RegAllocPBQP.cpp revision 8dd26253f54247e77e5accfdd70e7b4bf27b39c2
1//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11// register allocator for LLVM. This allocator works by constructing a PBQP
12// problem representing the register allocation problem under consideration,
13// solving this using a PBQP solver, and mapping the solution back to a
14// register assignment. If any variables are selected for spilling then spill
15// code is inserted and the process repeated.
16//
17// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18// for register allocation. For more information on PBQP for register
19// allocation, see the following papers:
20//
21//   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22//   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23//   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24//
25//   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26//   architectures. In Proceedings of the Joint Conference on Languages,
27//   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28//   NY, USA, 139-148.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "regalloc"
33
34#include "LiveRangeEdit.h"
35#include "RenderMachineFunction.h"
36#include "Spiller.h"
37#include "VirtRegMap.h"
38#include "RegisterCoalescer.h"
39#include "llvm/Analysis/AliasAnalysis.h"
40#include "llvm/CodeGen/CalcSpillWeights.h"
41#include "llvm/CodeGen/LiveIntervalAnalysis.h"
42#include "llvm/CodeGen/LiveStackAnalysis.h"
43#include "llvm/CodeGen/RegAllocPBQP.h"
44#include "llvm/CodeGen/MachineDominators.h"
45#include "llvm/CodeGen/MachineFunctionPass.h"
46#include "llvm/CodeGen/MachineLoopInfo.h"
47#include "llvm/CodeGen/MachineRegisterInfo.h"
48#include "llvm/CodeGen/PBQP/HeuristicSolver.h"
49#include "llvm/CodeGen/PBQP/Graph.h"
50#include "llvm/CodeGen/PBQP/Heuristics/Briggs.h"
51#include "llvm/CodeGen/RegAllocRegistry.h"
52#include "llvm/Support/Debug.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetInstrInfo.h"
55#include "llvm/Target/TargetMachine.h"
56#include <limits>
57#include <memory>
58#include <set>
59#include <vector>
60
61using namespace llvm;
62
63static RegisterRegAlloc
64registerPBQPRepAlloc("pbqp", "PBQP register allocator",
65                       createDefaultPBQPRegisterAllocator);
66
67static cl::opt<bool>
68pbqpCoalescing("pbqp-coalescing",
69                cl::desc("Attempt coalescing during PBQP register allocation."),
70                cl::init(false), cl::Hidden);
71
72namespace {
73
74///
75/// PBQP based allocators solve the register allocation problem by mapping
76/// register allocation problems to Partitioned Boolean Quadratic
77/// Programming problems.
78class RegAllocPBQP : public MachineFunctionPass {
79public:
80
81  static char ID;
82
83  /// Construct a PBQP register allocator.
84  RegAllocPBQP(std::auto_ptr<PBQPBuilder> b, char *cPassID=0)
85      : MachineFunctionPass(ID), builder(b), customPassID(cPassID) {
86    initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
87    initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
88    initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
89    initializeLiveStacksPass(*PassRegistry::getPassRegistry());
90    initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
91    initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
92    initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
93  }
94
95  /// Return the pass name.
96  virtual const char* getPassName() const {
97    return "PBQP Register Allocator";
98  }
99
100  /// PBQP analysis usage.
101  virtual void getAnalysisUsage(AnalysisUsage &au) const;
102
103  /// Perform register allocation
104  virtual bool runOnMachineFunction(MachineFunction &MF);
105
106private:
107
108  typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
109  typedef std::vector<const LiveInterval*> Node2LIMap;
110  typedef std::vector<unsigned> AllowedSet;
111  typedef std::vector<AllowedSet> AllowedSetMap;
112  typedef std::pair<unsigned, unsigned> RegPair;
113  typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
114  typedef std::vector<PBQP::Graph::NodeItr> NodeVector;
115  typedef std::set<unsigned> RegSet;
116
117
118  std::auto_ptr<PBQPBuilder> builder;
119
120  char *customPassID;
121
122  MachineFunction *mf;
123  const TargetMachine *tm;
124  const TargetRegisterInfo *tri;
125  const TargetInstrInfo *tii;
126  const MachineLoopInfo *loopInfo;
127  MachineRegisterInfo *mri;
128  RenderMachineFunction *rmf;
129
130  std::auto_ptr<Spiller> spiller;
131  LiveIntervals *lis;
132  LiveStacks *lss;
133  VirtRegMap *vrm;
134
135  RegSet vregsToAlloc, emptyIntervalVRegs;
136
137  /// \brief Finds the initial set of vreg intervals to allocate.
138  void findVRegIntervalsToAlloc();
139
140  /// \brief Given a solved PBQP problem maps this solution back to a register
141  /// assignment.
142  bool mapPBQPToRegAlloc(const PBQPRAProblem &problem,
143                         const PBQP::Solution &solution);
144
145  /// \brief Postprocessing before final spilling. Sets basic block "live in"
146  /// variables.
147  void finalizeAlloc() const;
148
149};
150
151char RegAllocPBQP::ID = 0;
152
153} // End anonymous namespace.
154
155unsigned PBQPRAProblem::getVRegForNode(PBQP::Graph::ConstNodeItr node) const {
156  Node2VReg::const_iterator vregItr = node2VReg.find(node);
157  assert(vregItr != node2VReg.end() && "No vreg for node.");
158  return vregItr->second;
159}
160
161PBQP::Graph::NodeItr PBQPRAProblem::getNodeForVReg(unsigned vreg) const {
162  VReg2Node::const_iterator nodeItr = vreg2Node.find(vreg);
163  assert(nodeItr != vreg2Node.end() && "No node for vreg.");
164  return nodeItr->second;
165
166}
167
168const PBQPRAProblem::AllowedSet&
169  PBQPRAProblem::getAllowedSet(unsigned vreg) const {
170  AllowedSetMap::const_iterator allowedSetItr = allowedSets.find(vreg);
171  assert(allowedSetItr != allowedSets.end() && "No pregs for vreg.");
172  const AllowedSet &allowedSet = allowedSetItr->second;
173  return allowedSet;
174}
175
176unsigned PBQPRAProblem::getPRegForOption(unsigned vreg, unsigned option) const {
177  assert(isPRegOption(vreg, option) && "Not a preg option.");
178
179  const AllowedSet& allowedSet = getAllowedSet(vreg);
180  assert(option <= allowedSet.size() && "Option outside allowed set.");
181  return allowedSet[option - 1];
182}
183
184std::auto_ptr<PBQPRAProblem> PBQPBuilder::build(MachineFunction *mf,
185                                                const LiveIntervals *lis,
186                                                const MachineLoopInfo *loopInfo,
187                                                const RegSet &vregs) {
188
189  typedef std::vector<const LiveInterval*> LIVector;
190
191  MachineRegisterInfo *mri = &mf->getRegInfo();
192  const TargetRegisterInfo *tri = mf->getTarget().getRegisterInfo();
193
194  std::auto_ptr<PBQPRAProblem> p(new PBQPRAProblem());
195  PBQP::Graph &g = p->getGraph();
196  RegSet pregs;
197
198  // Collect the set of preg intervals, record that they're used in the MF.
199  for (LiveIntervals::const_iterator itr = lis->begin(), end = lis->end();
200       itr != end; ++itr) {
201    if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
202      pregs.insert(itr->first);
203      mri->setPhysRegUsed(itr->first);
204    }
205  }
206
207  BitVector reservedRegs = tri->getReservedRegs(*mf);
208
209  // Iterate over vregs.
210  for (RegSet::const_iterator vregItr = vregs.begin(), vregEnd = vregs.end();
211       vregItr != vregEnd; ++vregItr) {
212    unsigned vreg = *vregItr;
213    const TargetRegisterClass *trc = mri->getRegClass(vreg);
214    const LiveInterval *vregLI = &lis->getInterval(vreg);
215
216    // Compute an initial allowed set for the current vreg.
217    typedef std::vector<unsigned> VRAllowed;
218    VRAllowed vrAllowed;
219    ArrayRef<unsigned> rawOrder = trc->getRawAllocationOrder(*mf);
220    for (unsigned i = 0; i != rawOrder.size(); ++i) {
221      unsigned preg = rawOrder[i];
222      if (!reservedRegs.test(preg)) {
223        vrAllowed.push_back(preg);
224      }
225    }
226
227    // Remove any physical registers which overlap.
228    for (RegSet::const_iterator pregItr = pregs.begin(),
229                                pregEnd = pregs.end();
230         pregItr != pregEnd; ++pregItr) {
231      unsigned preg = *pregItr;
232      const LiveInterval *pregLI = &lis->getInterval(preg);
233
234      if (pregLI->empty()) {
235        continue;
236      }
237
238      if (!vregLI->overlaps(*pregLI)) {
239        continue;
240      }
241
242      // Remove the register from the allowed set.
243      VRAllowed::iterator eraseItr =
244        std::find(vrAllowed.begin(), vrAllowed.end(), preg);
245
246      if (eraseItr != vrAllowed.end()) {
247        vrAllowed.erase(eraseItr);
248      }
249
250      // Also remove any aliases.
251      const unsigned *aliasItr = tri->getAliasSet(preg);
252      if (aliasItr != 0) {
253        for (; *aliasItr != 0; ++aliasItr) {
254          VRAllowed::iterator eraseItr =
255            std::find(vrAllowed.begin(), vrAllowed.end(), *aliasItr);
256
257          if (eraseItr != vrAllowed.end()) {
258            vrAllowed.erase(eraseItr);
259          }
260        }
261      }
262    }
263
264    // Construct the node.
265    PBQP::Graph::NodeItr node =
266      g.addNode(PBQP::Vector(vrAllowed.size() + 1, 0));
267
268    // Record the mapping and allowed set in the problem.
269    p->recordVReg(vreg, node, vrAllowed.begin(), vrAllowed.end());
270
271    PBQP::PBQPNum spillCost = (vregLI->weight != 0.0) ?
272        vregLI->weight : std::numeric_limits<PBQP::PBQPNum>::min();
273
274    addSpillCosts(g.getNodeCosts(node), spillCost);
275  }
276
277  for (RegSet::const_iterator vr1Itr = vregs.begin(), vrEnd = vregs.end();
278         vr1Itr != vrEnd; ++vr1Itr) {
279    unsigned vr1 = *vr1Itr;
280    const LiveInterval &l1 = lis->getInterval(vr1);
281    const PBQPRAProblem::AllowedSet &vr1Allowed = p->getAllowedSet(vr1);
282
283    for (RegSet::const_iterator vr2Itr = llvm::next(vr1Itr);
284         vr2Itr != vrEnd; ++vr2Itr) {
285      unsigned vr2 = *vr2Itr;
286      const LiveInterval &l2 = lis->getInterval(vr2);
287      const PBQPRAProblem::AllowedSet &vr2Allowed = p->getAllowedSet(vr2);
288
289      assert(!l2.empty() && "Empty interval in vreg set?");
290      if (l1.overlaps(l2)) {
291        PBQP::Graph::EdgeItr edge =
292          g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2),
293                    PBQP::Matrix(vr1Allowed.size()+1, vr2Allowed.size()+1, 0));
294
295        addInterferenceCosts(g.getEdgeCosts(edge), vr1Allowed, vr2Allowed, tri);
296      }
297    }
298  }
299
300  return p;
301}
302
303void PBQPBuilder::addSpillCosts(PBQP::Vector &costVec,
304                                PBQP::PBQPNum spillCost) {
305  costVec[0] = spillCost;
306}
307
308void PBQPBuilder::addInterferenceCosts(
309                                    PBQP::Matrix &costMat,
310                                    const PBQPRAProblem::AllowedSet &vr1Allowed,
311                                    const PBQPRAProblem::AllowedSet &vr2Allowed,
312                                    const TargetRegisterInfo *tri) {
313  assert(costMat.getRows() == vr1Allowed.size() + 1 && "Matrix height mismatch.");
314  assert(costMat.getCols() == vr2Allowed.size() + 1 && "Matrix width mismatch.");
315
316  for (unsigned i = 0; i != vr1Allowed.size(); ++i) {
317    unsigned preg1 = vr1Allowed[i];
318
319    for (unsigned j = 0; j != vr2Allowed.size(); ++j) {
320      unsigned preg2 = vr2Allowed[j];
321
322      if (tri->regsOverlap(preg1, preg2)) {
323        costMat[i + 1][j + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
324      }
325    }
326  }
327}
328
329std::auto_ptr<PBQPRAProblem> PBQPBuilderWithCoalescing::build(
330                                                MachineFunction *mf,
331                                                const LiveIntervals *lis,
332                                                const MachineLoopInfo *loopInfo,
333                                                const RegSet &vregs) {
334
335  std::auto_ptr<PBQPRAProblem> p = PBQPBuilder::build(mf, lis, loopInfo, vregs);
336  PBQP::Graph &g = p->getGraph();
337
338  const TargetMachine &tm = mf->getTarget();
339  CoalescerPair cp(*tm.getInstrInfo(), *tm.getRegisterInfo());
340
341  // Scan the machine function and add a coalescing cost whenever CoalescerPair
342  // gives the Ok.
343  for (MachineFunction::const_iterator mbbItr = mf->begin(),
344                                       mbbEnd = mf->end();
345       mbbItr != mbbEnd; ++mbbItr) {
346    const MachineBasicBlock *mbb = &*mbbItr;
347
348    for (MachineBasicBlock::const_iterator miItr = mbb->begin(),
349                                           miEnd = mbb->end();
350         miItr != miEnd; ++miItr) {
351      const MachineInstr *mi = &*miItr;
352
353      if (!cp.setRegisters(mi)) {
354        continue; // Not coalescable.
355      }
356
357      if (cp.getSrcReg() == cp.getDstReg()) {
358        continue; // Already coalesced.
359      }
360
361      unsigned dst = cp.getDstReg(),
362               src = cp.getSrcReg();
363
364      const float copyFactor = 0.5; // Cost of copy relative to load. Current
365      // value plucked randomly out of the air.
366
367      PBQP::PBQPNum cBenefit =
368        copyFactor * LiveIntervals::getSpillWeight(false, true,
369                                                   loopInfo->getLoopDepth(mbb));
370
371      if (cp.isPhys()) {
372        if (!lis->isAllocatable(dst)) {
373          continue;
374        }
375
376        const PBQPRAProblem::AllowedSet &allowed = p->getAllowedSet(src);
377        unsigned pregOpt = 0;
378        while (pregOpt < allowed.size() && allowed[pregOpt] != dst) {
379          ++pregOpt;
380        }
381        if (pregOpt < allowed.size()) {
382          ++pregOpt; // +1 to account for spill option.
383          PBQP::Graph::NodeItr node = p->getNodeForVReg(src);
384          addPhysRegCoalesce(g.getNodeCosts(node), pregOpt, cBenefit);
385        }
386      } else {
387        const PBQPRAProblem::AllowedSet *allowed1 = &p->getAllowedSet(dst);
388        const PBQPRAProblem::AllowedSet *allowed2 = &p->getAllowedSet(src);
389        PBQP::Graph::NodeItr node1 = p->getNodeForVReg(dst);
390        PBQP::Graph::NodeItr node2 = p->getNodeForVReg(src);
391        PBQP::Graph::EdgeItr edge = g.findEdge(node1, node2);
392        if (edge == g.edgesEnd()) {
393          edge = g.addEdge(node1, node2, PBQP::Matrix(allowed1->size() + 1,
394                                                      allowed2->size() + 1,
395                                                      0));
396        } else {
397          if (g.getEdgeNode1(edge) == node2) {
398            std::swap(node1, node2);
399            std::swap(allowed1, allowed2);
400          }
401        }
402
403        addVirtRegCoalesce(g.getEdgeCosts(edge), *allowed1, *allowed2,
404                           cBenefit);
405      }
406    }
407  }
408
409  return p;
410}
411
412void PBQPBuilderWithCoalescing::addPhysRegCoalesce(PBQP::Vector &costVec,
413                                                   unsigned pregOption,
414                                                   PBQP::PBQPNum benefit) {
415  costVec[pregOption] += -benefit;
416}
417
418void PBQPBuilderWithCoalescing::addVirtRegCoalesce(
419                                    PBQP::Matrix &costMat,
420                                    const PBQPRAProblem::AllowedSet &vr1Allowed,
421                                    const PBQPRAProblem::AllowedSet &vr2Allowed,
422                                    PBQP::PBQPNum benefit) {
423
424  assert(costMat.getRows() == vr1Allowed.size() + 1 && "Size mismatch.");
425  assert(costMat.getCols() == vr2Allowed.size() + 1 && "Size mismatch.");
426
427  for (unsigned i = 0; i != vr1Allowed.size(); ++i) {
428    unsigned preg1 = vr1Allowed[i];
429    for (unsigned j = 0; j != vr2Allowed.size(); ++j) {
430      unsigned preg2 = vr2Allowed[j];
431
432      if (preg1 == preg2) {
433        costMat[i + 1][j + 1] += -benefit;
434      }
435    }
436  }
437}
438
439
440void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
441  au.setPreservesCFG();
442  au.addRequired<AliasAnalysis>();
443  au.addPreserved<AliasAnalysis>();
444  au.addRequired<SlotIndexes>();
445  au.addPreserved<SlotIndexes>();
446  au.addRequired<LiveIntervals>();
447  //au.addRequiredID(SplitCriticalEdgesID);
448  if (customPassID)
449    au.addRequiredID(*customPassID);
450  au.addRequired<CalculateSpillWeights>();
451  au.addRequired<LiveStacks>();
452  au.addPreserved<LiveStacks>();
453  au.addRequired<MachineDominatorTree>();
454  au.addPreserved<MachineDominatorTree>();
455  au.addRequired<MachineLoopInfo>();
456  au.addPreserved<MachineLoopInfo>();
457  au.addRequired<VirtRegMap>();
458  au.addRequired<RenderMachineFunction>();
459  MachineFunctionPass::getAnalysisUsage(au);
460}
461
462void RegAllocPBQP::findVRegIntervalsToAlloc() {
463
464  // Iterate over all live ranges.
465  for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
466       itr != end; ++itr) {
467
468    // Ignore physical ones.
469    if (TargetRegisterInfo::isPhysicalRegister(itr->first))
470      continue;
471
472    LiveInterval *li = itr->second;
473
474    // If this live interval is non-empty we will use pbqp to allocate it.
475    // Empty intervals we allocate in a simple post-processing stage in
476    // finalizeAlloc.
477    if (!li->empty()) {
478      vregsToAlloc.insert(li->reg);
479    } else {
480      emptyIntervalVRegs.insert(li->reg);
481    }
482  }
483}
484
485bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem,
486                                     const PBQP::Solution &solution) {
487  // Set to true if we have any spills
488  bool anotherRoundNeeded = false;
489
490  // Clear the existing allocation.
491  vrm->clearAllVirt();
492
493  const PBQP::Graph &g = problem.getGraph();
494  // Iterate over the nodes mapping the PBQP solution to a register
495  // assignment.
496  for (PBQP::Graph::ConstNodeItr node = g.nodesBegin(),
497                                 nodeEnd = g.nodesEnd();
498       node != nodeEnd; ++node) {
499    unsigned vreg = problem.getVRegForNode(node);
500    unsigned alloc = solution.getSelection(node);
501
502    if (problem.isPRegOption(vreg, alloc)) {
503      unsigned preg = problem.getPRegForOption(vreg, alloc);
504      DEBUG(dbgs() << "VREG " << vreg << " -> " << tri->getName(preg) << "\n");
505      assert(preg != 0 && "Invalid preg selected.");
506      vrm->assignVirt2Phys(vreg, preg);
507    } else if (problem.isSpillOption(vreg, alloc)) {
508      vregsToAlloc.erase(vreg);
509      SmallVector<LiveInterval*, 8> newSpills;
510      LiveRangeEdit LRE(lis->getInterval(vreg), newSpills);
511      spiller->spill(LRE);
512
513      DEBUG(dbgs() << "VREG " << vreg << " -> SPILLED (Cost: "
514                   << LRE.getParent().weight << ", New vregs: ");
515
516      // Copy any newly inserted live intervals into the list of regs to
517      // allocate.
518      for (LiveRangeEdit::iterator itr = LRE.begin(), end = LRE.end();
519           itr != end; ++itr) {
520        assert(!(*itr)->empty() && "Empty spill range.");
521        DEBUG(dbgs() << (*itr)->reg << " ");
522        vregsToAlloc.insert((*itr)->reg);
523      }
524
525      DEBUG(dbgs() << ")\n");
526
527      // We need another round if spill intervals were added.
528      anotherRoundNeeded |= !LRE.empty();
529    } else {
530      llvm_unreachable("Unknown allocation option.");
531    }
532  }
533
534  return !anotherRoundNeeded;
535}
536
537
538void RegAllocPBQP::finalizeAlloc() const {
539  typedef LiveIntervals::iterator LIIterator;
540  typedef LiveInterval::Ranges::const_iterator LRIterator;
541
542  // First allocate registers for the empty intervals.
543  for (RegSet::const_iterator
544         itr = emptyIntervalVRegs.begin(), end = emptyIntervalVRegs.end();
545         itr != end; ++itr) {
546    LiveInterval *li = &lis->getInterval(*itr);
547
548    unsigned physReg = vrm->getRegAllocPref(li->reg);
549
550    if (physReg == 0) {
551      const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
552      physReg = liRC->getRawAllocationOrder(*mf).front();
553    }
554
555    vrm->assignVirt2Phys(li->reg, physReg);
556  }
557
558  // Finally iterate over the basic blocks to compute and set the live-in sets.
559  SmallVector<MachineBasicBlock*, 8> liveInMBBs;
560  MachineBasicBlock *entryMBB = &*mf->begin();
561
562  for (LIIterator liItr = lis->begin(), liEnd = lis->end();
563       liItr != liEnd; ++liItr) {
564
565    const LiveInterval *li = liItr->second;
566    unsigned reg = 0;
567
568    // Get the physical register for this interval
569    if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
570      reg = li->reg;
571    } else if (vrm->isAssignedReg(li->reg)) {
572      reg = vrm->getPhys(li->reg);
573    } else {
574      // Ranges which are assigned a stack slot only are ignored.
575      continue;
576    }
577
578    if (reg == 0) {
579      // Filter out zero regs - they're for intervals that were spilled.
580      continue;
581    }
582
583    // Iterate over the ranges of the current interval...
584    for (LRIterator lrItr = li->begin(), lrEnd = li->end();
585         lrItr != lrEnd; ++lrItr) {
586
587      // Find the set of basic blocks which this range is live into...
588      if (lis->findLiveInMBBs(lrItr->start, lrItr->end,  liveInMBBs)) {
589        // And add the physreg for this interval to their live-in sets.
590        for (unsigned i = 0; i != liveInMBBs.size(); ++i) {
591          if (liveInMBBs[i] != entryMBB) {
592            if (!liveInMBBs[i]->isLiveIn(reg)) {
593              liveInMBBs[i]->addLiveIn(reg);
594            }
595          }
596        }
597        liveInMBBs.clear();
598      }
599    }
600  }
601
602}
603
604bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
605
606  mf = &MF;
607  tm = &mf->getTarget();
608  tri = tm->getRegisterInfo();
609  tii = tm->getInstrInfo();
610  mri = &mf->getRegInfo();
611
612  lis = &getAnalysis<LiveIntervals>();
613  lss = &getAnalysis<LiveStacks>();
614  loopInfo = &getAnalysis<MachineLoopInfo>();
615  rmf = &getAnalysis<RenderMachineFunction>();
616
617  vrm = &getAnalysis<VirtRegMap>();
618  spiller.reset(createInlineSpiller(*this, MF, *vrm));
619
620  mri->freezeReservedRegs(MF);
621
622  DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n");
623
624  // Allocator main loop:
625  //
626  // * Map current regalloc problem to a PBQP problem
627  // * Solve the PBQP problem
628  // * Map the solution back to a register allocation
629  // * Spill if necessary
630  //
631  // This process is continued till no more spills are generated.
632
633  // Find the vreg intervals in need of allocation.
634  findVRegIntervalsToAlloc();
635
636  // If there are non-empty intervals allocate them using pbqp.
637  if (!vregsToAlloc.empty()) {
638
639    bool pbqpAllocComplete = false;
640    unsigned round = 0;
641
642    while (!pbqpAllocComplete) {
643      DEBUG(dbgs() << "  PBQP Regalloc round " << round << ":\n");
644
645      std::auto_ptr<PBQPRAProblem> problem =
646        builder->build(mf, lis, loopInfo, vregsToAlloc);
647      PBQP::Solution solution =
648        PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(
649          problem->getGraph());
650
651      pbqpAllocComplete = mapPBQPToRegAlloc(*problem, solution);
652
653      ++round;
654    }
655  }
656
657  // Finalise allocation, allocate empty ranges.
658  finalizeAlloc();
659
660  rmf->renderMachineFunction("After PBQP register allocation.", vrm);
661
662  vregsToAlloc.clear();
663  emptyIntervalVRegs.clear();
664
665  DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
666
667  // Run rewriter
668  vrm->rewrite(lis->getSlotIndexes());
669
670  return true;
671}
672
673FunctionPass* llvm::createPBQPRegisterAllocator(
674                                           std::auto_ptr<PBQPBuilder> builder,
675                                           char *customPassID) {
676  return new RegAllocPBQP(builder, customPassID);
677}
678
679FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
680  if (pbqpCoalescing) {
681    return createPBQPRegisterAllocator(
682             std::auto_ptr<PBQPBuilder>(new PBQPBuilderWithCoalescing()));
683  } // else
684  return createPBQPRegisterAllocator(
685           std::auto_ptr<PBQPBuilder>(new PBQPBuilder()));
686}
687
688#undef DEBUG_TYPE
689