RegAllocPBQP.cpp revision 3713c0ba62113419a5c57ec3e5d034d1dd581b55
1//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11// register allocator for LLVM. This allocator works by constructing a PBQP
12// problem representing the register allocation problem under consideration,
13// solving this using a PBQP solver, and mapping the solution back to a
14// register assignment. If any variables are selected for spilling then spill
15// code is inserted and the process repeated.
16//
17// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18// for register allocation. For more information on PBQP for register
19// allocation see the following papers:
20//
21//   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22//   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23//   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24//
25//   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26//   architectures. In Proceedings of the Joint Conference on Languages,
27//   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28//   NY, USA, 139-148.
29//
30// Author: Lang Hames
31// Email: lhames@gmail.com
32//
33//===----------------------------------------------------------------------===//
34
35#define DEBUG_TYPE "regalloc"
36
37#include "PBQP.h"
38#include "VirtRegMap.h"
39#include "llvm/CodeGen/MachineFunctionPass.h"
40#include "llvm/CodeGen/RegAllocRegistry.h"
41#include "llvm/CodeGen/RegisterCoalescer.h"
42#include "llvm/CodeGen/LiveIntervalAnalysis.h"
43#include "llvm/CodeGen/LiveStackAnalysis.h"
44#include "llvm/CodeGen/MachineRegisterInfo.h"
45#include "llvm/CodeGen/MachineLoopInfo.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetInstrInfo.h"
48#include "llvm/Support/Debug.h"
49#include <memory>
50#include <map>
51#include <set>
52#include <vector>
53#include <limits>
54
55using namespace llvm;
56
57static RegisterRegAlloc
58registerPBQPRepAlloc("pbqp", "PBQP register allocator",
59                     createPBQPRegisterAllocator);
60
61namespace {
62
63  //!
64  //! PBQP based allocators solve the register allocation problem by mapping
65  //! register allocation problems to Partitioned Boolean Quadratic
66  //! Programming problems.
67  class VISIBILITY_HIDDEN PBQPRegAlloc : public MachineFunctionPass {
68  public:
69
70    static char ID;
71
72    //! Construct a PBQP register allocator.
73    PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID) {}
74
75    //! Return the pass name.
76    virtual const char* getPassName() const throw() {
77      return "PBQP Register Allocator";
78    }
79
80    //! PBQP analysis usage.
81    virtual void getAnalysisUsage(AnalysisUsage &au) const {
82      au.addRequired<LiveIntervals>();
83      au.addRequiredTransitive<RegisterCoalescer>();
84      au.addRequired<LiveStacks>();
85      au.addPreserved<LiveStacks>();
86      au.addRequired<MachineLoopInfo>();
87      au.addPreserved<MachineLoopInfo>();
88      MachineFunctionPass::getAnalysisUsage(au);
89    }
90
91    //! Perform register allocation
92    virtual bool runOnMachineFunction(MachineFunction &MF);
93
94  private:
95    typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
96    typedef std::vector<const LiveInterval*> Node2LIMap;
97    typedef std::vector<unsigned> AllowedSet;
98    typedef std::vector<AllowedSet> AllowedSetMap;
99    typedef std::set<unsigned> RegSet;
100    typedef std::pair<unsigned, unsigned> RegPair;
101    typedef std::map<RegPair, PBQPNum> CoalesceMap;
102
103    typedef std::set<LiveInterval*> LiveIntervalSet;
104
105    MachineFunction *mf;
106    const TargetMachine *tm;
107    const TargetRegisterInfo *tri;
108    const TargetInstrInfo *tii;
109    const MachineLoopInfo *loopInfo;
110    MachineRegisterInfo *mri;
111
112    LiveIntervals *lis;
113    LiveStacks *lss;
114    VirtRegMap *vrm;
115
116    LI2NodeMap li2Node;
117    Node2LIMap node2LI;
118    AllowedSetMap allowedSets;
119    LiveIntervalSet vregIntervalsToAlloc,
120                    emptyVRegIntervals;
121
122
123    //! Builds a PBQP cost vector.
124    template <typename RegContainer>
125    PBQPVector* buildCostVector(unsigned vReg,
126                                const RegContainer &allowed,
127                                const CoalesceMap &cealesces,
128                                PBQPNum spillCost) const;
129
130    //! \brief Builds a PBQP interference matrix.
131    //!
132    //! @return Either a pointer to a non-zero PBQP matrix representing the
133    //!         allocation option costs, or a null pointer for a zero matrix.
134    //!
135    //! Expects allowed sets for two interfering LiveIntervals. These allowed
136    //! sets should contain only allocable registers from the LiveInterval's
137    //! register class, with any interfering pre-colored registers removed.
138    template <typename RegContainer>
139    PBQPMatrix* buildInterferenceMatrix(const RegContainer &allowed1,
140                                        const RegContainer &allowed2) const;
141
142    //!
143    //! Expects allowed sets for two potentially coalescable LiveIntervals,
144    //! and an estimated benefit due to coalescing. The allowed sets should
145    //! contain only allocable registers from the LiveInterval's register
146    //! classes, with any interfering pre-colored registers removed.
147    template <typename RegContainer>
148    PBQPMatrix* buildCoalescingMatrix(const RegContainer &allowed1,
149                                      const RegContainer &allowed2,
150                                      PBQPNum cBenefit) const;
151
152    //! \brief Finds coalescing opportunities and returns them as a map.
153    //!
154    //! Any entries in the map are guaranteed coalescable, even if their
155    //! corresponding live intervals overlap.
156    CoalesceMap findCoalesces();
157
158    //! \brief Finds the initial set of vreg intervals to allocate.
159    void findVRegIntervalsToAlloc();
160
161    //! \brief Constructs a PBQP problem representation of the register
162    //! allocation problem for this function.
163    //!
164    //! @return a PBQP solver object for the register allocation problem.
165    pbqp* constructPBQPProblem();
166
167    //! \brief Adds a stack interval if the given live interval has been
168    //! spilled. Used to support stack slot coloring.
169    void addStackInterval(const LiveInterval *spilled, float &weight);
170
171    //! \brief Given a solved PBQP problem maps this solution back to a register
172    //! assignment.
173    bool mapPBQPToRegAlloc(pbqp *problem);
174
175    //! \brief Postprocessing before final spilling. Sets basic block "live in"
176    //! variables.
177    void finalizeAlloc() const;
178
179  };
180
181  char PBQPRegAlloc::ID = 0;
182}
183
184
185template <typename RegContainer>
186PBQPVector* PBQPRegAlloc::buildCostVector(unsigned vReg,
187                                          const RegContainer &allowed,
188                                          const CoalesceMap &coalesces,
189                                          PBQPNum spillCost) const {
190
191  typedef typename RegContainer::const_iterator AllowedItr;
192
193  // Allocate vector. Additional element (0th) used for spill option
194  PBQPVector *v = new PBQPVector(allowed.size() + 1);
195
196  (*v)[0] = spillCost;
197
198  // Iterate over the allowed registers inserting coalesce benefits if there
199  // are any.
200  unsigned ai = 0;
201  for (AllowedItr itr = allowed.begin(), end = allowed.end();
202       itr != end; ++itr, ++ai) {
203
204    unsigned pReg = *itr;
205
206    CoalesceMap::const_iterator cmItr =
207      coalesces.find(RegPair(vReg, pReg));
208
209    // No coalesce - on to the next preg.
210    if (cmItr == coalesces.end())
211      continue;
212
213    // We have a coalesce - insert the benefit.
214    (*v)[ai + 1] = -cmItr->second;
215  }
216
217  return v;
218}
219
220template <typename RegContainer>
221PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
222      const RegContainer &allowed1, const RegContainer &allowed2) const {
223
224  typedef typename RegContainer::const_iterator RegContainerIterator;
225
226  // Construct a PBQP matrix representing the cost of allocation options. The
227  // rows and columns correspond to the allocation options for the two live
228  // intervals.  Elements will be infinite where corresponding registers alias,
229  // since we cannot allocate aliasing registers to interfering live intervals.
230  // All other elements (non-aliasing combinations) will have zero cost. Note
231  // that the spill option (element 0,0) has zero cost, since we can allocate
232  // both intervals to memory safely (the cost for each individual allocation
233  // to memory is accounted for by the cost vectors for each live interval).
234  PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
235
236  // Assume this is a zero matrix until proven otherwise.  Zero matrices occur
237  // between interfering live ranges with non-overlapping register sets (e.g.
238  // non-overlapping reg classes, or disjoint sets of allowed regs within the
239  // same class). The term "overlapping" is used advisedly: sets which do not
240  // intersect, but contain registers which alias, will have non-zero matrices.
241  // We optimize zero matrices away to improve solver speed.
242  bool isZeroMatrix = true;
243
244
245  // Row index. Starts at 1, since the 0th row is for the spill option, which
246  // is always zero.
247  unsigned ri = 1;
248
249  // Iterate over allowed sets, insert infinities where required.
250  for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
251       a1Itr != a1End; ++a1Itr) {
252
253    // Column index, starts at 1 as for row index.
254    unsigned ci = 1;
255    unsigned reg1 = *a1Itr;
256
257    for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
258         a2Itr != a2End; ++a2Itr) {
259
260      unsigned reg2 = *a2Itr;
261
262      // If the row/column regs are identical or alias insert an infinity.
263      if ((reg1 == reg2) || tri->areAliases(reg1, reg2)) {
264        (*m)[ri][ci] = std::numeric_limits<PBQPNum>::infinity();
265        isZeroMatrix = false;
266      }
267
268      ++ci;
269    }
270
271    ++ri;
272  }
273
274  // If this turns out to be a zero matrix...
275  if (isZeroMatrix) {
276    // free it and return null.
277    delete m;
278    return 0;
279  }
280
281  // ...otherwise return the cost matrix.
282  return m;
283}
284
285template <typename RegContainer>
286PBQPMatrix* PBQPRegAlloc::buildCoalescingMatrix(
287      const RegContainer &allowed1, const RegContainer &allowed2,
288      PBQPNum cBenefit) const {
289
290  typedef typename RegContainer::const_iterator RegContainerIterator;
291
292  // Construct a PBQP Matrix representing the benefits of coalescing. As with
293  // interference matrices the rows and columns represent allowed registers
294  // for the LiveIntervals which are (potentially) to be coalesced. The amount
295  // -cBenefit will be placed in any element representing the same register
296  // for both intervals.
297  PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
298
299  // Reset costs to zero.
300  m->reset(0);
301
302  // Assume the matrix is zero till proven otherwise. Zero matrices will be
303  // optimized away as in the interference case.
304  bool isZeroMatrix = true;
305
306  // Row index. Starts at 1, since the 0th row is for the spill option, which
307  // is always zero.
308  unsigned ri = 1;
309
310  // Iterate over the allowed sets, insert coalescing benefits where
311  // appropriate.
312  for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
313       a1Itr != a1End; ++a1Itr) {
314
315    // Column index, starts at 1 as for row index.
316    unsigned ci = 1;
317    unsigned reg1 = *a1Itr;
318
319    for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
320         a2Itr != a2End; ++a2Itr) {
321
322      // If the row and column represent the same register insert a beneficial
323      // cost to preference this allocation - it would allow us to eliminate a
324      // move instruction.
325      if (reg1 == *a2Itr) {
326        (*m)[ri][ci] = -cBenefit;
327        isZeroMatrix = false;
328      }
329
330      ++ci;
331    }
332
333    ++ri;
334  }
335
336  // If this turns out to be a zero matrix...
337  if (isZeroMatrix) {
338    // ...free it and return null.
339    delete m;
340    return 0;
341  }
342
343  return m;
344}
345
346PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
347
348  typedef MachineFunction::const_iterator MFIterator;
349  typedef MachineBasicBlock::const_iterator MBBIterator;
350  typedef LiveInterval::const_vni_iterator VNIIterator;
351
352  CoalesceMap coalescesFound;
353
354  // To find coalesces we need to iterate over the function looking for
355  // copy instructions.
356  for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
357       bbItr != bbEnd; ++bbItr) {
358
359    const MachineBasicBlock *mbb = &*bbItr;
360
361    for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
362         iItr != iEnd; ++iItr) {
363
364      const MachineInstr *instr = &*iItr;
365      unsigned srcReg, dstReg;
366
367      // If this isn't a copy then continue to the next instruction.
368      if (!tii->isMoveInstr(*instr, srcReg, dstReg))
369        continue;
370
371      // If the registers are already the same our job is nice and easy.
372      if (dstReg == srcReg)
373        continue;
374
375      bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
376           dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
377
378      // If both registers are physical then we can't coalesce.
379      if (srcRegIsPhysical && dstRegIsPhysical)
380        continue;
381
382      // If it's a copy that includes a virtual register but the source and
383      // destination classes differ then we can't coalesce, so continue with
384      // the next instruction.
385      const TargetRegisterClass *srcRegClass = srcRegIsPhysical ?
386          tri->getPhysicalRegisterRegClass(srcReg) : mri->getRegClass(srcReg);
387
388      const TargetRegisterClass *dstRegClass = dstRegIsPhysical ?
389          tri->getPhysicalRegisterRegClass(dstReg) : mri->getRegClass(dstReg);
390
391      if (srcRegClass != dstRegClass)
392        continue;
393
394      // We also need any physical regs to be allocable, coalescing with
395      // a non-allocable register is invalid.
396      if (srcRegIsPhysical) {
397        if (std::find(srcRegClass->allocation_order_begin(*mf),
398                      srcRegClass->allocation_order_end(*mf), srcReg) ==
399            srcRegClass->allocation_order_end(*mf))
400          continue;
401      }
402
403      if (dstRegIsPhysical) {
404        if (std::find(dstRegClass->allocation_order_begin(*mf),
405                      dstRegClass->allocation_order_end(*mf), dstReg) ==
406            dstRegClass->allocation_order_end(*mf))
407          continue;
408      }
409
410      // If we've made it here we have a copy with compatible register classes.
411      // We can probably coalesce, but we need to consider overlap.
412      const LiveInterval *srcLI = &lis->getInterval(srcReg),
413                         *dstLI = &lis->getInterval(dstReg);
414
415      if (srcLI->overlaps(*dstLI)) {
416        // Even in the case of an overlap we might still be able to coalesce,
417        // but we need to make sure that no definition of either range occurs
418        // while the other range is live.
419
420        // Otherwise start by assuming we're ok.
421        bool badDef = false;
422
423        // Test all defs of the source range.
424        for (VNIIterator
425               vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
426               vniItr != vniEnd; ++vniItr) {
427
428          // If we find a def that kills the coalescing opportunity then
429          // record it and break from the loop.
430          if (dstLI->liveAt((*vniItr)->def)) {
431            badDef = true;
432            break;
433          }
434        }
435
436        // If we have a bad def give up, continue to the next instruction.
437        if (badDef)
438          continue;
439
440        // Otherwise test definitions of the destination range.
441        for (VNIIterator
442               vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
443               vniItr != vniEnd; ++vniItr) {
444
445          // We want to make sure we skip the copy instruction itself.
446          if ((*vniItr)->copy == instr)
447            continue;
448
449          if (srcLI->liveAt((*vniItr)->def)) {
450            badDef = true;
451            break;
452          }
453        }
454
455        // As before a bad def we give up and continue to the next instr.
456        if (badDef)
457          continue;
458      }
459
460      // If we make it to here then either the ranges didn't overlap, or they
461      // did, but none of their definitions would prevent us from coalescing.
462      // We're good to go with the coalesce.
463
464      float cBenefit = powf(10.0f, loopInfo->getLoopDepth(mbb)) / 5.0;
465
466      coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
467      coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
468    }
469
470  }
471
472  return coalescesFound;
473}
474
475void PBQPRegAlloc::findVRegIntervalsToAlloc() {
476
477  // Iterate over all live ranges.
478  for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
479       itr != end; ++itr) {
480
481    // Ignore physical ones.
482    if (TargetRegisterInfo::isPhysicalRegister(itr->first))
483      continue;
484
485    LiveInterval *li = itr->second;
486
487    // If this live interval is non-empty we will use pbqp to allocate it.
488    // Empty intervals we allocate in a simple post-processing stage in
489    // finalizeAlloc.
490    if (!li->empty()) {
491      vregIntervalsToAlloc.insert(li);
492    }
493    else {
494      emptyVRegIntervals.insert(li);
495    }
496  }
497}
498
499pbqp* PBQPRegAlloc::constructPBQPProblem() {
500
501  typedef std::vector<const LiveInterval*> LIVector;
502  typedef std::vector<unsigned> RegVector;
503
504  // This will store the physical intervals for easy reference.
505  LIVector physIntervals;
506
507  // Start by clearing the old node <-> live interval mappings & allowed sets
508  li2Node.clear();
509  node2LI.clear();
510  allowedSets.clear();
511
512  // Populate physIntervals, update preg use:
513  for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
514       itr != end; ++itr) {
515
516    if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
517      physIntervals.push_back(itr->second);
518      mri->setPhysRegUsed(itr->second->reg);
519    }
520  }
521
522  // Iterate over vreg intervals, construct live interval <-> node number
523  //  mappings.
524  for (LiveIntervalSet::const_iterator
525       itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
526       itr != end; ++itr) {
527    const LiveInterval *li = *itr;
528
529    li2Node[li] = node2LI.size();
530    node2LI.push_back(li);
531  }
532
533  // Get the set of potential coalesces.
534  CoalesceMap coalesces(findCoalesces());
535
536  // Construct a PBQP solver for this problem
537  pbqp *solver = alloc_pbqp(vregIntervalsToAlloc.size());
538
539  // Resize allowedSets container appropriately.
540  allowedSets.resize(vregIntervalsToAlloc.size());
541
542  // Iterate over virtual register intervals to compute allowed sets...
543  for (unsigned node = 0; node < node2LI.size(); ++node) {
544
545    // Grab pointers to the interval and its register class.
546    const LiveInterval *li = node2LI[node];
547    const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
548
549    // Start by assuming all allocable registers in the class are allowed...
550    RegVector liAllowed(liRC->allocation_order_begin(*mf),
551                        liRC->allocation_order_end(*mf));
552
553    // Eliminate the physical registers which overlap with this range, along
554    // with all their aliases.
555    for (LIVector::iterator pItr = physIntervals.begin(),
556       pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
557
558      if (!li->overlaps(**pItr))
559        continue;
560
561      unsigned pReg = (*pItr)->reg;
562
563      // If we get here then the live intervals overlap, but we're still ok
564      // if they're coalescable.
565      if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
566        continue;
567
568      // If we get here then we have a genuine exclusion.
569
570      // Remove the overlapping reg...
571      RegVector::iterator eraseItr =
572        std::find(liAllowed.begin(), liAllowed.end(), pReg);
573
574      if (eraseItr != liAllowed.end())
575        liAllowed.erase(eraseItr);
576
577      const unsigned *aliasItr = tri->getAliasSet(pReg);
578
579      if (aliasItr != 0) {
580        // ...and its aliases.
581        for (; *aliasItr != 0; ++aliasItr) {
582          RegVector::iterator eraseItr =
583            std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
584
585          if (eraseItr != liAllowed.end()) {
586            liAllowed.erase(eraseItr);
587          }
588        }
589      }
590    }
591
592    // Copy the allowed set into a member vector for use when constructing cost
593    // vectors & matrices, and mapping PBQP solutions back to assignments.
594    allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
595
596    // Set the spill cost to the interval weight, or epsilon if the
597    // interval weight is zero
598    PBQPNum spillCost = (li->weight != 0.0) ?
599        li->weight : std::numeric_limits<PBQPNum>::min();
600
601    // Build a cost vector for this interval.
602    add_pbqp_nodecosts(solver, node,
603                       buildCostVector(li->reg, allowedSets[node], coalesces,
604                                       spillCost));
605
606  }
607
608
609  // Now add the cost matrices...
610  for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
611    const LiveInterval *li = node2LI[node1];
612
613    // Test for live range overlaps and insert interference matrices.
614    for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
615      const LiveInterval *li2 = node2LI[node2];
616
617      CoalesceMap::const_iterator cmItr =
618        coalesces.find(RegPair(li->reg, li2->reg));
619
620      PBQPMatrix *m = 0;
621
622      if (cmItr != coalesces.end()) {
623        m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
624                                  cmItr->second);
625      }
626      else if (li->overlaps(*li2)) {
627        m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
628      }
629
630      if (m != 0) {
631        add_pbqp_edgecosts(solver, node1, node2, m);
632        delete m;
633      }
634    }
635  }
636
637  // We're done, PBQP problem constructed - return it.
638  return solver;
639}
640
641void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled, float &weight) {
642  int stackSlot = vrm->getStackSlot(spilled->reg);
643
644  if (stackSlot == VirtRegMap::NO_STACK_SLOT)
645    return;
646
647  LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot);
648  stackInterval.weight += weight;
649
650  VNInfo *vni;
651  if (stackInterval.getNumValNums() != 0)
652    vni = stackInterval.getValNumInfo(0);
653  else
654    vni = stackInterval.getNextValue(-0U, 0, lss->getVNInfoAllocator());
655
656  LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
657  stackInterval.MergeRangesInAsValue(rhsInterval, vni);
658}
659
660bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
661
662  // Set to true if we have any spills
663  bool anotherRoundNeeded = false;
664
665  // Clear the existing allocation.
666  vrm->clearAllVirt();
667
668  // Iterate over the nodes mapping the PBQP solution to a register assignment.
669  for (unsigned node = 0; node < node2LI.size(); ++node) {
670    unsigned virtReg = node2LI[node]->reg,
671             allocSelection = get_pbqp_solution(problem, node);
672
673    // If the PBQP solution is non-zero it's a physical register...
674    if (allocSelection != 0) {
675      // Get the physical reg, subtracting 1 to account for the spill option.
676      unsigned physReg = allowedSets[node][allocSelection - 1];
677
678      DOUT << "VREG " << virtReg << " -> " << tri->getName(physReg) << "\n";
679
680      assert(physReg != 0);
681
682      // Add to the virt reg map and update the used phys regs.
683      vrm->assignVirt2Phys(virtReg, physReg);
684    }
685    // ...Otherwise it's a spill.
686    else {
687
688      // Make sure we ignore this virtual reg on the next round
689      // of allocation
690      vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
691
692      float ssWeight;
693
694      // Insert spill ranges for this live range
695      const LiveInterval *spillInterval = node2LI[node];
696      double oldSpillWeight = spillInterval->weight;
697      SmallVector<LiveInterval*, 8> spillIs;
698      std::vector<LiveInterval*> newSpills =
699        lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm,
700                                   ssWeight);
701      addStackInterval(spillInterval, ssWeight);
702
703      DOUT << "VREG " << virtReg << " -> SPILLED (Cost: "
704           << oldSpillWeight << ", New vregs: ";
705
706      // Copy any newly inserted live intervals into the list of regs to
707      // allocate.
708      for (std::vector<LiveInterval*>::const_iterator
709           itr = newSpills.begin(), end = newSpills.end();
710           itr != end; ++itr) {
711
712        assert(!(*itr)->empty() && "Empty spill range.");
713
714        DOUT << (*itr)->reg << " ";
715
716        vregIntervalsToAlloc.insert(*itr);
717      }
718
719      DOUT << ")\n";
720
721      // We need another round if spill intervals were added.
722      anotherRoundNeeded |= !newSpills.empty();
723    }
724  }
725
726  return !anotherRoundNeeded;
727}
728
729void PBQPRegAlloc::finalizeAlloc() const {
730  typedef LiveIntervals::iterator LIIterator;
731  typedef LiveInterval::Ranges::const_iterator LRIterator;
732
733  // First allocate registers for the empty intervals.
734  for (LiveIntervalSet::const_iterator
735	 itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
736         itr != end; ++itr) {
737    LiveInterval *li = *itr;
738
739    unsigned physReg = li->preference;
740
741    if (physReg == 0) {
742      const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
743      physReg = *liRC->allocation_order_begin(*mf);
744    }
745
746    vrm->assignVirt2Phys(li->reg, physReg);
747  }
748
749  // Finally iterate over the basic blocks to compute and set the live-in sets.
750  SmallVector<MachineBasicBlock*, 8> liveInMBBs;
751  MachineBasicBlock *entryMBB = &*mf->begin();
752
753  for (LIIterator liItr = lis->begin(), liEnd = lis->end();
754       liItr != liEnd; ++liItr) {
755
756    const LiveInterval *li = liItr->second;
757    unsigned reg = 0;
758
759    // Get the physical register for this interval
760    if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
761      reg = li->reg;
762    }
763    else if (vrm->isAssignedReg(li->reg)) {
764      reg = vrm->getPhys(li->reg);
765    }
766    else {
767      // Ranges which are assigned a stack slot only are ignored.
768      continue;
769    }
770
771    // Iterate over the ranges of the current interval...
772    for (LRIterator lrItr = li->begin(), lrEnd = li->end();
773         lrItr != lrEnd; ++lrItr) {
774
775      // Find the set of basic blocks which this range is live into...
776      if (lis->findLiveInMBBs(lrItr->start, lrItr->end,  liveInMBBs)) {
777        // And add the physreg for this interval to their live-in sets.
778        for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
779          if (liveInMBBs[i] != entryMBB) {
780            if (!liveInMBBs[i]->isLiveIn(reg)) {
781              liveInMBBs[i]->addLiveIn(reg);
782            }
783          }
784        }
785        liveInMBBs.clear();
786      }
787    }
788  }
789
790}
791
792bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
793
794  mf = &MF;
795  tm = &mf->getTarget();
796  tri = tm->getRegisterInfo();
797  tii = tm->getInstrInfo();
798  mri = &mf->getRegInfo();
799
800  lis = &getAnalysis<LiveIntervals>();
801  lss = &getAnalysis<LiveStacks>();
802  loopInfo = &getAnalysis<MachineLoopInfo>();
803
804  std::auto_ptr<VirtRegMap> vrmAutoPtr(new VirtRegMap(*mf));
805  vrm = vrmAutoPtr.get();
806
807  DOUT << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n";
808
809  // Allocator main loop:
810  //
811  // * Map current regalloc problem to a PBQP problem
812  // * Solve the PBQP problem
813  // * Map the solution back to a register allocation
814  // * Spill if necessary
815  //
816  // This process is continued till no more spills are generated.
817
818  // Find the vreg intervals in need of allocation.
819  findVRegIntervalsToAlloc();
820
821  // If there aren't any then we're done here.
822  if (vregIntervalsToAlloc.empty() && emptyVRegIntervals.empty())
823    return true;
824
825  // If there are non-empty intervals allocate them using pbqp.
826  if (!vregIntervalsToAlloc.empty()) {
827
828    bool pbqpAllocComplete = false;
829    unsigned round = 0;
830
831    while (!pbqpAllocComplete) {
832      DOUT << "  PBQP Regalloc round " << round << ":\n";
833
834      pbqp *problem = constructPBQPProblem();
835
836      solve_pbqp(problem);
837
838      pbqpAllocComplete = mapPBQPToRegAlloc(problem);
839
840      free_pbqp(problem);
841
842      ++round;
843    }
844  }
845
846  // Finalise allocation, allocate empty ranges.
847  finalizeAlloc();
848
849  vregIntervalsToAlloc.clear();
850  emptyVRegIntervals.clear();
851  li2Node.clear();
852  node2LI.clear();
853  allowedSets.clear();
854
855  DOUT << "Post alloc VirtRegMap:\n" << *vrm << "\n";
856
857  // Run spiller
858  std::auto_ptr<Spiller> spiller(createSpiller());
859  spiller->runOnMachineFunction(*mf, *vrm);
860
861  return true;
862}
863
864FunctionPass* llvm::createPBQPRegisterAllocator() {
865  return new PBQPRegAlloc();
866}
867
868
869#undef DEBUG_TYPE
870