RegAllocPBQP.cpp revision 0b23dc0cc8fb2967dc08574910536cc074863bcb
1//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11// register allocator for LLVM. This allocator works by constructing a PBQP
12// problem representing the register allocation problem under consideration,
13// solving this using a PBQP solver, and mapping the solution back to a
14// register assignment. If any variables are selected for spilling then spill
15// code is inserted and the process repeated.
16//
17// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18// for register allocation. For more information on PBQP for register
19// allocation, see the following papers:
20//
21//   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22//   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23//   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24//
25//   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26//   architectures. In Proceedings of the Joint Conference on Languages,
27//   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28//   NY, USA, 139-148.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "regalloc"
33
34#include "PBQP/HeuristicSolver.h"
35#include "PBQP/Graph.h"
36#include "PBQP/Heuristics/Briggs.h"
37#include "VirtRegMap.h"
38#include "VirtRegRewriter.h"
39#include "llvm/CodeGen/CalcSpillWeights.h"
40#include "llvm/CodeGen/LiveIntervalAnalysis.h"
41#include "llvm/CodeGen/LiveStackAnalysis.h"
42#include "llvm/CodeGen/MachineFunctionPass.h"
43#include "llvm/CodeGen/MachineLoopInfo.h"
44#include "llvm/CodeGen/MachineRegisterInfo.h"
45#include "llvm/CodeGen/RegAllocRegistry.h"
46#include "llvm/CodeGen/RegisterCoalescer.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetMachine.h"
51#include <limits>
52#include <map>
53#include <memory>
54#include <set>
55#include <vector>
56
57using namespace llvm;
58
59static RegisterRegAlloc
60registerPBQPRepAlloc("pbqp", "PBQP register allocator.",
61                       llvm::createPBQPRegisterAllocator);
62
63static cl::opt<bool>
64pbqpCoalescing("pbqp-coalescing",
65                cl::desc("Attempt coalescing during PBQP register allocation."),
66                cl::init(false), cl::Hidden);
67
68namespace {
69
70  ///
71  /// PBQP based allocators solve the register allocation problem by mapping
72  /// register allocation problems to Partitioned Boolean Quadratic
73  /// Programming problems.
74  class PBQPRegAlloc : public MachineFunctionPass {
75  public:
76
77    static char ID;
78
79    /// Construct a PBQP register allocator.
80    PBQPRegAlloc() : MachineFunctionPass(&ID) {}
81
82    /// Return the pass name.
83    virtual const char* getPassName() const {
84      return "PBQP Register Allocator";
85    }
86
87    /// PBQP analysis usage.
88    virtual void getAnalysisUsage(AnalysisUsage &au) const {
89      au.addRequired<SlotIndexes>();
90      au.addPreserved<SlotIndexes>();
91      au.addRequired<LiveIntervals>();
92      //au.addRequiredID(SplitCriticalEdgesID);
93      au.addRequired<RegisterCoalescer>();
94      au.addRequired<CalculateSpillWeights>();
95      au.addRequired<LiveStacks>();
96      au.addPreserved<LiveStacks>();
97      au.addRequired<MachineLoopInfo>();
98      au.addPreserved<MachineLoopInfo>();
99      au.addRequired<VirtRegMap>();
100      MachineFunctionPass::getAnalysisUsage(au);
101    }
102
103    /// Perform register allocation
104    virtual bool runOnMachineFunction(MachineFunction &MF);
105
106  private:
107    typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
108    typedef std::vector<const LiveInterval*> Node2LIMap;
109    typedef std::vector<unsigned> AllowedSet;
110    typedef std::vector<AllowedSet> AllowedSetMap;
111    typedef std::set<unsigned> RegSet;
112    typedef std::pair<unsigned, unsigned> RegPair;
113    typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
114
115    typedef std::set<LiveInterval*> LiveIntervalSet;
116
117    typedef std::vector<PBQP::Graph::NodeItr> NodeVector;
118
119    MachineFunction *mf;
120    const TargetMachine *tm;
121    const TargetRegisterInfo *tri;
122    const TargetInstrInfo *tii;
123    const MachineLoopInfo *loopInfo;
124    MachineRegisterInfo *mri;
125
126    LiveIntervals *lis;
127    LiveStacks *lss;
128    VirtRegMap *vrm;
129
130    LI2NodeMap li2Node;
131    Node2LIMap node2LI;
132    AllowedSetMap allowedSets;
133    LiveIntervalSet vregIntervalsToAlloc,
134                    emptyVRegIntervals;
135    NodeVector problemNodes;
136
137
138    /// Builds a PBQP cost vector.
139    template <typename RegContainer>
140    PBQP::Vector buildCostVector(unsigned vReg,
141                                 const RegContainer &allowed,
142                                 const CoalesceMap &cealesces,
143                                 PBQP::PBQPNum spillCost) const;
144
145    /// \brief Builds a PBQP interference matrix.
146    ///
147    /// @return Either a pointer to a non-zero PBQP matrix representing the
148    ///         allocation option costs, or a null pointer for a zero matrix.
149    ///
150    /// Expects allowed sets for two interfering LiveIntervals. These allowed
151    /// sets should contain only allocable registers from the LiveInterval's
152    /// register class, with any interfering pre-colored registers removed.
153    template <typename RegContainer>
154    PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
155                                          const RegContainer &allowed2) const;
156
157    ///
158    /// Expects allowed sets for two potentially coalescable LiveIntervals,
159    /// and an estimated benefit due to coalescing. The allowed sets should
160    /// contain only allocable registers from the LiveInterval's register
161    /// classes, with any interfering pre-colored registers removed.
162    template <typename RegContainer>
163    PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
164                                        const RegContainer &allowed2,
165                                        PBQP::PBQPNum cBenefit) const;
166
167    /// \brief Finds coalescing opportunities and returns them as a map.
168    ///
169    /// Any entries in the map are guaranteed coalescable, even if their
170    /// corresponding live intervals overlap.
171    CoalesceMap findCoalesces();
172
173    /// \brief Finds the initial set of vreg intervals to allocate.
174    void findVRegIntervalsToAlloc();
175
176    /// \brief Constructs a PBQP problem representation of the register
177    /// allocation problem for this function.
178    ///
179    /// @return a PBQP solver object for the register allocation problem.
180    PBQP::Graph constructPBQPProblem();
181
182    /// \brief Adds a stack interval if the given live interval has been
183    /// spilled. Used to support stack slot coloring.
184    void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
185
186    /// \brief Given a solved PBQP problem maps this solution back to a register
187    /// assignment.
188    bool mapPBQPToRegAlloc(const PBQP::Solution &solution);
189
190    /// \brief Postprocessing before final spilling. Sets basic block "live in"
191    /// variables.
192    void finalizeAlloc() const;
193
194  };
195
196  char PBQPRegAlloc::ID = 0;
197}
198
199
200template <typename RegContainer>
201PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
202                                           const RegContainer &allowed,
203                                           const CoalesceMap &coalesces,
204                                           PBQP::PBQPNum spillCost) const {
205
206  typedef typename RegContainer::const_iterator AllowedItr;
207
208  // Allocate vector. Additional element (0th) used for spill option
209  PBQP::Vector v(allowed.size() + 1, 0);
210
211  v[0] = spillCost;
212
213  // Iterate over the allowed registers inserting coalesce benefits if there
214  // are any.
215  unsigned ai = 0;
216  for (AllowedItr itr = allowed.begin(), end = allowed.end();
217       itr != end; ++itr, ++ai) {
218
219    unsigned pReg = *itr;
220
221    CoalesceMap::const_iterator cmItr =
222      coalesces.find(RegPair(vReg, pReg));
223
224    // No coalesce - on to the next preg.
225    if (cmItr == coalesces.end())
226      continue;
227
228    // We have a coalesce - insert the benefit.
229    v[ai + 1] = -cmItr->second;
230  }
231
232  return v;
233}
234
235template <typename RegContainer>
236PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
237      const RegContainer &allowed1, const RegContainer &allowed2) const {
238
239  typedef typename RegContainer::const_iterator RegContainerIterator;
240
241  // Construct a PBQP matrix representing the cost of allocation options. The
242  // rows and columns correspond to the allocation options for the two live
243  // intervals.  Elements will be infinite where corresponding registers alias,
244  // since we cannot allocate aliasing registers to interfering live intervals.
245  // All other elements (non-aliasing combinations) will have zero cost. Note
246  // that the spill option (element 0,0) has zero cost, since we can allocate
247  // both intervals to memory safely (the cost for each individual allocation
248  // to memory is accounted for by the cost vectors for each live interval).
249  PBQP::Matrix *m =
250    new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
251
252  // Assume this is a zero matrix until proven otherwise.  Zero matrices occur
253  // between interfering live ranges with non-overlapping register sets (e.g.
254  // non-overlapping reg classes, or disjoint sets of allowed regs within the
255  // same class). The term "overlapping" is used advisedly: sets which do not
256  // intersect, but contain registers which alias, will have non-zero matrices.
257  // We optimize zero matrices away to improve solver speed.
258  bool isZeroMatrix = true;
259
260
261  // Row index. Starts at 1, since the 0th row is for the spill option, which
262  // is always zero.
263  unsigned ri = 1;
264
265  // Iterate over allowed sets, insert infinities where required.
266  for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
267       a1Itr != a1End; ++a1Itr) {
268
269    // Column index, starts at 1 as for row index.
270    unsigned ci = 1;
271    unsigned reg1 = *a1Itr;
272
273    for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
274         a2Itr != a2End; ++a2Itr) {
275
276      unsigned reg2 = *a2Itr;
277
278      // If the row/column regs are identical or alias insert an infinity.
279      if (tri->regsOverlap(reg1, reg2)) {
280        (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
281        isZeroMatrix = false;
282      }
283
284      ++ci;
285    }
286
287    ++ri;
288  }
289
290  // If this turns out to be a zero matrix...
291  if (isZeroMatrix) {
292    // free it and return null.
293    delete m;
294    return 0;
295  }
296
297  // ...otherwise return the cost matrix.
298  return m;
299}
300
301template <typename RegContainer>
302PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
303      const RegContainer &allowed1, const RegContainer &allowed2,
304      PBQP::PBQPNum cBenefit) const {
305
306  typedef typename RegContainer::const_iterator RegContainerIterator;
307
308  // Construct a PBQP Matrix representing the benefits of coalescing. As with
309  // interference matrices the rows and columns represent allowed registers
310  // for the LiveIntervals which are (potentially) to be coalesced. The amount
311  // -cBenefit will be placed in any element representing the same register
312  // for both intervals.
313  PBQP::Matrix *m =
314    new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
315
316  // Reset costs to zero.
317  m->reset(0);
318
319  // Assume the matrix is zero till proven otherwise. Zero matrices will be
320  // optimized away as in the interference case.
321  bool isZeroMatrix = true;
322
323  // Row index. Starts at 1, since the 0th row is for the spill option, which
324  // is always zero.
325  unsigned ri = 1;
326
327  // Iterate over the allowed sets, insert coalescing benefits where
328  // appropriate.
329  for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
330       a1Itr != a1End; ++a1Itr) {
331
332    // Column index, starts at 1 as for row index.
333    unsigned ci = 1;
334    unsigned reg1 = *a1Itr;
335
336    for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
337         a2Itr != a2End; ++a2Itr) {
338
339      // If the row and column represent the same register insert a beneficial
340      // cost to preference this allocation - it would allow us to eliminate a
341      // move instruction.
342      if (reg1 == *a2Itr) {
343        (*m)[ri][ci] = -cBenefit;
344        isZeroMatrix = false;
345      }
346
347      ++ci;
348    }
349
350    ++ri;
351  }
352
353  // If this turns out to be a zero matrix...
354  if (isZeroMatrix) {
355    // ...free it and return null.
356    delete m;
357    return 0;
358  }
359
360  return m;
361}
362
363PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
364
365  typedef MachineFunction::const_iterator MFIterator;
366  typedef MachineBasicBlock::const_iterator MBBIterator;
367  typedef LiveInterval::const_vni_iterator VNIIterator;
368
369  CoalesceMap coalescesFound;
370
371  // To find coalesces we need to iterate over the function looking for
372  // copy instructions.
373  for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
374       bbItr != bbEnd; ++bbItr) {
375
376    const MachineBasicBlock *mbb = &*bbItr;
377
378    for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
379         iItr != iEnd; ++iItr) {
380
381      const MachineInstr *instr = &*iItr;
382      unsigned srcReg, dstReg, srcSubReg, dstSubReg;
383
384      // If this isn't a copy then continue to the next instruction.
385      if (!tii->isMoveInstr(*instr, srcReg, dstReg, srcSubReg, dstSubReg))
386        continue;
387
388      // If the registers are already the same our job is nice and easy.
389      if (dstReg == srcReg)
390        continue;
391
392      bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
393           dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
394
395      // If both registers are physical then we can't coalesce.
396      if (srcRegIsPhysical && dstRegIsPhysical)
397        continue;
398
399      // If it's a copy that includes a virtual register but the source and
400      // destination classes differ then we can't coalesce, so continue with
401      // the next instruction.
402      const TargetRegisterClass *srcRegClass = srcRegIsPhysical ?
403          tri->getPhysicalRegisterRegClass(srcReg) : mri->getRegClass(srcReg);
404
405      const TargetRegisterClass *dstRegClass = dstRegIsPhysical ?
406          tri->getPhysicalRegisterRegClass(dstReg) : mri->getRegClass(dstReg);
407
408      if (srcRegClass != dstRegClass)
409        continue;
410
411      // We also need any physical regs to be allocable, coalescing with
412      // a non-allocable register is invalid.
413      if (srcRegIsPhysical) {
414        if (std::find(dstRegClass->allocation_order_begin(*mf),
415                      dstRegClass->allocation_order_end(*mf), srcReg) ==
416            dstRegClass->allocation_order_end(*mf))
417          continue;
418      }
419
420      if (dstRegIsPhysical) {
421        if (std::find(srcRegClass->allocation_order_begin(*mf),
422                      srcRegClass->allocation_order_end(*mf), dstReg) ==
423            srcRegClass->allocation_order_end(*mf))
424          continue;
425      }
426
427      // If we've made it here we have a copy with compatible register classes.
428      // We can probably coalesce, but we need to consider overlap.
429      const LiveInterval *srcLI = &lis->getInterval(srcReg),
430                         *dstLI = &lis->getInterval(dstReg);
431
432      if (srcLI->overlaps(*dstLI)) {
433        // Even in the case of an overlap we might still be able to coalesce,
434        // but we need to make sure that no definition of either range occurs
435        // while the other range is live.
436
437        // Otherwise start by assuming we're ok.
438        bool badDef = false;
439
440        // Test all defs of the source range.
441        for (VNIIterator
442               vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
443               vniItr != vniEnd; ++vniItr) {
444
445          // If we find a poorly defined def we err on the side of caution.
446          if (!(*vniItr)->def.isValid()) {
447            badDef = true;
448            break;
449          }
450
451          // If we find a def that kills the coalescing opportunity then
452          // record it and break from the loop.
453          if (dstLI->liveAt((*vniItr)->def)) {
454            badDef = true;
455            break;
456          }
457        }
458
459        // If we have a bad def give up, continue to the next instruction.
460        if (badDef)
461          continue;
462
463        // Otherwise test definitions of the destination range.
464        for (VNIIterator
465               vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
466               vniItr != vniEnd; ++vniItr) {
467
468          // We want to make sure we skip the copy instruction itself.
469          if ((*vniItr)->getCopy() == instr)
470            continue;
471
472          if (!(*vniItr)->def.isValid()) {
473            badDef = true;
474            break;
475          }
476
477          if (srcLI->liveAt((*vniItr)->def)) {
478            badDef = true;
479            break;
480          }
481        }
482
483        // As before a bad def we give up and continue to the next instr.
484        if (badDef)
485          continue;
486      }
487
488      // If we make it to here then either the ranges didn't overlap, or they
489      // did, but none of their definitions would prevent us from coalescing.
490      // We're good to go with the coalesce.
491
492      float cBenefit = powf(10.0f, loopInfo->getLoopDepth(mbb)) / 5.0;
493
494      coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
495      coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
496    }
497
498  }
499
500  return coalescesFound;
501}
502
503void PBQPRegAlloc::findVRegIntervalsToAlloc() {
504
505  // Iterate over all live ranges.
506  for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
507       itr != end; ++itr) {
508
509    // Ignore physical ones.
510    if (TargetRegisterInfo::isPhysicalRegister(itr->first))
511      continue;
512
513    LiveInterval *li = itr->second;
514
515    // If this live interval is non-empty we will use pbqp to allocate it.
516    // Empty intervals we allocate in a simple post-processing stage in
517    // finalizeAlloc.
518    if (!li->empty()) {
519      vregIntervalsToAlloc.insert(li);
520    }
521    else {
522      emptyVRegIntervals.insert(li);
523    }
524  }
525}
526
527PBQP::Graph PBQPRegAlloc::constructPBQPProblem() {
528
529  typedef std::vector<const LiveInterval*> LIVector;
530  typedef std::vector<unsigned> RegVector;
531
532  // This will store the physical intervals for easy reference.
533  LIVector physIntervals;
534
535  // Start by clearing the old node <-> live interval mappings & allowed sets
536  li2Node.clear();
537  node2LI.clear();
538  allowedSets.clear();
539
540  // Populate physIntervals, update preg use:
541  for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
542       itr != end; ++itr) {
543
544    if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
545      physIntervals.push_back(itr->second);
546      mri->setPhysRegUsed(itr->second->reg);
547    }
548  }
549
550  // Iterate over vreg intervals, construct live interval <-> node number
551  //  mappings.
552  for (LiveIntervalSet::const_iterator
553       itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
554       itr != end; ++itr) {
555    const LiveInterval *li = *itr;
556
557    li2Node[li] = node2LI.size();
558    node2LI.push_back(li);
559  }
560
561  // Get the set of potential coalesces.
562  CoalesceMap coalesces;
563
564  if (pbqpCoalescing) {
565    coalesces = findCoalesces();
566  }
567
568  // Construct a PBQP solver for this problem
569  PBQP::Graph problem;
570  problemNodes.resize(vregIntervalsToAlloc.size());
571
572  // Resize allowedSets container appropriately.
573  allowedSets.resize(vregIntervalsToAlloc.size());
574
575  // Iterate over virtual register intervals to compute allowed sets...
576  for (unsigned node = 0; node < node2LI.size(); ++node) {
577
578    // Grab pointers to the interval and its register class.
579    const LiveInterval *li = node2LI[node];
580    const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
581
582    // Start by assuming all allocable registers in the class are allowed...
583    RegVector liAllowed(liRC->allocation_order_begin(*mf),
584                        liRC->allocation_order_end(*mf));
585
586    // Eliminate the physical registers which overlap with this range, along
587    // with all their aliases.
588    for (LIVector::iterator pItr = physIntervals.begin(),
589       pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
590
591      if (!li->overlaps(**pItr))
592        continue;
593
594      unsigned pReg = (*pItr)->reg;
595
596      // If we get here then the live intervals overlap, but we're still ok
597      // if they're coalescable.
598      if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
599        continue;
600
601      // If we get here then we have a genuine exclusion.
602
603      // Remove the overlapping reg...
604      RegVector::iterator eraseItr =
605        std::find(liAllowed.begin(), liAllowed.end(), pReg);
606
607      if (eraseItr != liAllowed.end())
608        liAllowed.erase(eraseItr);
609
610      const unsigned *aliasItr = tri->getAliasSet(pReg);
611
612      if (aliasItr != 0) {
613        // ...and its aliases.
614        for (; *aliasItr != 0; ++aliasItr) {
615          RegVector::iterator eraseItr =
616            std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
617
618          if (eraseItr != liAllowed.end()) {
619            liAllowed.erase(eraseItr);
620          }
621        }
622      }
623    }
624
625    // Copy the allowed set into a member vector for use when constructing cost
626    // vectors & matrices, and mapping PBQP solutions back to assignments.
627    allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
628
629    // Set the spill cost to the interval weight, or epsilon if the
630    // interval weight is zero
631    PBQP::PBQPNum spillCost = (li->weight != 0.0) ?
632        li->weight : std::numeric_limits<PBQP::PBQPNum>::min();
633
634    // Build a cost vector for this interval.
635    problemNodes[node] =
636      problem.addNode(
637        buildCostVector(li->reg, allowedSets[node], coalesces, spillCost));
638
639  }
640
641
642  // Now add the cost matrices...
643  for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
644    const LiveInterval *li = node2LI[node1];
645
646    // Test for live range overlaps and insert interference matrices.
647    for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
648      const LiveInterval *li2 = node2LI[node2];
649
650      CoalesceMap::const_iterator cmItr =
651        coalesces.find(RegPair(li->reg, li2->reg));
652
653      PBQP::Matrix *m = 0;
654
655      if (cmItr != coalesces.end()) {
656        m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
657                                  cmItr->second);
658      }
659      else if (li->overlaps(*li2)) {
660        m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
661      }
662
663      if (m != 0) {
664        problem.addEdge(problemNodes[node1],
665                        problemNodes[node2],
666                        *m);
667
668        delete m;
669      }
670    }
671  }
672
673  assert(problem.getNumNodes() == allowedSets.size());
674/*
675  std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
676            << problem.getNumEdges() << " edges.\n";
677
678  problem.printDot(std::cerr);
679*/
680  // We're done, PBQP problem constructed - return it.
681  return problem;
682}
683
684void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
685                                    MachineRegisterInfo* mri) {
686  int stackSlot = vrm->getStackSlot(spilled->reg);
687
688  if (stackSlot == VirtRegMap::NO_STACK_SLOT)
689    return;
690
691  const TargetRegisterClass *RC = mri->getRegClass(spilled->reg);
692  LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot, RC);
693
694  VNInfo *vni;
695  if (stackInterval.getNumValNums() != 0)
696    vni = stackInterval.getValNumInfo(0);
697  else
698    vni = stackInterval.getNextValue(
699      SlotIndex(), 0, false, lss->getVNInfoAllocator());
700
701  LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
702  stackInterval.MergeRangesInAsValue(rhsInterval, vni);
703}
704
705bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
706
707  // Set to true if we have any spills
708  bool anotherRoundNeeded = false;
709
710  // Clear the existing allocation.
711  vrm->clearAllVirt();
712
713  // Iterate over the nodes mapping the PBQP solution to a register assignment.
714  for (unsigned node = 0; node < node2LI.size(); ++node) {
715    unsigned virtReg = node2LI[node]->reg,
716             allocSelection = solution.getSelection(problemNodes[node]);
717
718
719    // If the PBQP solution is non-zero it's a physical register...
720    if (allocSelection != 0) {
721      // Get the physical reg, subtracting 1 to account for the spill option.
722      unsigned physReg = allowedSets[node][allocSelection - 1];
723
724      DEBUG(dbgs() << "VREG " << virtReg << " -> "
725                   << tri->getName(physReg) << "\n");
726
727      assert(physReg != 0);
728
729      // Add to the virt reg map and update the used phys regs.
730      vrm->assignVirt2Phys(virtReg, physReg);
731    }
732    // ...Otherwise it's a spill.
733    else {
734
735      // Make sure we ignore this virtual reg on the next round
736      // of allocation
737      vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
738
739      // Insert spill ranges for this live range
740      const LiveInterval *spillInterval = node2LI[node];
741      double oldSpillWeight = spillInterval->weight;
742      SmallVector<LiveInterval*, 8> spillIs;
743      std::vector<LiveInterval*> newSpills =
744        lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm);
745      addStackInterval(spillInterval, mri);
746
747      (void) oldSpillWeight;
748      DEBUG(dbgs() << "VREG " << virtReg << " -> SPILLED (Cost: "
749                   << oldSpillWeight << ", New vregs: ");
750
751      // Copy any newly inserted live intervals into the list of regs to
752      // allocate.
753      for (std::vector<LiveInterval*>::const_iterator
754           itr = newSpills.begin(), end = newSpills.end();
755           itr != end; ++itr) {
756
757        assert(!(*itr)->empty() && "Empty spill range.");
758
759        DEBUG(dbgs() << (*itr)->reg << " ");
760
761        vregIntervalsToAlloc.insert(*itr);
762      }
763
764      DEBUG(dbgs() << ")\n");
765
766      // We need another round if spill intervals were added.
767      anotherRoundNeeded |= !newSpills.empty();
768    }
769  }
770
771  return !anotherRoundNeeded;
772}
773
774void PBQPRegAlloc::finalizeAlloc() const {
775  typedef LiveIntervals::iterator LIIterator;
776  typedef LiveInterval::Ranges::const_iterator LRIterator;
777
778  // First allocate registers for the empty intervals.
779  for (LiveIntervalSet::const_iterator
780         itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
781         itr != end; ++itr) {
782    LiveInterval *li = *itr;
783
784    unsigned physReg = vrm->getRegAllocPref(li->reg);
785
786    if (physReg == 0) {
787      const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
788      physReg = *liRC->allocation_order_begin(*mf);
789    }
790
791    vrm->assignVirt2Phys(li->reg, physReg);
792  }
793
794  // Finally iterate over the basic blocks to compute and set the live-in sets.
795  SmallVector<MachineBasicBlock*, 8> liveInMBBs;
796  MachineBasicBlock *entryMBB = &*mf->begin();
797
798  for (LIIterator liItr = lis->begin(), liEnd = lis->end();
799       liItr != liEnd; ++liItr) {
800
801    const LiveInterval *li = liItr->second;
802    unsigned reg = 0;
803
804    // Get the physical register for this interval
805    if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
806      reg = li->reg;
807    }
808    else if (vrm->isAssignedReg(li->reg)) {
809      reg = vrm->getPhys(li->reg);
810    }
811    else {
812      // Ranges which are assigned a stack slot only are ignored.
813      continue;
814    }
815
816    if (reg == 0) {
817      // Filter out zero regs - they're for intervals that were spilled.
818      continue;
819    }
820
821    // Iterate over the ranges of the current interval...
822    for (LRIterator lrItr = li->begin(), lrEnd = li->end();
823         lrItr != lrEnd; ++lrItr) {
824
825      // Find the set of basic blocks which this range is live into...
826      if (lis->findLiveInMBBs(lrItr->start, lrItr->end,  liveInMBBs)) {
827        // And add the physreg for this interval to their live-in sets.
828        for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
829          if (liveInMBBs[i] != entryMBB) {
830            if (!liveInMBBs[i]->isLiveIn(reg)) {
831              liveInMBBs[i]->addLiveIn(reg);
832            }
833          }
834        }
835        liveInMBBs.clear();
836      }
837    }
838  }
839
840}
841
842bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
843
844  mf = &MF;
845  tm = &mf->getTarget();
846  tri = tm->getRegisterInfo();
847  tii = tm->getInstrInfo();
848  mri = &mf->getRegInfo();
849
850  lis = &getAnalysis<LiveIntervals>();
851  lss = &getAnalysis<LiveStacks>();
852  loopInfo = &getAnalysis<MachineLoopInfo>();
853
854  vrm = &getAnalysis<VirtRegMap>();
855
856  DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n");
857
858  // Allocator main loop:
859  //
860  // * Map current regalloc problem to a PBQP problem
861  // * Solve the PBQP problem
862  // * Map the solution back to a register allocation
863  // * Spill if necessary
864  //
865  // This process is continued till no more spills are generated.
866
867  // Find the vreg intervals in need of allocation.
868  findVRegIntervalsToAlloc();
869
870  // If there aren't any then we're done here.
871  if (vregIntervalsToAlloc.empty() && emptyVRegIntervals.empty())
872    return true;
873
874  // If there are non-empty intervals allocate them using pbqp.
875  if (!vregIntervalsToAlloc.empty()) {
876
877    bool pbqpAllocComplete = false;
878    unsigned round = 0;
879
880    while (!pbqpAllocComplete) {
881      DEBUG(dbgs() << "  PBQP Regalloc round " << round << ":\n");
882
883      PBQP::Graph problem = constructPBQPProblem();
884      PBQP::Solution solution =
885        PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(problem);
886
887      pbqpAllocComplete = mapPBQPToRegAlloc(solution);
888
889      ++round;
890    }
891  }
892
893  // Finalise allocation, allocate empty ranges.
894  finalizeAlloc();
895
896  vregIntervalsToAlloc.clear();
897  emptyVRegIntervals.clear();
898  li2Node.clear();
899  node2LI.clear();
900  allowedSets.clear();
901  problemNodes.clear();
902
903  DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
904
905  // Run rewriter
906  std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
907
908  rewriter->runOnMachineFunction(*mf, *vrm, lis);
909
910  return true;
911}
912
913FunctionPass* llvm::createPBQPRegisterAllocator() {
914  return new PBQPRegAlloc();
915}
916
917
918#undef DEBUG_TYPE
919