PostRASchedulerList.cpp revision f7119393a97c2a10757084b6bc186380f8c19a73
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "llvm/CodeGen/Passes.h"
23#include "llvm/CodeGen/ScheduleDAGInstrs.h"
24#include "llvm/CodeGen/LatencyPriorityQueue.h"
25#include "llvm/CodeGen/SchedulerRegistry.h"
26#include "llvm/CodeGen/MachineDominators.h"
27#include "llvm/CodeGen/MachineFunctionPass.h"
28#include "llvm/CodeGen/MachineLoopInfo.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetRegisterInfo.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/ADT/Statistic.h"
37#include <map>
38using namespace llvm;
39
40STATISTIC(NumNoops, "Number of noops inserted");
41STATISTIC(NumStalls, "Number of pipeline stalls");
42
43static cl::opt<bool>
44EnableAntiDepBreaking("break-anti-dependencies",
45                      cl::desc("Break post-RA scheduling anti-dependencies"),
46                      cl::init(true), cl::Hidden);
47
48static cl::opt<bool>
49EnablePostRAHazardAvoidance("avoid-hazards",
50                      cl::desc("Enable simple hazard-avoidance"),
51                      cl::init(true), cl::Hidden);
52
53namespace {
54  class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
55  public:
56    static char ID;
57    PostRAScheduler() : MachineFunctionPass(&ID) {}
58
59    void getAnalysisUsage(AnalysisUsage &AU) const {
60      AU.addRequired<MachineDominatorTree>();
61      AU.addPreserved<MachineDominatorTree>();
62      AU.addRequired<MachineLoopInfo>();
63      AU.addPreserved<MachineLoopInfo>();
64      MachineFunctionPass::getAnalysisUsage(AU);
65    }
66
67    const char *getPassName() const {
68      return "Post RA top-down list latency scheduler";
69    }
70
71    bool runOnMachineFunction(MachineFunction &Fn);
72  };
73  char PostRAScheduler::ID = 0;
74
75  class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
76    /// AvailableQueue - The priority queue to use for the available SUnits.
77    ///
78    LatencyPriorityQueue AvailableQueue;
79
80    /// PendingQueue - This contains all of the instructions whose operands have
81    /// been issued, but their results are not ready yet (due to the latency of
82    /// the operation).  Once the operands becomes available, the instruction is
83    /// added to the AvailableQueue.
84    std::vector<SUnit*> PendingQueue;
85
86    /// Topo - A topological ordering for SUnits.
87    ScheduleDAGTopologicalSort Topo;
88
89    /// AllocatableSet - The set of allocatable registers.
90    /// We'll be ignoring anti-dependencies on non-allocatable registers,
91    /// because they may not be safe to break.
92    const BitVector AllocatableSet;
93
94    /// HazardRec - The hazard recognizer to use.
95    ScheduleHazardRecognizer *HazardRec;
96
97  public:
98    SchedulePostRATDList(MachineFunction &MF,
99                         const MachineLoopInfo &MLI,
100                         const MachineDominatorTree &MDT,
101                         ScheduleHazardRecognizer *HR)
102      : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
103        AllocatableSet(TRI->getAllocatableSet(MF)),
104        HazardRec(HR) {}
105
106    ~SchedulePostRATDList() {
107      delete HazardRec;
108    }
109
110    void Schedule();
111
112  private:
113    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
114    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
115    void ListScheduleTopDown();
116    bool BreakAntiDependencies();
117  };
118
119  /// SimpleHazardRecognizer - A *very* simple hazard recognizer. It uses
120  /// a coarse classification and attempts to avoid that instructions of
121  /// a given class aren't grouped too densely together.
122  class SimpleHazardRecognizer : public ScheduleHazardRecognizer {
123    /// Class - A simple classification for SUnits.
124    enum Class {
125      Other, Load, Store
126    };
127
128    /// Window - The Class values of the most recently issued
129    /// instructions.
130    Class Window[8];
131
132    /// getClass - Classify the given SUnit.
133    Class getClass(const SUnit *SU) {
134      const MachineInstr *MI = SU->getInstr();
135      const TargetInstrDesc &TID = MI->getDesc();
136      if (TID.mayLoad())
137        return Load;
138      if (TID.mayStore())
139        return Store;
140      return Other;
141    }
142
143    /// Step - Rotate the existing entries in Window and insert the
144    /// given class value in position as the most recent.
145    void Step(Class C) {
146      std::copy(Window+1, array_endof(Window), Window);
147      Window[array_lengthof(Window)-1] = C;
148    }
149
150  public:
151    SimpleHazardRecognizer() : Window() {}
152
153    virtual HazardType getHazardType(SUnit *SU) {
154      Class C = getClass(SU);
155      if (C == Other)
156        return NoHazard;
157      unsigned Score = 0;
158      for (unsigned i = 0; i != array_lengthof(Window); ++i)
159        if (Window[i] == C)
160          Score += i + 1;
161      if (Score > array_lengthof(Window) * 2)
162        return Hazard;
163      return NoHazard;
164    }
165
166    virtual void EmitInstruction(SUnit *SU) {
167      Step(getClass(SU));
168    }
169
170    virtual void AdvanceCycle() {
171      Step(Other);
172    }
173  };
174}
175
176bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
177  DOUT << "PostRAScheduler\n";
178
179  const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
180  const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
181  ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ?
182                                 new SimpleHazardRecognizer :
183                                 new ScheduleHazardRecognizer();
184
185  SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR);
186
187  // Loop over all of the basic blocks
188  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
189       MBB != MBBe; ++MBB) {
190    // Schedule each sequence of instructions not interrupted by a label
191    // or anything else that effectively needs to shut down scheduling.
192    MachineBasicBlock::iterator Current = MBB->begin(), End = MBB->end();
193    for (MachineBasicBlock::iterator MI = Current; MI != End; ++MI)
194      if (MI->getDesc().isTerminator() || MI->isLabel()) {
195        Scheduler.Run(0, MBB, Current, MI);
196        Scheduler.EmitSchedule();
197        Current = next(MI);
198      }
199
200    Scheduler.Run(0, MBB, Current, End);
201    Scheduler.EmitSchedule();
202  }
203
204  return true;
205}
206
207/// Schedule - Schedule the DAG using list scheduling.
208void SchedulePostRATDList::Schedule() {
209  DOUT << "********** List Scheduling **********\n";
210
211  // Build the scheduling graph.
212  BuildSchedGraph();
213
214  if (EnableAntiDepBreaking) {
215    if (BreakAntiDependencies()) {
216      // We made changes. Update the dependency graph.
217      // Theoretically we could update the graph in place:
218      // When a live range is changed to use a different register, remove
219      // the def's anti-dependence *and* output-dependence edges due to
220      // that register, and add new anti-dependence and output-dependence
221      // edges based on the next live range of the register.
222      SUnits.clear();
223      BuildSchedGraph();
224    }
225  }
226
227  AvailableQueue.initNodes(SUnits);
228
229  ListScheduleTopDown();
230
231  AvailableQueue.releaseState();
232}
233
234/// getInstrOperandRegClass - Return register class of the operand of an
235/// instruction of the specified TargetInstrDesc.
236static const TargetRegisterClass*
237getInstrOperandRegClass(const TargetRegisterInfo *TRI,
238                        const TargetInstrInfo *TII, const TargetInstrDesc &II,
239                        unsigned Op) {
240  if (Op >= II.getNumOperands())
241    return NULL;
242  if (II.OpInfo[Op].isLookupPtrRegClass())
243    return TII->getPointerRegClass();
244  return TRI->getRegClass(II.OpInfo[Op].RegClass);
245}
246
247/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
248/// critical path.
249static SDep *CriticalPathStep(SUnit *SU) {
250  SDep *Next = 0;
251  unsigned NextDepth = 0;
252  // Find the predecessor edge with the greatest depth.
253  for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
254       P != PE; ++P) {
255    SUnit *PredSU = P->getSUnit();
256    unsigned PredLatency = P->getLatency();
257    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
258    // In the case of a latency tie, prefer an anti-dependency edge over
259    // other types of edges.
260    if (NextDepth < PredTotalLatency ||
261        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
262      NextDepth = PredTotalLatency;
263      Next = &*P;
264    }
265  }
266  return Next;
267}
268
269/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
270/// of the ScheduleDAG and break them by renaming registers.
271///
272bool SchedulePostRATDList::BreakAntiDependencies() {
273  // The code below assumes that there is at least one instruction,
274  // so just duck out immediately if the block is empty.
275  if (SUnits.empty()) return false;
276
277  // Find the node at the bottom of the critical path.
278  SUnit *Max = 0;
279  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
280    SUnit *SU = &SUnits[i];
281    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
282      Max = SU;
283  }
284
285  DOUT << "Critical path has total latency "
286       << (Max->getDepth() + Max->Latency) << "\n";
287
288  // Track progress along the critical path through the SUnit graph as we walk
289  // the instructions.
290  SUnit *CriticalPathSU = Max;
291  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
292
293  // For live regs that are only used in one register class in a live range,
294  // the register class. If the register is not live, the corresponding value
295  // is null. If the register is live but used in multiple register classes,
296  // the corresponding value is -1 casted to a pointer.
297  const TargetRegisterClass *
298    Classes[TargetRegisterInfo::FirstVirtualRegister] = {};
299
300  // Map registers to all their references within a live range.
301  std::multimap<unsigned, MachineOperand *> RegRefs;
302
303  // The index of the most recent kill (proceding bottom-up), or ~0u if
304  // the register is not live.
305  unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
306  std::fill(KillIndices, array_endof(KillIndices), ~0u);
307  // The index of the most recent complete def (proceding bottom up), or ~0u if
308  // the register is live.
309  unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
310  std::fill(DefIndices, array_endof(DefIndices), BB->size());
311
312  // Determine the live-out physregs for this block.
313  if (BB->back().getDesc().isReturn())
314    // In a return block, examine the function live-out regs.
315    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
316         E = MRI.liveout_end(); I != E; ++I) {
317      unsigned Reg = *I;
318      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
319      KillIndices[Reg] = BB->size();
320      DefIndices[Reg] = ~0u;
321      // Repeat, for all aliases.
322      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
323        unsigned AliasReg = *Alias;
324        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
325        KillIndices[AliasReg] = BB->size();
326        DefIndices[AliasReg] = ~0u;
327      }
328    }
329  else
330    // In a non-return block, examine the live-in regs of all successors.
331    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
332         SE = BB->succ_end(); SI != SE; ++SI)
333      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
334           E = (*SI)->livein_end(); I != E; ++I) {
335        unsigned Reg = *I;
336        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
337        KillIndices[Reg] = BB->size();
338        DefIndices[Reg] = ~0u;
339        // Repeat, for all aliases.
340        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
341          unsigned AliasReg = *Alias;
342          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
343          KillIndices[AliasReg] = BB->size();
344          DefIndices[AliasReg] = ~0u;
345        }
346      }
347
348  // Consider callee-saved registers as live-out, since we're running after
349  // prologue/epilogue insertion so there's no way to add additional
350  // saved registers.
351  //
352  // TODO: If the callee saves and restores these, then we can potentially
353  // use them between the save and the restore. To do that, we could scan
354  // the exit blocks to see which of these registers are defined.
355  // Alternatively, callee-saved registers that aren't saved and restored
356  // could be marked live-in in every block.
357  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
358    unsigned Reg = *I;
359    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
360    KillIndices[Reg] = BB->size();
361    DefIndices[Reg] = ~0u;
362    // Repeat, for all aliases.
363    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
364      unsigned AliasReg = *Alias;
365      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
366      KillIndices[AliasReg] = BB->size();
367      DefIndices[AliasReg] = ~0u;
368    }
369  }
370
371  // Consider this pattern:
372  //   A = ...
373  //   ... = A
374  //   A = ...
375  //   ... = A
376  //   A = ...
377  //   ... = A
378  //   A = ...
379  //   ... = A
380  // There are three anti-dependencies here, and without special care,
381  // we'd break all of them using the same register:
382  //   A = ...
383  //   ... = A
384  //   B = ...
385  //   ... = B
386  //   B = ...
387  //   ... = B
388  //   B = ...
389  //   ... = B
390  // because at each anti-dependence, B is the first register that
391  // isn't A which is free.  This re-introduces anti-dependencies
392  // at all but one of the original anti-dependencies that we were
393  // trying to break.  To avoid this, keep track of the most recent
394  // register that each register was replaced with, avoid avoid
395  // using it to repair an anti-dependence on the same register.
396  // This lets us produce this:
397  //   A = ...
398  //   ... = A
399  //   B = ...
400  //   ... = B
401  //   C = ...
402  //   ... = C
403  //   B = ...
404  //   ... = B
405  // This still has an anti-dependence on B, but at least it isn't on the
406  // original critical path.
407  //
408  // TODO: If we tracked more than one register here, we could potentially
409  // fix that remaining critical edge too. This is a little more involved,
410  // because unlike the most recent register, less recent registers should
411  // still be considered, though only if no other registers are available.
412  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
413
414  // Attempt to break anti-dependence edges on the critical path. Walk the
415  // instructions from the bottom up, tracking information about liveness
416  // as we go to help determine which registers are available.
417  bool Changed = false;
418  unsigned Count = BB->size() - 1;
419  for (MachineBasicBlock::reverse_iterator I = BB->rbegin(), E = BB->rend();
420       I != E; ++I, --Count) {
421    MachineInstr *MI = &*I;
422
423    // After regalloc, IMPLICIT_DEF instructions aren't safe to treat as
424    // dependence-breaking. In the case of an INSERT_SUBREG, the IMPLICIT_DEF
425    // is left behind appearing to clobber the super-register, while the
426    // subregister needs to remain live. So we just ignore them.
427    if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
428      continue;
429
430    // Check if this instruction has a dependence on the critical path that
431    // is an anti-dependence that we may be able to break. If it is, set
432    // AntiDepReg to the non-zero register associated with the anti-dependence.
433    //
434    // We limit our attention to the critical path as a heuristic to avoid
435    // breaking anti-dependence edges that aren't going to significantly
436    // impact the overall schedule. There are a limited number of registers
437    // and we want to save them for the important edges.
438    //
439    // TODO: Instructions with multiple defs could have multiple
440    // anti-dependencies. The current code here only knows how to break one
441    // edge per instruction. Note that we'd have to be able to break all of
442    // the anti-dependencies in an instruction in order to be effective.
443    unsigned AntiDepReg = 0;
444    if (MI == CriticalPathMI) {
445      if (SDep *Edge = CriticalPathStep(CriticalPathSU)) {
446        SUnit *NextSU = Edge->getSUnit();
447
448        // Only consider anti-dependence edges.
449        if (Edge->getKind() == SDep::Anti) {
450          AntiDepReg = Edge->getReg();
451          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
452          // Don't break anti-dependencies on non-allocatable registers.
453          if (!AllocatableSet.test(AntiDepReg))
454            AntiDepReg = 0;
455          else {
456            // If the SUnit has other dependencies on the SUnit that it
457            // anti-depends on, don't bother breaking the anti-dependency
458            // since those edges would prevent such units from being
459            // scheduled past each other regardless.
460            //
461            // Also, if there are dependencies on other SUnits with the
462            // same register as the anti-dependency, don't attempt to
463            // break it.
464            for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(),
465                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
466              if (P->getSUnit() == NextSU ?
467                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
468                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
469                AntiDepReg = 0;
470                break;
471              }
472          }
473        }
474        CriticalPathSU = NextSU;
475        CriticalPathMI = CriticalPathSU->getInstr();
476      } else {
477        // We've reached the end of the critical path.
478        CriticalPathSU = 0;
479        CriticalPathMI = 0;
480      }
481    }
482
483    // Scan the register operands for this instruction and update
484    // Classes and RegRefs.
485    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
486      MachineOperand &MO = MI->getOperand(i);
487      if (!MO.isReg()) continue;
488      unsigned Reg = MO.getReg();
489      if (Reg == 0) continue;
490      const TargetRegisterClass *NewRC =
491        getInstrOperandRegClass(TRI, TII, MI->getDesc(), i);
492
493      // If this instruction has a use of AntiDepReg, breaking it
494      // is invalid.
495      if (MO.isUse() && AntiDepReg == Reg)
496        AntiDepReg = 0;
497
498      // For now, only allow the register to be changed if its register
499      // class is consistent across all uses.
500      if (!Classes[Reg] && NewRC)
501        Classes[Reg] = NewRC;
502      else if (!NewRC || Classes[Reg] != NewRC)
503        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
504
505      // Now check for aliases.
506      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
507        // If an alias of the reg is used during the live range, give up.
508        // Note that this allows us to skip checking if AntiDepReg
509        // overlaps with any of the aliases, among other things.
510        unsigned AliasReg = *Alias;
511        if (Classes[AliasReg]) {
512          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
513          Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
514        }
515      }
516
517      // If we're still willing to consider this register, note the reference.
518      if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
519        RegRefs.insert(std::make_pair(Reg, &MO));
520    }
521
522    // Determine AntiDepReg's register class, if it is live and is
523    // consistently used within a single class.
524    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
525    assert((AntiDepReg == 0 || RC != NULL) &&
526           "Register should be live if it's causing an anti-dependence!");
527    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
528      AntiDepReg = 0;
529
530    // Look for a suitable register to use to break the anti-depenence.
531    //
532    // TODO: Instead of picking the first free register, consider which might
533    // be the best.
534    if (AntiDepReg != 0) {
535      for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
536           RE = RC->allocation_order_end(MF); R != RE; ++R) {
537        unsigned NewReg = *R;
538        // Don't replace a register with itself.
539        if (NewReg == AntiDepReg) continue;
540        // Don't replace a register with one that was recently used to repair
541        // an anti-dependence with this AntiDepReg, because that would
542        // re-introduce that anti-dependence.
543        if (NewReg == LastNewReg[AntiDepReg]) continue;
544        // If NewReg is dead and NewReg's most recent def is not before
545        // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
546        assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
547               "Kill and Def maps aren't consistent for AntiDepReg!");
548        assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
549               "Kill and Def maps aren't consistent for NewReg!");
550        if (KillIndices[NewReg] == ~0u &&
551            Classes[NewReg] != reinterpret_cast<TargetRegisterClass *>(-1) &&
552            KillIndices[AntiDepReg] <= DefIndices[NewReg]) {
553          DOUT << "Breaking anti-dependence edge on "
554               << TRI->getName(AntiDepReg)
555               << " with " << RegRefs.count(AntiDepReg) << " references"
556               << " using " << TRI->getName(NewReg) << "!\n";
557
558          // Update the references to the old register to refer to the new
559          // register.
560          std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
561                    std::multimap<unsigned, MachineOperand *>::iterator>
562             Range = RegRefs.equal_range(AntiDepReg);
563          for (std::multimap<unsigned, MachineOperand *>::iterator
564               Q = Range.first, QE = Range.second; Q != QE; ++Q)
565            Q->second->setReg(NewReg);
566
567          // We just went back in time and modified history; the
568          // liveness information for the anti-depenence reg is now
569          // inconsistent. Set the state as if it were dead.
570          Classes[NewReg] = Classes[AntiDepReg];
571          DefIndices[NewReg] = DefIndices[AntiDepReg];
572          KillIndices[NewReg] = KillIndices[AntiDepReg];
573
574          Classes[AntiDepReg] = 0;
575          DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
576          KillIndices[AntiDepReg] = ~0u;
577
578          RegRefs.erase(AntiDepReg);
579          Changed = true;
580          LastNewReg[AntiDepReg] = NewReg;
581          break;
582        }
583      }
584    }
585
586    // Update liveness.
587    // Proceding upwards, registers that are defed but not used in this
588    // instruction are now dead.
589    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
590      MachineOperand &MO = MI->getOperand(i);
591      if (!MO.isReg()) continue;
592      unsigned Reg = MO.getReg();
593      if (Reg == 0) continue;
594      if (!MO.isDef()) continue;
595      // Ignore two-addr defs.
596      if (MI->isRegReDefinedByTwoAddr(i)) continue;
597
598      DefIndices[Reg] = Count;
599      KillIndices[Reg] = ~0u;
600      Classes[Reg] = 0;
601      RegRefs.erase(Reg);
602      // Repeat, for all subregs.
603      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
604           *Subreg; ++Subreg) {
605        unsigned SubregReg = *Subreg;
606        DefIndices[SubregReg] = Count;
607        KillIndices[SubregReg] = ~0u;
608        Classes[SubregReg] = 0;
609        RegRefs.erase(SubregReg);
610      }
611      // Conservatively mark super-registers as unusable.
612      for (const unsigned *Super = TRI->getSuperRegisters(Reg);
613           *Super; ++Super) {
614        unsigned SuperReg = *Super;
615        Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
616      }
617    }
618    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
619      MachineOperand &MO = MI->getOperand(i);
620      if (!MO.isReg()) continue;
621      unsigned Reg = MO.getReg();
622      if (Reg == 0) continue;
623      if (!MO.isUse()) continue;
624
625      const TargetRegisterClass *NewRC =
626        getInstrOperandRegClass(TRI, TII, MI->getDesc(), i);
627
628      // For now, only allow the register to be changed if its register
629      // class is consistent across all uses.
630      if (!Classes[Reg] && NewRC)
631        Classes[Reg] = NewRC;
632      else if (!NewRC || Classes[Reg] != NewRC)
633        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
634
635      RegRefs.insert(std::make_pair(Reg, &MO));
636
637      // It wasn't previously live but now it is, this is a kill.
638      if (KillIndices[Reg] == ~0u) {
639        KillIndices[Reg] = Count;
640        DefIndices[Reg] = ~0u;
641      }
642      // Repeat, for all aliases.
643      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
644        unsigned AliasReg = *Alias;
645        if (KillIndices[AliasReg] == ~0u) {
646          KillIndices[AliasReg] = Count;
647          DefIndices[AliasReg] = ~0u;
648        }
649      }
650    }
651  }
652  assert(Count == ~0u && "Count mismatch!");
653
654  return Changed;
655}
656
657//===----------------------------------------------------------------------===//
658//  Top-Down Scheduling
659//===----------------------------------------------------------------------===//
660
661/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
662/// the PendingQueue if the count reaches zero. Also update its cycle bound.
663void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
664  SUnit *SuccSU = SuccEdge->getSUnit();
665  --SuccSU->NumPredsLeft;
666
667#ifndef NDEBUG
668  if (SuccSU->NumPredsLeft < 0) {
669    cerr << "*** Scheduling failed! ***\n";
670    SuccSU->dump(this);
671    cerr << " has been released too many times!\n";
672    assert(0);
673  }
674#endif
675
676  // Compute how many cycles it will be before this actually becomes
677  // available.  This is the max of the start time of all predecessors plus
678  // their latencies.
679  SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
680
681  if (SuccSU->NumPredsLeft == 0) {
682    PendingQueue.push_back(SuccSU);
683  }
684}
685
686/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
687/// count of its successors. If a successor pending count is zero, add it to
688/// the Available queue.
689void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
690  DOUT << "*** Scheduling [" << CurCycle << "]: ";
691  DEBUG(SU->dump(this));
692
693  Sequence.push_back(SU);
694  assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
695  SU->setDepthToAtLeast(CurCycle);
696
697  // Top down: release successors.
698  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
699       I != E; ++I)
700    ReleaseSucc(SU, &*I);
701
702  SU->isScheduled = true;
703  AvailableQueue.ScheduledNode(SU);
704}
705
706/// ListScheduleTopDown - The main loop of list scheduling for top-down
707/// schedulers.
708void SchedulePostRATDList::ListScheduleTopDown() {
709  unsigned CurCycle = 0;
710
711  // All leaves to Available queue.
712  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
713    // It is available if it has no predecessors.
714    if (SUnits[i].Preds.empty()) {
715      AvailableQueue.push(&SUnits[i]);
716      SUnits[i].isAvailable = true;
717    }
718  }
719
720  // While Available queue is not empty, grab the node with the highest
721  // priority. If it is not ready put it back.  Schedule the node.
722  std::vector<SUnit*> NotReady;
723  Sequence.reserve(SUnits.size());
724  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
725    // Check to see if any of the pending instructions are ready to issue.  If
726    // so, add them to the available queue.
727    unsigned MinDepth = ~0u;
728    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
729      if (PendingQueue[i]->getDepth() <= CurCycle) {
730        AvailableQueue.push(PendingQueue[i]);
731        PendingQueue[i]->isAvailable = true;
732        PendingQueue[i] = PendingQueue.back();
733        PendingQueue.pop_back();
734        --i; --e;
735      } else if (PendingQueue[i]->getDepth() < MinDepth)
736        MinDepth = PendingQueue[i]->getDepth();
737    }
738
739    // If there are no instructions available, don't try to issue anything, and
740    // don't advance the hazard recognizer.
741    if (AvailableQueue.empty()) {
742      CurCycle = MinDepth != ~0u ? MinDepth : CurCycle + 1;
743      continue;
744    }
745
746    SUnit *FoundSUnit = 0;
747
748    bool HasNoopHazards = false;
749    while (!AvailableQueue.empty()) {
750      SUnit *CurSUnit = AvailableQueue.pop();
751
752      ScheduleHazardRecognizer::HazardType HT =
753        HazardRec->getHazardType(CurSUnit);
754      if (HT == ScheduleHazardRecognizer::NoHazard) {
755        FoundSUnit = CurSUnit;
756        break;
757      }
758
759      // Remember if this is a noop hazard.
760      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
761
762      NotReady.push_back(CurSUnit);
763    }
764
765    // Add the nodes that aren't ready back onto the available list.
766    if (!NotReady.empty()) {
767      AvailableQueue.push_all(NotReady);
768      NotReady.clear();
769    }
770
771    // If we found a node to schedule, do it now.
772    if (FoundSUnit) {
773      ScheduleNodeTopDown(FoundSUnit, CurCycle);
774      HazardRec->EmitInstruction(FoundSUnit);
775
776      // If this is a pseudo-op node, we don't want to increment the current
777      // cycle.
778      if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
779        ++CurCycle;
780    } else if (!HasNoopHazards) {
781      // Otherwise, we have a pipeline stall, but no other problem, just advance
782      // the current cycle and try again.
783      DOUT << "*** Advancing cycle, no work to do\n";
784      HazardRec->AdvanceCycle();
785      ++NumStalls;
786      ++CurCycle;
787    } else {
788      // Otherwise, we have no instructions to issue and we have instructions
789      // that will fault if we don't do this right.  This is the case for
790      // processors without pipeline interlocks and other cases.
791      DOUT << "*** Emitting noop\n";
792      HazardRec->EmitNoop();
793      Sequence.push_back(0);   // NULL here means noop
794      ++NumNoops;
795      ++CurCycle;
796    }
797  }
798
799#ifndef NDEBUG
800  VerifySchedule(/*isBottomUp=*/false);
801#endif
802}
803
804//===----------------------------------------------------------------------===//
805//                         Public Constructor Functions
806//===----------------------------------------------------------------------===//
807
808FunctionPass *llvm::createPostRAScheduler() {
809  return new PostRAScheduler();
810}
811