHazardRecognizer *)new ExactHazardRecognizer(II);
729  return (ScheduleHazardRecognizer *)new SimpleHazardRecognizer();
730}
731
732//===----------------------------------------------------------------------===//
733//                         Public Constructor Functions
734//===----------------------------------------------------------------------===//
735
736FunctionPass *llvm::createPostRAScheduler(CodeGenOpt::Level OptLevel) {
737  return new PostRAScheduler(OptLevel);
738}
739