RegAllocPBQP.cpp revision 6726b6d75a8b679068a58cb954ba97cf9d1690ba
1//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11// register allocator for LLVM. This allocator works by constructing a PBQP
12// problem representing the register allocation problem under consideration,
13// solving this using a PBQP solver, and mapping the solution back to a
14// register assignment. If any variables are selected for spilling then spill
15// code is inserted and the process repeated.
16//
17// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18// for register allocation. For more information on PBQP for register
19// allocation, see the following papers:
20//
21//   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22//   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23//   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24//
25//   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26//   architectures. In Proceedings of the Joint Conference on Languages,
27//   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28//   NY, USA, 139-148.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "regalloc"
33
34#include "PBQP/HeuristicSolver.h"
35#include "PBQP/SimpleGraph.h"
36#include "PBQP/Heuristics/Briggs.h"
37#include "VirtRegMap.h"
38#include "VirtRegRewriter.h"
39#include "llvm/CodeGen/LiveIntervalAnalysis.h"
40#include "llvm/CodeGen/LiveStackAnalysis.h"
41#include "llvm/CodeGen/MachineFunctionPass.h"
42#include "llvm/CodeGen/MachineLoopInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/RegAllocRegistry.h"
45#include "llvm/CodeGen/RegisterCoalescer.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetMachine.h"
50#include <limits>
51#include <map>
52#include <memory>
53#include <set>
54#include <vector>
55
56using namespace llvm;
57
58static RegisterRegAlloc
59registerPBQPRepAlloc("pbqp", "PBQP register allocator.",
60                      llvm::createPBQPRegisterAllocator);
61
62static cl::opt<bool>
63pbqpCoalescing("pbqp-coalescing",
64               cl::desc("Attempt coalescing during PBQP register allocation."),
65               cl::init(false), cl::Hidden);
66
67namespace {
68
69  ///
70  /// PBQP based allocators solve the register allocation problem by mapping
71  /// register allocation problems to Partitioned Boolean Quadratic
72  /// Programming problems.
73  class PBQPRegAlloc : public MachineFunctionPass {
74  public:
75
76    static char ID;
77
78    /// Construct a PBQP register allocator.
79    PBQPRegAlloc() : MachineFunctionPass(&ID) {}
80
81    /// Return the pass name.
82    virtual const char* getPassName() const {
83      return "PBQP Register Allocator";
84    }
85
86    /// PBQP analysis usage.
87    virtual void getAnalysisUsage(AnalysisUsage &au) const {
88      au.addRequired<LiveIntervals>();
89      //au.addRequiredID(SplitCriticalEdgesID);
90      au.addRequired<RegisterCoalescer>();
91      au.addRequired<LiveStacks>();
92      au.addPreserved<LiveStacks>();
93      au.addRequired<MachineLoopInfo>();
94      au.addPreserved<MachineLoopInfo>();
95      au.addRequired<VirtRegMap>();
96      MachineFunctionPass::getAnalysisUsage(au);
97    }
98
99    /// Perform register allocation
100    virtual bool runOnMachineFunction(MachineFunction &MF);
101
102  private:
103    typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
104    typedef std::vector<const LiveInterval*> Node2LIMap;
105    typedef std::vector<unsigned> AllowedSet;
106    typedef std::vector<AllowedSet> AllowedSetMap;
107    typedef std::set<unsigned> RegSet;
108    typedef std::pair<unsigned, unsigned> RegPair;
109    typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
110
111    typedef std::set<LiveInterval*> LiveIntervalSet;
112
113    MachineFunction *mf;
114    const TargetMachine *tm;
115    const TargetRegisterInfo *tri;
116    const TargetInstrInfo *tii;
117    const MachineLoopInfo *loopInfo;
118    MachineRegisterInfo *mri;
119
120    LiveIntervals *lis;
121    LiveStacks *lss;
122    VirtRegMap *vrm;
123
124    LI2NodeMap li2Node;
125    Node2LIMap node2LI;
126    AllowedSetMap allowedSets;
127    LiveIntervalSet vregIntervalsToAlloc,
128                    emptyVRegIntervals;
129
130
131    /// Builds a PBQP cost vector.
132    template <typename RegContainer>
133    PBQP::Vector buildCostVector(unsigned vReg,
134                                 const RegContainer &allowed,
135                                 const CoalesceMap &cealesces,
136                                 PBQP::PBQPNum spillCost) const;
137
138    /// \brief Builds a PBQP interference matrix.
139    ///
140    /// @return Either a pointer to a non-zero PBQP matrix representing the
141    ///         allocation option costs, or a null pointer for a zero matrix.
142    ///
143    /// Expects allowed sets for two interfering LiveIntervals. These allowed
144    /// sets should contain only allocable registers from the LiveInterval's
145    /// register class, with any interfering pre-colored registers removed.
146    template <typename RegContainer>
147    PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
148                                          const RegContainer &allowed2) const;
149
150    ///
151    /// Expects allowed sets for two potentially coalescable LiveIntervals,
152    /// and an estimated benefit due to coalescing. The allowed sets should
153    /// contain only allocable registers from the LiveInterval's register
154    /// classes, with any interfering pre-colored registers removed.
155    template <typename RegContainer>
156    PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
157                                        const RegContainer &allowed2,
158                                        PBQP::PBQPNum cBenefit) const;
159
160    /// \brief Finds coalescing opportunities and returns them as a map.
161    ///
162    /// Any entries in the map are guaranteed coalescable, even if their
163    /// corresponding live intervals overlap.
164    CoalesceMap findCoalesces();
165
166    /// \brief Finds the initial set of vreg intervals to allocate.
167    void findVRegIntervalsToAlloc();
168
169    /// \brief Constructs a PBQP problem representation of the register
170    /// allocation problem for this function.
171    ///
172    /// @return a PBQP solver object for the register allocation problem.
173    PBQP::SimpleGraph constructPBQPProblem();
174
175    /// \brief Adds a stack interval if the given live interval has been
176    /// spilled. Used to support stack slot coloring.
177    void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
178
179    /// \brief Given a solved PBQP problem maps this solution back to a register
180    /// assignment.
181    bool mapPBQPToRegAlloc(const PBQP::Solution &solution);
182
183    /// \brief Postprocessing before final spilling. Sets basic block "live in"
184    /// variables.
185    void finalizeAlloc() const;
186
187  };
188
189  char PBQPRegAlloc::ID = 0;
190}
191
192
193template <typename RegContainer>
194PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
195                                           const RegContainer &allowed,
196                                           const CoalesceMap &coalesces,
197                                           PBQP::PBQPNum spillCost) const {
198
199  typedef typename RegContainer::const_iterator AllowedItr;
200
201  // Allocate vector. Additional element (0th) used for spill option
202  PBQP::Vector v(allowed.size() + 1, 0);
203
204  v[0] = spillCost;
205
206  // Iterate over the allowed registers inserting coalesce benefits if there
207  // are any.
208  unsigned ai = 0;
209  for (AllowedItr itr = allowed.begin(), end = allowed.end();
210       itr != end; ++itr, ++ai) {
211
212    unsigned pReg = *itr;
213
214    CoalesceMap::const_iterator cmItr =
215      coalesces.find(RegPair(vReg, pReg));
216
217    // No coalesce - on to the next preg.
218    if (cmItr == coalesces.end())
219      continue;
220
221    // We have a coalesce - insert the benefit.
222    v[ai + 1] = -cmItr->second;
223  }
224
225  return v;
226}
227
228template <typename RegContainer>
229PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
230      const RegContainer &allowed1, const RegContainer &allowed2) const {
231
232  typedef typename RegContainer::const_iterator RegContainerIterator;
233
234  // Construct a PBQP matrix representing the cost of allocation options. The
235  // rows and columns correspond to the allocation options for the two live
236  // intervals.  Elements will be infinite where corresponding registers alias,
237  // since we cannot allocate aliasing registers to interfering live intervals.
238  // All other elements (non-aliasing combinations) will have zero cost. Note
239  // that the spill option (element 0,0) has zero cost, since we can allocate
240  // both intervals to memory safely (the cost for each individual allocation
241  // to memory is accounted for by the cost vectors for each live interval).
242  PBQP::Matrix *m =
243    new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
244
245  // Assume this is a zero matrix until proven otherwise.  Zero matrices occur
246  // between interfering live ranges with non-overlapping register sets (e.g.
247  // non-overlapping reg classes, or disjoint sets of allowed regs within the
248  // same class). The term "overlapping" is used advisedly: sets which do not
249  // intersect, but contain registers which alias, will have non-zero matrices.
250  // We optimize zero matrices away to improve solver speed.
251  bool isZeroMatrix = true;
252
253
254  // Row index. Starts at 1, since the 0th row is for the spill option, which
255  // is always zero.
256  unsigned ri = 1;
257
258  // Iterate over allowed sets, insert infinities where required.
259  for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
260       a1Itr != a1End; ++a1Itr) {
261
262    // Column index, starts at 1 as for row index.
263    unsigned ci = 1;
264    unsigned reg1 = *a1Itr;
265
266    for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
267         a2Itr != a2End; ++a2Itr) {
268
269      unsigned reg2 = *a2Itr;
270
271      // If the row/column regs are identical or alias insert an infinity.
272      if (tri->regsOverlap(reg1, reg2)) {
273        (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
274        isZeroMatrix = false;
275      }
276
277      ++ci;
278    }
279
280    ++ri;
281  }
282
283  // If this turns out to be a zero matrix...
284  if (isZeroMatrix) {
285    // free it and return null.
286    delete m;
287    return 0;
288  }
289
290  // ...otherwise return the cost matrix.
291  return m;
292}
293
294template <typename RegContainer>
295PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
296      const RegContainer &allowed1, const RegContainer &allowed2,
297      PBQP::PBQPNum cBenefit) const {
298
299  typedef typename RegContainer::const_iterator RegContainerIterator;
300
301  // Construct a PBQP Matrix representing the benefits of coalescing. As with
302  // interference matrices the rows and columns represent allowed registers
303  // for the LiveIntervals which are (potentially) to be coalesced. The amount
304  // -cBenefit will be placed in any element representing the same register
305  // for both intervals.
306  PBQP::Matrix *m =
307    new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
308
309  // Reset costs to zero.
310  m->reset(0);
311
312  // Assume the matrix is zero till proven otherwise. Zero matrices will be
313  // optimized away as in the interference case.
314  bool isZeroMatrix = true;
315
316  // Row index. Starts at 1, since the 0th row is for the spill option, which
317  // is always zero.
318  unsigned ri = 1;
319
320  // Iterate over the allowed sets, insert coalescing benefits where
321  // appropriate.
322  for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
323       a1Itr != a1End; ++a1Itr) {
324
325    // Column index, starts at 1 as for row index.
326    unsigned ci = 1;
327    unsigned reg1 = *a1Itr;
328
329    for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
330         a2Itr != a2End; ++a2Itr) {
331
332      // If the row and column represent the same register insert a beneficial
333      // cost to preference this allocation - it would allow us to eliminate a
334      // move instruction.
335      if (reg1 == *a2Itr) {
336        (*m)[ri][ci] = -cBenefit;
337        isZeroMatrix = false;
338      }
339
340      ++ci;
341    }
342
343    ++ri;
344  }
345
346  // If this turns out to be a zero matrix...
347  if (isZeroMatrix) {
348    // ...free it and return null.
349    delete m;
350    return 0;
351  }
352
353  return m;
354}
355
356PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
357
358  typedef MachineFunction::const_iterator MFIterator;
359  typedef MachineBasicBlock::const_iterator MBBIterator;
360  typedef LiveInterval::const_vni_iterator VNIIterator;
361
362  CoalesceMap coalescesFound;
363
364  // To find coalesces we need to iterate over the function looking for
365  // copy instructions.
366  for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
367       bbItr != bbEnd; ++bbItr) {
368
369    const MachineBasicBlock *mbb = &*bbItr;
370
371    for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
372         iItr != iEnd; ++iItr) {
373
374      const MachineInstr *instr = &*iItr;
375      unsigned srcReg, dstReg, srcSubReg, dstSubReg;
376
377      // If this isn't a copy then continue to the next instruction.
378      if (!tii->isMoveInstr(*instr, srcReg, dstReg, srcSubReg, dstSubReg))
379        continue;
380
381      // If the registers are already the same our job is nice and easy.
382      if (dstReg == srcReg)
383        continue;
384
385      bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
386           dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
387
388      // If both registers are physical then we can't coalesce.
389      if (srcRegIsPhysical && dstRegIsPhysical)
390        continue;
391
392      // If it's a copy that includes a virtual register but the source and
393      // destination classes differ then we can't coalesce, so continue with
394      // the next instruction.
395      const TargetRegisterClass *srcRegClass = srcRegIsPhysical ?
396          tri->getPhysicalRegisterRegClass(srcReg) : mri->getRegClass(srcReg);
397
398      const TargetRegisterClass *dstRegClass = dstRegIsPhysical ?
399          tri->getPhysicalRegisterRegClass(dstReg) : mri->getRegClass(dstReg);
400
401      if (srcRegClass != dstRegClass)
402        continue;
403
404      // We also need any physical regs to be allocable, coalescing with
405      // a non-allocable register is invalid.
406      if (srcRegIsPhysical) {
407        if (std::find(srcRegClass->allocation_order_begin(*mf),
408                      srcRegClass->allocation_order_end(*mf), srcReg) ==
409            srcRegClass->allocation_order_end(*mf))
410          continue;
411      }
412
413      if (dstRegIsPhysical) {
414        if (std::find(dstRegClass->allocation_order_begin(*mf),
415                      dstRegClass->allocation_order_end(*mf), dstReg) ==
416            dstRegClass->allocation_order_end(*mf))
417          continue;
418      }
419
420      // If we've made it here we have a copy with compatible register classes.
421      // We can probably coalesce, but we need to consider overlap.
422      const LiveInterval *srcLI = &lis->getInterval(srcReg),
423                         *dstLI = &lis->getInterval(dstReg);
424
425      if (srcLI->overlaps(*dstLI)) {
426        // Even in the case of an overlap we might still be able to coalesce,
427        // but we need to make sure that no definition of either range occurs
428        // while the other range is live.
429
430        // Otherwise start by assuming we're ok.
431        bool badDef = false;
432
433        // Test all defs of the source range.
434        for (VNIIterator
435               vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
436               vniItr != vniEnd; ++vniItr) {
437
438          // If we find a def that kills the coalescing opportunity then
439          // record it and break from the loop.
440          if (dstLI->liveAt((*vniItr)->def)) {
441            badDef = true;
442            break;
443          }
444        }
445
446        // If we have a bad def give up, continue to the next instruction.
447        if (badDef)
448          continue;
449
450        // Otherwise test definitions of the destination range.
451        for (VNIIterator
452               vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
453               vniItr != vniEnd; ++vniItr) {
454
455          // We want to make sure we skip the copy instruction itself.
456          if ((*vniItr)->getCopy() == instr)
457            continue;
458
459          if (srcLI->liveAt((*vniItr)->def)) {
460            badDef = true;
461            break;
462          }
463        }
464
465        // As before a bad def we give up and continue to the next instr.
466        if (badDef)
467          continue;
468      }
469
470      // If we make it to here then either the ranges didn't overlap, or they
471      // did, but none of their definitions would prevent us from coalescing.
472      // We're good to go with the coalesce.
473
474      float cBenefit = powf(10.0f, loopInfo->getLoopDepth(mbb)) / 5.0;
475
476      coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
477      coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
478    }
479
480  }
481
482  return coalescesFound;
483}
484
485void PBQPRegAlloc::findVRegIntervalsToAlloc() {
486
487  // Iterate over all live ranges.
488  for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
489       itr != end; ++itr) {
490
491    // Ignore physical ones.
492    if (TargetRegisterInfo::isPhysicalRegister(itr->first))
493      continue;
494
495    LiveInterval *li = itr->second;
496
497    // If this live interval is non-empty we will use pbqp to allocate it.
498    // Empty intervals we allocate in a simple post-processing stage in
499    // finalizeAlloc.
500    if (!li->empty()) {
501      vregIntervalsToAlloc.insert(li);
502    }
503    else {
504      emptyVRegIntervals.insert(li);
505    }
506  }
507}
508
509PBQP::SimpleGraph PBQPRegAlloc::constructPBQPProblem() {
510
511  typedef std::vector<const LiveInterval*> LIVector;
512  typedef std::vector<unsigned> RegVector;
513  typedef std::vector<PBQP::SimpleGraph::NodeIterator> NodeVector;
514
515  // This will store the physical intervals for easy reference.
516  LIVector physIntervals;
517
518  // Start by clearing the old node <-> live interval mappings & allowed sets
519  li2Node.clear();
520  node2LI.clear();
521  allowedSets.clear();
522
523  // Populate physIntervals, update preg use:
524  for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
525       itr != end; ++itr) {
526
527    if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
528      physIntervals.push_back(itr->second);
529      mri->setPhysRegUsed(itr->second->reg);
530    }
531  }
532
533  // Iterate over vreg intervals, construct live interval <-> node number
534  //  mappings.
535  for (LiveIntervalSet::const_iterator
536       itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
537       itr != end; ++itr) {
538    const LiveInterval *li = *itr;
539
540    li2Node[li] = node2LI.size();
541    node2LI.push_back(li);
542  }
543
544  // Get the set of potential coalesces.
545  CoalesceMap coalesces;
546
547  if (pbqpCoalescing) {
548    coalesces = findCoalesces();
549  }
550
551  // Construct a PBQP solver for this problem
552  PBQP::SimpleGraph problem;
553  NodeVector problemNodes(vregIntervalsToAlloc.size());
554
555  // Resize allowedSets container appropriately.
556  allowedSets.resize(vregIntervalsToAlloc.size());
557
558  // Iterate over virtual register intervals to compute allowed sets...
559  for (unsigned node = 0; node < node2LI.size(); ++node) {
560
561    // Grab pointers to the interval and its register class.
562    const LiveInterval *li = node2LI[node];
563    const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
564
565    // Start by assuming all allocable registers in the class are allowed...
566    RegVector liAllowed(liRC->allocation_order_begin(*mf),
567                        liRC->allocation_order_end(*mf));
568
569    // Eliminate the physical registers which overlap with this range, along
570    // with all their aliases.
571    for (LIVector::iterator pItr = physIntervals.begin(),
572       pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
573
574      if (!li->overlaps(**pItr))
575        continue;
576
577      unsigned pReg = (*pItr)->reg;
578
579      // If we get here then the live intervals overlap, but we're still ok
580      // if they're coalescable.
581      if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
582        continue;
583
584      // If we get here then we have a genuine exclusion.
585
586      // Remove the overlapping reg...
587      RegVector::iterator eraseItr =
588        std::find(liAllowed.begin(), liAllowed.end(), pReg);
589
590      if (eraseItr != liAllowed.end())
591        liAllowed.erase(eraseItr);
592
593      const unsigned *aliasItr = tri->getAliasSet(pReg);
594
595      if (aliasItr != 0) {
596        // ...and its aliases.
597        for (; *aliasItr != 0; ++aliasItr) {
598          RegVector::iterator eraseItr =
599            std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
600
601          if (eraseItr != liAllowed.end()) {
602            liAllowed.erase(eraseItr);
603          }
604        }
605      }
606    }
607
608    // Copy the allowed set into a member vector for use when constructing cost
609    // vectors & matrices, and mapping PBQP solutions back to assignments.
610    allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
611
612    // Set the spill cost to the interval weight, or epsilon if the
613    // interval weight is zero
614    PBQP::PBQPNum spillCost = (li->weight != 0.0) ?
615        li->weight : std::numeric_limits<PBQP::PBQPNum>::min();
616
617    // Build a cost vector for this interval.
618    problemNodes[node] =
619      problem.addNode(
620        buildCostVector(li->reg, allowedSets[node], coalesces, spillCost));
621
622  }
623
624
625  // Now add the cost matrices...
626  for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
627    const LiveInterval *li = node2LI[node1];
628
629    // Test for live range overlaps and insert interference matrices.
630    for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
631      const LiveInterval *li2 = node2LI[node2];
632
633      CoalesceMap::const_iterator cmItr =
634        coalesces.find(RegPair(li->reg, li2->reg));
635
636      PBQP::Matrix *m = 0;
637
638      if (cmItr != coalesces.end()) {
639        m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
640                                  cmItr->second);
641      }
642      else if (li->overlaps(*li2)) {
643        m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
644      }
645
646      if (m != 0) {
647        problem.addEdge(problemNodes[node1],
648                        problemNodes[node2],
649                        *m);
650
651        delete m;
652      }
653    }
654  }
655
656  problem.assignNodeIDs();
657
658  assert(problem.getNumNodes() == allowedSets.size());
659  for (unsigned i = 0; i < allowedSets.size(); ++i) {
660    assert(problem.getNodeItr(i) == problemNodes[i]);
661  }
662/*
663  std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
664            << problem.getNumEdges() << " edges.\n";
665
666  problem.printDot(std::cerr);
667*/
668  // We're done, PBQP problem constructed - return it.
669  return problem;
670}
671
672void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
673                                    MachineRegisterInfo* mri) {
674  int stackSlot = vrm->getStackSlot(spilled->reg);
675
676  if (stackSlot == VirtRegMap::NO_STACK_SLOT)
677    return;
678
679  const TargetRegisterClass *RC = mri->getRegClass(spilled->reg);
680  LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot, RC);
681
682  VNInfo *vni;
683  if (stackInterval.getNumValNums() != 0)
684    vni = stackInterval.getValNumInfo(0);
685  else
686    vni = stackInterval.getNextValue(
687      LiveIndex(), 0, false, lss->getVNInfoAllocator());
688
689  LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
690  stackInterval.MergeRangesInAsValue(rhsInterval, vni);
691}
692
693bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
694  // Set to true if we have any spills
695  bool anotherRoundNeeded = false;
696
697  // Clear the existing allocation.
698  vrm->clearAllVirt();
699
700  // Iterate over the nodes mapping the PBQP solution to a register assignment.
701  for (unsigned node = 0; node < node2LI.size(); ++node) {
702    unsigned virtReg = node2LI[node]->reg,
703             allocSelection = solution.getSelection(node);
704
705
706    // If the PBQP solution is non-zero it's a physical register...
707    if (allocSelection != 0) {
708      // Get the physical reg, subtracting 1 to account for the spill option.
709      unsigned physReg = allowedSets[node][allocSelection - 1];
710
711      DEBUG(errs() << "VREG " << virtReg << " -> "
712                   << tri->getName(physReg) << "\n");
713
714      assert(physReg != 0);
715
716      // Add to the virt reg map and update the used phys regs.
717      vrm->assignVirt2Phys(virtReg, physReg);
718    }
719    // ...Otherwise it's a spill.
720    else {
721
722      // Make sure we ignore this virtual reg on the next round
723      // of allocation
724      vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
725
726      // Insert spill ranges for this live range
727      const LiveInterval *spillInterval = node2LI[node];
728      double oldSpillWeight = spillInterval->weight;
729      SmallVector<LiveInterval*, 8> spillIs;
730      std::vector<LiveInterval*> newSpills =
731        lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm);
732      addStackInterval(spillInterval, mri);
733
734      (void) oldSpillWeight;
735      DEBUG(errs() << "VREG " << virtReg << " -> SPILLED (Cost: "
736                   << oldSpillWeight << ", New vregs: ");
737
738      // Copy any newly inserted live intervals into the list of regs to
739      // allocate.
740      for (std::vector<LiveInterval*>::const_iterator
741           itr = newSpills.begin(), end = newSpills.end();
742           itr != end; ++itr) {
743
744        assert(!(*itr)->empty() && "Empty spill range.");
745
746        DEBUG(errs() << (*itr)->reg << " ");
747
748        vregIntervalsToAlloc.insert(*itr);
749      }
750
751      DEBUG(errs() << ")\n");
752
753      // We need another round if spill intervals were added.
754      anotherRoundNeeded |= !newSpills.empty();
755    }
756  }
757
758  return !anotherRoundNeeded;
759}
760
761void PBQPRegAlloc::finalizeAlloc() const {
762  typedef LiveIntervals::iterator LIIterator;
763  typedef LiveInterval::Ranges::const_iterator LRIterator;
764
765  // First allocate registers for the empty intervals.
766  for (LiveIntervalSet::const_iterator
767         itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
768         itr != end; ++itr) {
769    LiveInterval *li = *itr;
770
771    unsigned physReg = vrm->getRegAllocPref(li->reg);
772
773    if (physReg == 0) {
774      const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
775      physReg = *liRC->allocation_order_begin(*mf);
776    }
777
778    vrm->assignVirt2Phys(li->reg, physReg);
779  }
780
781  // Finally iterate over the basic blocks to compute and set the live-in sets.
782  SmallVector<MachineBasicBlock*, 8> liveInMBBs;
783  MachineBasicBlock *entryMBB = &*mf->begin();
784
785  for (LIIterator liItr = lis->begin(), liEnd = lis->end();
786       liItr != liEnd; ++liItr) {
787
788    const LiveInterval *li = liItr->second;
789    unsigned reg = 0;
790
791    // Get the physical register for this interval
792    if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
793      reg = li->reg;
794    }
795    else if (vrm->isAssignedReg(li->reg)) {
796      reg = vrm->getPhys(li->reg);
797    }
798    else {
799      // Ranges which are assigned a stack slot only are ignored.
800      continue;
801    }
802
803    if (reg == 0) {
804      // Filter out zero regs - they're for intervals that were spilled.
805      continue;
806    }
807
808    // Iterate over the ranges of the current interval...
809    for (LRIterator lrItr = li->begin(), lrEnd = li->end();
810         lrItr != lrEnd; ++lrItr) {
811
812      // Find the set of basic blocks which this range is live into...
813      if (lis->findLiveInMBBs(lrItr->start, lrItr->end,  liveInMBBs)) {
814        // And add the physreg for this interval to their live-in sets.
815        for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
816          if (liveInMBBs[i] != entryMBB) {
817            if (!liveInMBBs[i]->isLiveIn(reg)) {
818              liveInMBBs[i]->addLiveIn(reg);
819            }
820          }
821        }
822        liveInMBBs.clear();
823      }
824    }
825  }
826
827}
828
829bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
830
831  mf = &MF;
832  tm = &mf->getTarget();
833  tri = tm->getRegisterInfo();
834  tii = tm->getInstrInfo();
835  mri = &mf->getRegInfo();
836
837  lis = &getAnalysis<LiveIntervals>();
838  lss = &getAnalysis<LiveStacks>();
839  loopInfo = &getAnalysis<MachineLoopInfo>();
840
841  vrm = &getAnalysis<VirtRegMap>();
842
843  DEBUG(errs() << "PBQP2 Register Allocating for " << mf->getFunction()->getName() << "\n");
844
845  // Allocator main loop:
846  //
847  // * Map current regalloc problem to a PBQP problem
848  // * Solve the PBQP problem
849  // * Map the solution back to a register allocation
850  // * Spill if necessary
851  //
852  // This process is continued till no more spills are generated.
853
854  // Find the vreg intervals in need of allocation.
855  findVRegIntervalsToAlloc();
856
857  // If there aren't any then we're done here.
858  if (vregIntervalsToAlloc.empty() && emptyVRegIntervals.empty())
859    return true;
860
861  // If there are non-empty intervals allocate them using pbqp.
862  if (!vregIntervalsToAlloc.empty()) {
863
864    bool pbqpAllocComplete = false;
865    unsigned round = 0;
866
867    while (!pbqpAllocComplete) {
868      DEBUG(errs() << "  PBQP Regalloc round " << round << ":\n");
869
870      PBQP::SimpleGraph problem = constructPBQPProblem();
871      PBQP::HeuristicSolver<PBQP::Heuristics::Briggs> solver;
872      problem.assignNodeIDs();
873      PBQP::Solution solution = solver.solve(problem);
874
875      pbqpAllocComplete = mapPBQPToRegAlloc(solution);
876
877      ++round;
878    }
879  }
880
881  // Finalise allocation, allocate empty ranges.
882  finalizeAlloc();
883
884  vregIntervalsToAlloc.clear();
885  emptyVRegIntervals.clear();
886  li2Node.clear();
887  node2LI.clear();
888  allowedSets.clear();
889
890  DEBUG(errs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
891
892  // Run rewriter
893  std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
894
895  rewriter->runOnMachineFunction(*mf, *vrm, lis);
896
897  return true;
898}
899
900FunctionPass* llvm::createPBQPRegisterAllocator() {
901  return new PBQPRegAlloc();
902}
903
904
905#undef DEBUG_TYPE
906