RegAllocPBQP.cpp revision 6699fb27091927528f9f6059c3034d566dbed623
1//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11// register allocator for LLVM. This allocator works by constructing a PBQP
12// problem representing the register allocation problem under consideration,
13// solving this using a PBQP solver, and mapping the solution back to a
14// register assignment. If any variables are selected for spilling then spill
15// code is inserted and the process repeated.
16//
17// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18// for register allocation. For more information on PBQP for register
19// allocation, see the following papers:
20//
21//   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22//   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23//   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24//
25//   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26//   architectures. In Proceedings of the Joint Conference on Languages,
27//   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28//   NY, USA, 139-148.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "regalloc"
33
34#include "PBQP/HeuristicSolver.h"
35#include "PBQP/SimpleGraph.h"
36#include "PBQP/Heuristics/Briggs.h"
37#include "VirtRegMap.h"
38#include "VirtRegRewriter.h"
39#include "llvm/CodeGen/LiveIntervalAnalysis.h"
40#include "llvm/CodeGen/LiveStackAnalysis.h"
41#include "llvm/CodeGen/MachineFunctionPass.h"
42#include "llvm/CodeGen/MachineLoopInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/RegAllocRegistry.h"
45#include "llvm/CodeGen/RegisterCoalescer.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetMachine.h"
50#include <limits>
51#include <map>
52#include <memory>
53#include <set>
54#include <vector>
55
56using namespace llvm;
57
58static RegisterRegAlloc
59registerPBQPRepAlloc("pbqp", "PBQP register allocator.",
60                      llvm::createPBQPRegisterAllocator);
61
62namespace {
63
64  ///
65  /// PBQP based allocators solve the register allocation problem by mapping
66  /// register allocation problems to Partitioned Boolean Quadratic
67  /// Programming problems.
68  class VISIBILITY_HIDDEN PBQPRegAlloc : public MachineFunctionPass {
69  public:
70
71    static char ID;
72
73    /// Construct a PBQP register allocator.
74    PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID) {}
75
76    /// Return the pass name.
77    virtual const char* getPassName() const throw() {
78      return "PBQP Register Allocator";
79    }
80
81    /// PBQP analysis usage.
82    virtual void getAnalysisUsage(AnalysisUsage &au) const {
83      au.addRequired<LiveIntervals>();
84      //au.addRequiredID(SplitCriticalEdgesID);
85      au.addRequired<LiveStacks>();
86      au.addPreserved<LiveStacks>();
87      au.addRequired<MachineLoopInfo>();
88      au.addPreserved<MachineLoopInfo>();
89      au.addRequired<VirtRegMap>();
90      MachineFunctionPass::getAnalysisUsage(au);
91    }
92
93    /// Perform register allocation
94    virtual bool runOnMachineFunction(MachineFunction &MF);
95
96  private:
97    typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
98    typedef std::vector<const LiveInterval*> Node2LIMap;
99    typedef std::vector<unsigned> AllowedSet;
100    typedef std::vector<AllowedSet> AllowedSetMap;
101    typedef std::set<unsigned> RegSet;
102    typedef std::pair<unsigned, unsigned> RegPair;
103    typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
104
105    typedef std::set<LiveInterval*> LiveIntervalSet;
106
107    MachineFunction *mf;
108    const TargetMachine *tm;
109    const TargetRegisterInfo *tri;
110    const TargetInstrInfo *tii;
111    const MachineLoopInfo *loopInfo;
112    MachineRegisterInfo *mri;
113
114    LiveIntervals *lis;
115    LiveStacks *lss;
116    VirtRegMap *vrm;
117
118    LI2NodeMap li2Node;
119    Node2LIMap node2LI;
120    AllowedSetMap allowedSets;
121    LiveIntervalSet vregIntervalsToAlloc,
122                    emptyVRegIntervals;
123
124
125    /// Builds a PBQP cost vector.
126    template <typename RegContainer>
127    PBQP::Vector buildCostVector(unsigned vReg,
128                                 const RegContainer &allowed,
129                                 const CoalesceMap &cealesces,
130                                 PBQP::PBQPNum spillCost) const;
131
132    /// \brief Builds a PBQP interference matrix.
133    ///
134    /// @return Either a pointer to a non-zero PBQP matrix representing the
135    ///         allocation option costs, or a null pointer for a zero matrix.
136    ///
137    /// Expects allowed sets for two interfering LiveIntervals. These allowed
138    /// sets should contain only allocable registers from the LiveInterval's
139    /// register class, with any interfering pre-colored registers removed.
140    template <typename RegContainer>
141    PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
142                                          const RegContainer &allowed2) const;
143
144    ///
145    /// Expects allowed sets for two potentially coalescable LiveIntervals,
146    /// and an estimated benefit due to coalescing. The allowed sets should
147    /// contain only allocable registers from the LiveInterval's register
148    /// classes, with any interfering pre-colored registers removed.
149    template <typename RegContainer>
150    PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
151                                        const RegContainer &allowed2,
152                                        PBQP::PBQPNum cBenefit) const;
153
154    /// \brief Finds coalescing opportunities and returns them as a map.
155    ///
156    /// Any entries in the map are guaranteed coalescable, even if their
157    /// corresponding live intervals overlap.
158    CoalesceMap findCoalesces();
159
160    /// \brief Finds the initial set of vreg intervals to allocate.
161    void findVRegIntervalsToAlloc();
162
163    /// \brief Constructs a PBQP problem representation of the register
164    /// allocation problem for this function.
165    ///
166    /// @return a PBQP solver object for the register allocation problem.
167    PBQP::SimpleGraph constructPBQPProblem();
168
169    /// \brief Adds a stack interval if the given live interval has been
170    /// spilled. Used to support stack slot coloring.
171    void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
172
173    /// \brief Given a solved PBQP problem maps this solution back to a register
174    /// assignment.
175    bool mapPBQPToRegAlloc(const PBQP::Solution &solution);
176
177    /// \brief Postprocessing before final spilling. Sets basic block "live in"
178    /// variables.
179    void finalizeAlloc() const;
180
181  };
182
183  char PBQPRegAlloc::ID = 0;
184}
185
186
187template <typename RegContainer>
188PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
189                                           const RegContainer &allowed,
190                                           const CoalesceMap &coalesces,
191                                           PBQP::PBQPNum spillCost) const {
192
193  typedef typename RegContainer::const_iterator AllowedItr;
194
195  // Allocate vector. Additional element (0th) used for spill option
196  PBQP::Vector v(allowed.size() + 1, 0);
197
198  v[0] = spillCost;
199
200  // Iterate over the allowed registers inserting coalesce benefits if there
201  // are any.
202  unsigned ai = 0;
203  for (AllowedItr itr = allowed.begin(), end = allowed.end();
204       itr != end; ++itr, ++ai) {
205
206    unsigned pReg = *itr;
207
208    CoalesceMap::const_iterator cmItr =
209      coalesces.find(RegPair(vReg, pReg));
210
211    // No coalesce - on to the next preg.
212    if (cmItr == coalesces.end())
213      continue;
214
215    // We have a coalesce - insert the benefit.
216    v[ai + 1] = -cmItr->second;
217  }
218
219  return v;
220}
221
222template <typename RegContainer>
223PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
224      const RegContainer &allowed1, const RegContainer &allowed2) const {
225
226  typedef typename RegContainer::const_iterator RegContainerIterator;
227
228  // Construct a PBQP matrix representing the cost of allocation options. The
229  // rows and columns correspond to the allocation options for the two live
230  // intervals.  Elements will be infinite where corresponding registers alias,
231  // since we cannot allocate aliasing registers to interfering live intervals.
232  // All other elements (non-aliasing combinations) will have zero cost. Note
233  // that the spill option (element 0,0) has zero cost, since we can allocate
234  // both intervals to memory safely (the cost for each individual allocation
235  // to memory is accounted for by the cost vectors for each live interval).
236  PBQP::Matrix *m =
237    new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
238
239  // Assume this is a zero matrix until proven otherwise.  Zero matrices occur
240  // between interfering live ranges with non-overlapping register sets (e.g.
241  // non-overlapping reg classes, or disjoint sets of allowed regs within the
242  // same class). The term "overlapping" is used advisedly: sets which do not
243  // intersect, but contain registers which alias, will have non-zero matrices.
244  // We optimize zero matrices away to improve solver speed.
245  bool isZeroMatrix = true;
246
247
248  // Row index. Starts at 1, since the 0th row is for the spill option, which
249  // is always zero.
250  unsigned ri = 1;
251
252  // Iterate over allowed sets, insert infinities where required.
253  for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
254       a1Itr != a1End; ++a1Itr) {
255
256    // Column index, starts at 1 as for row index.
257    unsigned ci = 1;
258    unsigned reg1 = *a1Itr;
259
260    for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
261         a2Itr != a2End; ++a2Itr) {
262
263      unsigned reg2 = *a2Itr;
264
265      // If the row/column regs are identical or alias insert an infinity.
266      if ((reg1 == reg2) || tri->areAliases(reg1, reg2)) {
267        (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
268        isZeroMatrix = false;
269      }
270
271      ++ci;
272    }
273
274    ++ri;
275  }
276
277  // If this turns out to be a zero matrix...
278  if (isZeroMatrix) {
279    // free it and return null.
280    delete m;
281    return 0;
282  }
283
284  // ...otherwise return the cost matrix.
285  return m;
286}
287
288template <typename RegContainer>
289PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
290      const RegContainer &allowed1, const RegContainer &allowed2,
291      PBQP::PBQPNum cBenefit) const {
292
293  typedef typename RegContainer::const_iterator RegContainerIterator;
294
295  // Construct a PBQP Matrix representing the benefits of coalescing. As with
296  // interference matrices the rows and columns represent allowed registers
297  // for the LiveIntervals which are (potentially) to be coalesced. The amount
298  // -cBenefit will be placed in any element representing the same register
299  // for both intervals.
300  PBQP::Matrix *m =
301    new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
302
303  // Reset costs to zero.
304  m->reset(0);
305
306  // Assume the matrix is zero till proven otherwise. Zero matrices will be
307  // optimized away as in the interference case.
308  bool isZeroMatrix = true;
309
310  // Row index. Starts at 1, since the 0th row is for the spill option, which
311  // is always zero.
312  unsigned ri = 1;
313
314  // Iterate over the allowed sets, insert coalescing benefits where
315  // appropriate.
316  for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
317       a1Itr != a1End; ++a1Itr) {
318
319    // Column index, starts at 1 as for row index.
320    unsigned ci = 1;
321    unsigned reg1 = *a1Itr;
322
323    for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
324         a2Itr != a2End; ++a2Itr) {
325
326      // If the row and column represent the same register insert a beneficial
327      // cost to preference this allocation - it would allow us to eliminate a
328      // move instruction.
329      if (reg1 == *a2Itr) {
330        (*m)[ri][ci] = -cBenefit;
331        isZeroMatrix = false;
332      }
333
334      ++ci;
335    }
336
337    ++ri;
338  }
339
340  // If this turns out to be a zero matrix...
341  if (isZeroMatrix) {
342    // ...free it and return null.
343    delete m;
344    return 0;
345  }
346
347  return m;
348}
349
350PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
351
352  typedef MachineFunction::const_iterator MFIterator;
353  typedef MachineBasicBlock::const_iterator MBBIterator;
354  typedef LiveInterval::const_vni_iterator VNIIterator;
355
356  CoalesceMap coalescesFound;
357
358  // To find coalesces we need to iterate over the function looking for
359  // copy instructions.
360  for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
361       bbItr != bbEnd; ++bbItr) {
362
363    const MachineBasicBlock *mbb = &*bbItr;
364
365    for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
366         iItr != iEnd; ++iItr) {
367
368      const MachineInstr *instr = &*iItr;
369      unsigned srcReg, dstReg, srcSubReg, dstSubReg;
370
371      // If this isn't a copy then continue to the next instruction.
372      if (!tii->isMoveInstr(*instr, srcReg, dstReg, srcSubReg, dstSubReg))
373        continue;
374
375      // If the registers are already the same our job is nice and easy.
376      if (dstReg == srcReg)
377        continue;
378
379      bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
380           dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
381
382      // If both registers are physical then we can't coalesce.
383      if (srcRegIsPhysical && dstRegIsPhysical)
384        continue;
385
386      // If it's a copy that includes a virtual register but the source and
387      // destination classes differ then we can't coalesce, so continue with
388      // the next instruction.
389      const TargetRegisterClass *srcRegClass = srcRegIsPhysical ?
390          tri->getPhysicalRegisterRegClass(srcReg) : mri->getRegClass(srcReg);
391
392      const TargetRegisterClass *dstRegClass = dstRegIsPhysical ?
393          tri->getPhysicalRegisterRegClass(dstReg) : mri->getRegClass(dstReg);
394
395      if (srcRegClass != dstRegClass)
396        continue;
397
398      // We also need any physical regs to be allocable, coalescing with
399      // a non-allocable register is invalid.
400      if (srcRegIsPhysical) {
401        if (std::find(srcRegClass->allocation_order_begin(*mf),
402                      srcRegClass->allocation_order_end(*mf), srcReg) ==
403            srcRegClass->allocation_order_end(*mf))
404          continue;
405      }
406
407      if (dstRegIsPhysical) {
408        if (std::find(dstRegClass->allocation_order_begin(*mf),
409                      dstRegClass->allocation_order_end(*mf), dstReg) ==
410            dstRegClass->allocation_order_end(*mf))
411          continue;
412      }
413
414      // If we've made it here we have a copy with compatible register classes.
415      // We can probably coalesce, but we need to consider overlap.
416      const LiveInterval *srcLI = &lis->getInterval(srcReg),
417                         *dstLI = &lis->getInterval(dstReg);
418
419      if (srcLI->overlaps(*dstLI)) {
420        // Even in the case of an overlap we might still be able to coalesce,
421        // but we need to make sure that no definition of either range occurs
422        // while the other range is live.
423
424        // Otherwise start by assuming we're ok.
425        bool badDef = false;
426
427        // Test all defs of the source range.
428        for (VNIIterator
429               vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
430               vniItr != vniEnd; ++vniItr) {
431
432          // If we find a def that kills the coalescing opportunity then
433          // record it and break from the loop.
434          if (dstLI->liveAt((*vniItr)->def)) {
435            badDef = true;
436            break;
437          }
438        }
439
440        // If we have a bad def give up, continue to the next instruction.
441        if (badDef)
442          continue;
443
444        // Otherwise test definitions of the destination range.
445        for (VNIIterator
446               vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
447               vniItr != vniEnd; ++vniItr) {
448
449          // We want to make sure we skip the copy instruction itself.
450          if ((*vniItr)->copy == instr)
451            continue;
452
453          if (srcLI->liveAt((*vniItr)->def)) {
454            badDef = true;
455            break;
456          }
457        }
458
459        // As before a bad def we give up and continue to the next instr.
460        if (badDef)
461          continue;
462      }
463
464      // If we make it to here then either the ranges didn't overlap, or they
465      // did, but none of their definitions would prevent us from coalescing.
466      // We're good to go with the coalesce.
467
468      float cBenefit = powf(10.0f, loopInfo->getLoopDepth(mbb)) / 5.0;
469
470      coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
471      coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
472    }
473
474  }
475
476  return coalescesFound;
477}
478
479void PBQPRegAlloc::findVRegIntervalsToAlloc() {
480
481  // Iterate over all live ranges.
482  for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
483       itr != end; ++itr) {
484
485    // Ignore physical ones.
486    if (TargetRegisterInfo::isPhysicalRegister(itr->first))
487      continue;
488
489    LiveInterval *li = itr->second;
490
491    // If this live interval is non-empty we will use pbqp to allocate it.
492    // Empty intervals we allocate in a simple post-processing stage in
493    // finalizeAlloc.
494    if (!li->empty()) {
495      vregIntervalsToAlloc.insert(li);
496    }
497    else {
498      emptyVRegIntervals.insert(li);
499    }
500  }
501}
502
503PBQP::SimpleGraph PBQPRegAlloc::constructPBQPProblem() {
504
505  typedef std::vector<const LiveInterval*> LIVector;
506  typedef std::vector<unsigned> RegVector;
507  typedef std::vector<PBQP::SimpleGraph::NodeIterator> NodeVector;
508
509  // This will store the physical intervals for easy reference.
510  LIVector physIntervals;
511
512  // Start by clearing the old node <-> live interval mappings & allowed sets
513  li2Node.clear();
514  node2LI.clear();
515  allowedSets.clear();
516
517  // Populate physIntervals, update preg use:
518  for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
519       itr != end; ++itr) {
520
521    if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
522      physIntervals.push_back(itr->second);
523      mri->setPhysRegUsed(itr->second->reg);
524    }
525  }
526
527  // Iterate over vreg intervals, construct live interval <-> node number
528  //  mappings.
529  for (LiveIntervalSet::const_iterator
530       itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
531       itr != end; ++itr) {
532    const LiveInterval *li = *itr;
533
534    li2Node[li] = node2LI.size();
535    node2LI.push_back(li);
536  }
537
538  // Get the set of potential coalesces.
539  CoalesceMap coalesces;//(findCoalesces());
540
541  // Construct a PBQP solver for this problem
542  PBQP::SimpleGraph problem;
543  NodeVector problemNodes(vregIntervalsToAlloc.size());
544
545  // Resize allowedSets container appropriately.
546  allowedSets.resize(vregIntervalsToAlloc.size());
547
548  // Iterate over virtual register intervals to compute allowed sets...
549  for (unsigned node = 0; node < node2LI.size(); ++node) {
550
551    // Grab pointers to the interval and its register class.
552    const LiveInterval *li = node2LI[node];
553    const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
554
555    // Start by assuming all allocable registers in the class are allowed...
556    RegVector liAllowed(liRC->allocation_order_begin(*mf),
557                        liRC->allocation_order_end(*mf));
558
559    // Eliminate the physical registers which overlap with this range, along
560    // with all their aliases.
561    for (LIVector::iterator pItr = physIntervals.begin(),
562       pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
563
564      if (!li->overlaps(**pItr))
565        continue;
566
567      unsigned pReg = (*pItr)->reg;
568
569      // If we get here then the live intervals overlap, but we're still ok
570      // if they're coalescable.
571      if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
572        continue;
573
574      // If we get here then we have a genuine exclusion.
575
576      // Remove the overlapping reg...
577      RegVector::iterator eraseItr =
578        std::find(liAllowed.begin(), liAllowed.end(), pReg);
579
580      if (eraseItr != liAllowed.end())
581        liAllowed.erase(eraseItr);
582
583      const unsigned *aliasItr = tri->getAliasSet(pReg);
584
585      if (aliasItr != 0) {
586        // ...and its aliases.
587        for (; *aliasItr != 0; ++aliasItr) {
588          RegVector::iterator eraseItr =
589            std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
590
591          if (eraseItr != liAllowed.end()) {
592            liAllowed.erase(eraseItr);
593          }
594        }
595      }
596    }
597
598    // Copy the allowed set into a member vector for use when constructing cost
599    // vectors & matrices, and mapping PBQP solutions back to assignments.
600    allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
601
602    // Set the spill cost to the interval weight, or epsilon if the
603    // interval weight is zero
604    PBQP::PBQPNum spillCost = (li->weight != 0.0) ?
605        li->weight : std::numeric_limits<PBQP::PBQPNum>::min();
606
607    // Build a cost vector for this interval.
608    problemNodes[node] =
609      problem.addNode(
610        buildCostVector(li->reg, allowedSets[node], coalesces, spillCost));
611
612  }
613
614
615  // Now add the cost matrices...
616  for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
617    const LiveInterval *li = node2LI[node1];
618
619    // Test for live range overlaps and insert interference matrices.
620    for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
621      const LiveInterval *li2 = node2LI[node2];
622
623      CoalesceMap::const_iterator cmItr =
624        coalesces.find(RegPair(li->reg, li2->reg));
625
626      PBQP::Matrix *m = 0;
627
628      if (cmItr != coalesces.end()) {
629        m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
630                                  cmItr->second);
631      }
632      else if (li->overlaps(*li2)) {
633        m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
634      }
635
636      if (m != 0) {
637        problem.addEdge(problemNodes[node1],
638                        problemNodes[node2],
639                        *m);
640
641        delete m;
642      }
643    }
644  }
645
646  problem.assignNodeIDs();
647
648  assert(problem.getNumNodes() == allowedSets.size());
649  for (unsigned i = 0; i < allowedSets.size(); ++i) {
650    assert(problem.getNodeItr(i) == problemNodes[i]);
651  }
652/*
653  std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
654            << problem.getNumEdges() << " edges.\n";
655
656  problem.printDot(std::cerr);
657*/
658  // We're done, PBQP problem constructed - return it.
659  return problem;
660}
661
662void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
663                                    MachineRegisterInfo* mri) {
664  int stackSlot = vrm->getStackSlot(spilled->reg);
665
666  if (stackSlot == VirtRegMap::NO_STACK_SLOT)
667    return;
668
669  const TargetRegisterClass *RC = mri->getRegClass(spilled->reg);
670  LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot, RC);
671
672  VNInfo *vni;
673  if (stackInterval.getNumValNums() != 0)
674    vni = stackInterval.getValNumInfo(0);
675  else
676    vni = stackInterval.getNextValue(0, 0, false, lss->getVNInfoAllocator());
677
678  LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
679  stackInterval.MergeRangesInAsValue(rhsInterval, vni);
680}
681
682bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
683
684  static unsigned round = 0;
685
686  // Set to true if we have any spills
687  bool anotherRoundNeeded = false;
688
689  // Clear the existing allocation.
690  vrm->clearAllVirt();
691
692  CoalesceMap coalesces;//(findCoalesces());
693
694  for (unsigned i = 0; i < node2LI.size(); ++i) {
695    if (solution.getSelection(i) == 0) {
696      continue;
697    }
698
699    unsigned iSel = solution.getSelection(i);
700    unsigned iAlloc = allowedSets[i][iSel - 1];
701
702    for (unsigned j = i + 1; j < node2LI.size(); ++j) {
703
704      if (solution.getSelection(j) == 0) {
705        continue;
706      }
707
708      unsigned jSel = solution.getSelection(j);
709      unsigned jAlloc = allowedSets[j][jSel - 1];
710
711      if ((iAlloc != jAlloc) && !tri->areAliases(iAlloc, jAlloc)) {
712        continue;
713      }
714
715      if (node2LI[i]->overlaps(*node2LI[j])) {
716        if (coalesces.find(RegPair(node2LI[i]->reg, node2LI[j]->reg)) == coalesces.end()) {
717          DEBUG(errs() <<  "In round " << ++round << ":\n"
718               << "Bogusness in " << mf->getFunction()->getName() << "!\n"
719               << "Live interval " << i << " (reg" << node2LI[i]->reg << ") and\n"
720               << "Live interval " << j << " (reg" << node2LI[j]->reg << ")\n"
721               << "  were allocated registers " << iAlloc << " (index " << iSel << ") and "
722               << jAlloc << "(index " << jSel
723               << ") respectively in a graph of " << solution.numNodes() << " nodes.\n"
724               << "li[i]->empty() = " << node2LI[i]->empty() << "\n"
725               << "li[j]->empty() = " << node2LI[j]->empty() << "\n"
726               << "li[i]->overlaps(li[j]) = " << node2LI[i]->overlaps(*node2LI[j]) << "\n"
727                << "coalesce = " << (coalesces.find(RegPair(node2LI[i]->reg, node2LI[j]->reg)) != coalesces.end()) << "\n");
728
729          DEBUG(errs() << "solution.getCost() = " << solution.getCost() << "\n");
730          exit(1);
731        }
732      }
733    }
734  }
735
736
737  // Iterate over the nodes mapping the PBQP solution to a register assignment.
738  for (unsigned node = 0; node < node2LI.size(); ++node) {
739    unsigned virtReg = node2LI[node]->reg,
740             allocSelection = solution.getSelection(node);
741
742
743    // If the PBQP solution is non-zero it's a physical register...
744    if (allocSelection != 0) {
745      // Get the physical reg, subtracting 1 to account for the spill option.
746      unsigned physReg = allowedSets[node][allocSelection - 1];
747
748      DOUT << "VREG " << virtReg << " -> " << tri->getName(physReg) << "\n";
749
750      assert(physReg != 0);
751
752      // Add to the virt reg map and update the used phys regs.
753      vrm->assignVirt2Phys(virtReg, physReg);
754    }
755    // ...Otherwise it's a spill.
756    else {
757
758      // Make sure we ignore this virtual reg on the next round
759      // of allocation
760      vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
761
762      // Insert spill ranges for this live range
763      const LiveInterval *spillInterval = node2LI[node];
764      double oldSpillWeight = spillInterval->weight;
765      SmallVector<LiveInterval*, 8> spillIs;
766      std::vector<LiveInterval*> newSpills =
767        lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm);
768      addStackInterval(spillInterval, mri);
769
770      DOUT << "VREG " << virtReg << " -> SPILLED (Cost: "
771           << oldSpillWeight << ", New vregs: ";
772
773      // Copy any newly inserted live intervals into the list of regs to
774      // allocate.
775      for (std::vector<LiveInterval*>::const_iterator
776           itr = newSpills.begin(), end = newSpills.end();
777           itr != end; ++itr) {
778
779        assert(!(*itr)->empty() && "Empty spill range.");
780
781        DOUT << (*itr)->reg << " ";
782
783        vregIntervalsToAlloc.insert(*itr);
784      }
785
786      DOUT << ")\n";
787
788      // We need another round if spill intervals were added.
789      anotherRoundNeeded |= !newSpills.empty();
790    }
791  }
792
793  return !anotherRoundNeeded;
794}
795
796void PBQPRegAlloc::finalizeAlloc() const {
797  typedef LiveIntervals::iterator LIIterator;
798  typedef LiveInterval::Ranges::const_iterator LRIterator;
799
800  // First allocate registers for the empty intervals.
801  for (LiveIntervalSet::const_iterator
802	 itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
803         itr != end; ++itr) {
804    LiveInterval *li = *itr;
805
806    unsigned physReg = vrm->getRegAllocPref(li->reg);
807
808    if (physReg == 0) {
809      const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
810      physReg = *liRC->allocation_order_begin(*mf);
811    }
812
813    vrm->assignVirt2Phys(li->reg, physReg);
814  }
815
816  // Finally iterate over the basic blocks to compute and set the live-in sets.
817  SmallVector<MachineBasicBlock*, 8> liveInMBBs;
818  MachineBasicBlock *entryMBB = &*mf->begin();
819
820  for (LIIterator liItr = lis->begin(), liEnd = lis->end();
821       liItr != liEnd; ++liItr) {
822
823    const LiveInterval *li = liItr->second;
824    unsigned reg = 0;
825
826    // Get the physical register for this interval
827    if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
828      reg = li->reg;
829    }
830    else if (vrm->isAssignedReg(li->reg)) {
831      reg = vrm->getPhys(li->reg);
832    }
833    else {
834      // Ranges which are assigned a stack slot only are ignored.
835      continue;
836    }
837
838    if (reg == 0) {
839      // Filter out zero regs - they're for intervals that were spilled.
840      continue;
841    }
842
843    // Iterate over the ranges of the current interval...
844    for (LRIterator lrItr = li->begin(), lrEnd = li->end();
845         lrItr != lrEnd; ++lrItr) {
846
847      // Find the set of basic blocks which this range is live into...
848      if (lis->findLiveInMBBs(lrItr->start, lrItr->end,  liveInMBBs)) {
849        // And add the physreg for this interval to their live-in sets.
850        for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
851          if (liveInMBBs[i] != entryMBB) {
852            if (!liveInMBBs[i]->isLiveIn(reg)) {
853              liveInMBBs[i]->addLiveIn(reg);
854            }
855          }
856        }
857        liveInMBBs.clear();
858      }
859    }
860  }
861
862}
863
864bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
865
866  mf = &MF;
867  tm = &mf->getTarget();
868  tri = tm->getRegisterInfo();
869  tii = tm->getInstrInfo();
870  mri = &mf->getRegInfo();
871
872  lis = &getAnalysis<LiveIntervals>();
873  lss = &getAnalysis<LiveStacks>();
874  loopInfo = &getAnalysis<MachineLoopInfo>();
875
876  vrm = &getAnalysis<VirtRegMap>();
877
878  DEBUG(errs() << "PBQP2 Register Allocating for " << mf->getFunction()->getName() << "\n");
879
880  // Allocator main loop:
881  //
882  // * Map current regalloc problem to a PBQP problem
883  // * Solve the PBQP problem
884  // * Map the solution back to a register allocation
885  // * Spill if necessary
886  //
887  // This process is continued till no more spills are generated.
888
889  // Find the vreg intervals in need of allocation.
890  findVRegIntervalsToAlloc();
891
892  // If there aren't any then we're done here.
893  if (vregIntervalsToAlloc.empty() && emptyVRegIntervals.empty())
894    return true;
895
896  // If there are non-empty intervals allocate them using pbqp.
897  if (!vregIntervalsToAlloc.empty()) {
898
899    bool pbqpAllocComplete = false;
900    unsigned round = 0;
901
902    while (!pbqpAllocComplete) {
903      DEBUG(errs() << "  PBQP Regalloc round " << round << ":\n");
904
905      PBQP::SimpleGraph problem = constructPBQPProblem();
906      PBQP::HeuristicSolver<PBQP::Heuristics::Briggs> solver;
907      problem.assignNodeIDs();
908      PBQP::Solution solution = solver.solve(problem);
909/*
910      std::cerr << "Solution:\n";
911      for (unsigned i = 0; i < solution.numNodes(); ++i) {
912        std::cerr << "  " << i << " -> " << solution.getSelection(i) << "\n";
913      }
914*/
915      pbqpAllocComplete = mapPBQPToRegAlloc(solution);
916
917      ++round;
918    }
919  }
920
921  // Finalise allocation, allocate empty ranges.
922  finalizeAlloc();
923
924  vregIntervalsToAlloc.clear();
925  emptyVRegIntervals.clear();
926  li2Node.clear();
927  node2LI.clear();
928  allowedSets.clear();
929
930  DEBUG(errs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
931
932  // Run rewriter
933  std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
934
935  rewriter->runOnMachineFunction(*mf, *vrm, lis);
936
937  return true;
938}
939
940FunctionPass* llvm::createPBQPRegisterAllocator() {
941  return new PBQPRegAlloc();
942}
943
944
945#undef DEBUG_TYPE
946