RegAllocPBQP.cpp revision 997816499cbf966a1b574b1d34c2c13de4b91b12
1//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11// register allocator for LLVM. This allocator works by constructing a PBQP
12// problem representing the register allocation problem under consideration,
13// solving this using a PBQP solver, and mapping the solution back to a
14// register assignment. If any variables are selected for spilling then spill
15// code is inserted and the process repeated.
16//
17// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18// for register allocation. For more information on PBQP for register
19// allocation, see the following papers:
20//
21//   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22//   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23//   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24//
25//   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26//   architectures. In Proceedings of the Joint Conference on Languages,
27//   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28//   NY, USA, 139-148.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "regalloc"
33
34#include "PBQP/HeuristicSolver.h"
35#include "PBQP/SimpleGraph.h"
36#include "PBQP/Heuristics/Briggs.h"
37#include "VirtRegMap.h"
38#include "VirtRegRewriter.h"
39#include "llvm/CodeGen/CalcSpillWeights.h"
40#include "llvm/CodeGen/LiveIntervalAnalysis.h"
41#include "llvm/CodeGen/LiveStackAnalysis.h"
42#include "llvm/CodeGen/MachineFunctionPass.h"
43#include "llvm/CodeGen/MachineLoopInfo.h"
44#include "llvm/CodeGen/MachineRegisterInfo.h"
45#include "llvm/CodeGen/RegAllocRegistry.h"
46#include "llvm/CodeGen/RegisterCoalescer.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetMachine.h"
51#include <limits>
52#include <map>
53#include <memory>
54#include <set>
55#include <vector>
56
57using namespace llvm;
58
59static RegisterRegAlloc
60registerPBQPRepAlloc("pbqp", "PBQP register allocator.",
61                      llvm::createPBQPRegisterAllocator);
62
63static cl::opt<bool>
64pbqpCoalescing("pbqp-coalescing",
65               cl::desc("Attempt coalescing during PBQP register allocation."),
66               cl::init(false), cl::Hidden);
67
68namespace {
69
70  ///
71  /// PBQP based allocators solve the register allocation problem by mapping
72  /// register allocation problems to Partitioned Boolean Quadratic
73  /// Programming problems.
74  class PBQPRegAlloc : public MachineFunctionPass {
75  public:
76
77    static char ID;
78
79    /// Construct a PBQP register allocator.
80    PBQPRegAlloc() : MachineFunctionPass(&ID) {}
81
82    /// Return the pass name.
83    virtual const char* getPassName() const {
84      return "PBQP Register Allocator";
85    }
86
87    /// PBQP analysis usage.
88    virtual void getAnalysisUsage(AnalysisUsage &au) const {
89      au.addRequired<SlotIndexes>();
90      au.addPreserved<SlotIndexes>();
91      au.addRequired<LiveIntervals>();
92      //au.addRequiredID(SplitCriticalEdgesID);
93      au.addRequired<RegisterCoalescer>();
94      au.addRequired<CalculateSpillWeights>();
95      au.addRequired<LiveStacks>();
96      au.addPreserved<LiveStacks>();
97      au.addRequired<MachineLoopInfo>();
98      au.addPreserved<MachineLoopInfo>();
99      au.addRequired<VirtRegMap>();
100      MachineFunctionPass::getAnalysisUsage(au);
101    }
102
103    /// Perform register allocation
104    virtual bool runOnMachineFunction(MachineFunction &MF);
105
106  private:
107    typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
108    typedef std::vector<const LiveInterval*> Node2LIMap;
109    typedef std::vector<unsigned> AllowedSet;
110    typedef std::vector<AllowedSet> AllowedSetMap;
111    typedef std::set<unsigned> RegSet;
112    typedef std::pair<unsigned, unsigned> RegPair;
113    typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
114
115    typedef std::set<LiveInterval*> LiveIntervalSet;
116
117    MachineFunction *mf;
118    const TargetMachine *tm;
119    const TargetRegisterInfo *tri;
120    const TargetInstrInfo *tii;
121    const MachineLoopInfo *loopInfo;
122    MachineRegisterInfo *mri;
123
124    LiveIntervals *lis;
125    LiveStacks *lss;
126    VirtRegMap *vrm;
127
128    LI2NodeMap li2Node;
129    Node2LIMap node2LI;
130    AllowedSetMap allowedSets;
131    LiveIntervalSet vregIntervalsToAlloc,
132                    emptyVRegIntervals;
133
134
135    /// Builds a PBQP cost vector.
136    template <typename RegContainer>
137    PBQP::Vector buildCostVector(unsigned vReg,
138                                 const RegContainer &allowed,
139                                 const CoalesceMap &cealesces,
140                                 PBQP::PBQPNum spillCost) const;
141
142    /// \brief Builds a PBQP interference matrix.
143    ///
144    /// @return Either a pointer to a non-zero PBQP matrix representing the
145    ///         allocation option costs, or a null pointer for a zero matrix.
146    ///
147    /// Expects allowed sets for two interfering LiveIntervals. These allowed
148    /// sets should contain only allocable registers from the LiveInterval's
149    /// register class, with any interfering pre-colored registers removed.
150    template <typename RegContainer>
151    PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
152                                          const RegContainer &allowed2) const;
153
154    ///
155    /// Expects allowed sets for two potentially coalescable LiveIntervals,
156    /// and an estimated benefit due to coalescing. The allowed sets should
157    /// contain only allocable registers from the LiveInterval's register
158    /// classes, with any interfering pre-colored registers removed.
159    template <typename RegContainer>
160    PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
161                                        const RegContainer &allowed2,
162                                        PBQP::PBQPNum cBenefit) const;
163
164    /// \brief Finds coalescing opportunities and returns them as a map.
165    ///
166    /// Any entries in the map are guaranteed coalescable, even if their
167    /// corresponding live intervals overlap.
168    CoalesceMap findCoalesces();
169
170    /// \brief Finds the initial set of vreg intervals to allocate.
171    void findVRegIntervalsToAlloc();
172
173    /// \brief Constructs a PBQP problem representation of the register
174    /// allocation problem for this function.
175    ///
176    /// @return a PBQP solver object for the register allocation problem.
177    PBQP::SimpleGraph constructPBQPProblem();
178
179    /// \brief Adds a stack interval if the given live interval has been
180    /// spilled. Used to support stack slot coloring.
181    void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
182
183    /// \brief Given a solved PBQP problem maps this solution back to a register
184    /// assignment.
185    bool mapPBQPToRegAlloc(const PBQP::Solution &solution);
186
187    /// \brief Postprocessing before final spilling. Sets basic block "live in"
188    /// variables.
189    void finalizeAlloc() const;
190
191  };
192
193  char PBQPRegAlloc::ID = 0;
194}
195
196
197template <typename RegContainer>
198PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
199                                           const RegContainer &allowed,
200                                           const CoalesceMap &coalesces,
201                                           PBQP::PBQPNum spillCost) const {
202
203  typedef typename RegContainer::const_iterator AllowedItr;
204
205  // Allocate vector. Additional element (0th) used for spill option
206  PBQP::Vector v(allowed.size() + 1, 0);
207
208  v[0] = spillCost;
209
210  // Iterate over the allowed registers inserting coalesce benefits if there
211  // are any.
212  unsigned ai = 0;
213  for (AllowedItr itr = allowed.begin(), end = allowed.end();
214       itr != end; ++itr, ++ai) {
215
216    unsigned pReg = *itr;
217
218    CoalesceMap::const_iterator cmItr =
219      coalesces.find(RegPair(vReg, pReg));
220
221    // No coalesce - on to the next preg.
222    if (cmItr == coalesces.end())
223      continue;
224
225    // We have a coalesce - insert the benefit.
226    v[ai + 1] = -cmItr->second;
227  }
228
229  return v;
230}
231
232template <typename RegContainer>
233PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
234      const RegContainer &allowed1, const RegContainer &allowed2) const {
235
236  typedef typename RegContainer::const_iterator RegContainerIterator;
237
238  // Construct a PBQP matrix representing the cost of allocation options. The
239  // rows and columns correspond to the allocation options for the two live
240  // intervals.  Elements will be infinite where corresponding registers alias,
241  // since we cannot allocate aliasing registers to interfering live intervals.
242  // All other elements (non-aliasing combinations) will have zero cost. Note
243  // that the spill option (element 0,0) has zero cost, since we can allocate
244  // both intervals to memory safely (the cost for each individual allocation
245  // to memory is accounted for by the cost vectors for each live interval).
246  PBQP::Matrix *m =
247    new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
248
249  // Assume this is a zero matrix until proven otherwise.  Zero matrices occur
250  // between interfering live ranges with non-overlapping register sets (e.g.
251  // non-overlapping reg classes, or disjoint sets of allowed regs within the
252  // same class). The term "overlapping" is used advisedly: sets which do not
253  // intersect, but contain registers which alias, will have non-zero matrices.
254  // We optimize zero matrices away to improve solver speed.
255  bool isZeroMatrix = true;
256
257
258  // Row index. Starts at 1, since the 0th row is for the spill option, which
259  // is always zero.
260  unsigned ri = 1;
261
262  // Iterate over allowed sets, insert infinities where required.
263  for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
264       a1Itr != a1End; ++a1Itr) {
265
266    // Column index, starts at 1 as for row index.
267    unsigned ci = 1;
268    unsigned reg1 = *a1Itr;
269
270    for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
271         a2Itr != a2End; ++a2Itr) {
272
273      unsigned reg2 = *a2Itr;
274
275      // If the row/column regs are identical or alias insert an infinity.
276      if (tri->regsOverlap(reg1, reg2)) {
277        (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
278        isZeroMatrix = false;
279      }
280
281      ++ci;
282    }
283
284    ++ri;
285  }
286
287  // If this turns out to be a zero matrix...
288  if (isZeroMatrix) {
289    // free it and return null.
290    delete m;
291    return 0;
292  }
293
294  // ...otherwise return the cost matrix.
295  return m;
296}
297
298template <typename RegContainer>
299PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
300      const RegContainer &allowed1, const RegContainer &allowed2,
301      PBQP::PBQPNum cBenefit) const {
302
303  typedef typename RegContainer::const_iterator RegContainerIterator;
304
305  // Construct a PBQP Matrix representing the benefits of coalescing. As with
306  // interference matrices the rows and columns represent allowed registers
307  // for the LiveIntervals which are (potentially) to be coalesced. The amount
308  // -cBenefit will be placed in any element representing the same register
309  // for both intervals.
310  PBQP::Matrix *m =
311    new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
312
313  // Reset costs to zero.
314  m->reset(0);
315
316  // Assume the matrix is zero till proven otherwise. Zero matrices will be
317  // optimized away as in the interference case.
318  bool isZeroMatrix = true;
319
320  // Row index. Starts at 1, since the 0th row is for the spill option, which
321  // is always zero.
322  unsigned ri = 1;
323
324  // Iterate over the allowed sets, insert coalescing benefits where
325  // appropriate.
326  for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
327       a1Itr != a1End; ++a1Itr) {
328
329    // Column index, starts at 1 as for row index.
330    unsigned ci = 1;
331    unsigned reg1 = *a1Itr;
332
333    for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
334         a2Itr != a2End; ++a2Itr) {
335
336      // If the row and column represent the same register insert a beneficial
337      // cost to preference this allocation - it would allow us to eliminate a
338      // move instruction.
339      if (reg1 == *a2Itr) {
340        (*m)[ri][ci] = -cBenefit;
341        isZeroMatrix = false;
342      }
343
344      ++ci;
345    }
346
347    ++ri;
348  }
349
350  // If this turns out to be a zero matrix...
351  if (isZeroMatrix) {
352    // ...free it and return null.
353    delete m;
354    return 0;
355  }
356
357  return m;
358}
359
360PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
361
362  typedef MachineFunction::const_iterator MFIterator;
363  typedef MachineBasicBlock::const_iterator MBBIterator;
364  typedef LiveInterval::const_vni_iterator VNIIterator;
365
366  CoalesceMap coalescesFound;
367
368  // To find coalesces we need to iterate over the function looking for
369  // copy instructions.
370  for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
371       bbItr != bbEnd; ++bbItr) {
372
373    const MachineBasicBlock *mbb = &*bbItr;
374
375    for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
376         iItr != iEnd; ++iItr) {
377
378      const MachineInstr *instr = &*iItr;
379      unsigned srcReg, dstReg, srcSubReg, dstSubReg;
380
381      // If this isn't a copy then continue to the next instruction.
382      if (!tii->isMoveInstr(*instr, srcReg, dstReg, srcSubReg, dstSubReg))
383        continue;
384
385      // If the registers are already the same our job is nice and easy.
386      if (dstReg == srcReg)
387        continue;
388
389      bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
390           dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
391
392      // If both registers are physical then we can't coalesce.
393      if (srcRegIsPhysical && dstRegIsPhysical)
394        continue;
395
396      // If it's a copy that includes a virtual register but the source and
397      // destination classes differ then we can't coalesce, so continue with
398      // the next instruction.
399      const TargetRegisterClass *srcRegClass = srcRegIsPhysical ?
400          tri->getPhysicalRegisterRegClass(srcReg) : mri->getRegClass(srcReg);
401
402      const TargetRegisterClass *dstRegClass = dstRegIsPhysical ?
403          tri->getPhysicalRegisterRegClass(dstReg) : mri->getRegClass(dstReg);
404
405      if (srcRegClass != dstRegClass)
406        continue;
407
408      // We also need any physical regs to be allocable, coalescing with
409      // a non-allocable register is invalid.
410      if (srcRegIsPhysical) {
411        if (std::find(srcRegClass->allocation_order_begin(*mf),
412                      srcRegClass->allocation_order_end(*mf), srcReg) ==
413            srcRegClass->allocation_order_end(*mf))
414          continue;
415      }
416
417      if (dstRegIsPhysical) {
418        if (std::find(dstRegClass->allocation_order_begin(*mf),
419                      dstRegClass->allocation_order_end(*mf), dstReg) ==
420            dstRegClass->allocation_order_end(*mf))
421          continue;
422      }
423
424      // If we've made it here we have a copy with compatible register classes.
425      // We can probably coalesce, but we need to consider overlap.
426      const LiveInterval *srcLI = &lis->getInterval(srcReg),
427                         *dstLI = &lis->getInterval(dstReg);
428
429      if (srcLI->overlaps(*dstLI)) {
430        // Even in the case of an overlap we might still be able to coalesce,
431        // but we need to make sure that no definition of either range occurs
432        // while the other range is live.
433
434        // Otherwise start by assuming we're ok.
435        bool badDef = false;
436
437        // Test all defs of the source range.
438        for (VNIIterator
439               vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
440               vniItr != vniEnd; ++vniItr) {
441
442          // If we find a def that kills the coalescing opportunity then
443          // record it and break from the loop.
444          if (dstLI->liveAt((*vniItr)->def)) {
445            badDef = true;
446            break;
447          }
448        }
449
450        // If we have a bad def give up, continue to the next instruction.
451        if (badDef)
452          continue;
453
454        // Otherwise test definitions of the destination range.
455        for (VNIIterator
456               vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
457               vniItr != vniEnd; ++vniItr) {
458
459          // We want to make sure we skip the copy instruction itself.
460          if ((*vniItr)->getCopy() == instr)
461            continue;
462
463          if (srcLI->liveAt((*vniItr)->def)) {
464            badDef = true;
465            break;
466          }
467        }
468
469        // As before a bad def we give up and continue to the next instr.
470        if (badDef)
471          continue;
472      }
473
474      // If we make it to here then either the ranges didn't overlap, or they
475      // did, but none of their definitions would prevent us from coalescing.
476      // We're good to go with the coalesce.
477
478      float cBenefit = powf(10.0f, loopInfo->getLoopDepth(mbb)) / 5.0;
479
480      coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
481      coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
482    }
483
484  }
485
486  return coalescesFound;
487}
488
489void PBQPRegAlloc::findVRegIntervalsToAlloc() {
490
491  // Iterate over all live ranges.
492  for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
493       itr != end; ++itr) {
494
495    // Ignore physical ones.
496    if (TargetRegisterInfo::isPhysicalRegister(itr->first))
497      continue;
498
499    LiveInterval *li = itr->second;
500
501    // If this live interval is non-empty we will use pbqp to allocate it.
502    // Empty intervals we allocate in a simple post-processing stage in
503    // finalizeAlloc.
504    if (!li->empty()) {
505      vregIntervalsToAlloc.insert(li);
506    }
507    else {
508      emptyVRegIntervals.insert(li);
509    }
510  }
511}
512
513PBQP::SimpleGraph PBQPRegAlloc::constructPBQPProblem() {
514
515  typedef std::vector<const LiveInterval*> LIVector;
516  typedef std::vector<unsigned> RegVector;
517  typedef std::vector<PBQP::SimpleGraph::NodeIterator> NodeVector;
518
519  // This will store the physical intervals for easy reference.
520  LIVector physIntervals;
521
522  // Start by clearing the old node <-> live interval mappings & allowed sets
523  li2Node.clear();
524  node2LI.clear();
525  allowedSets.clear();
526
527  // Populate physIntervals, update preg use:
528  for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
529       itr != end; ++itr) {
530
531    if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
532      physIntervals.push_back(itr->second);
533      mri->setPhysRegUsed(itr->second->reg);
534    }
535  }
536
537  // Iterate over vreg intervals, construct live interval <-> node number
538  //  mappings.
539  for (LiveIntervalSet::const_iterator
540       itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
541       itr != end; ++itr) {
542    const LiveInterval *li = *itr;
543
544    li2Node[li] = node2LI.size();
545    node2LI.push_back(li);
546  }
547
548  // Get the set of potential coalesces.
549  CoalesceMap coalesces;
550
551  if (pbqpCoalescing) {
552    coalesces = findCoalesces();
553  }
554
555  // Construct a PBQP solver for this problem
556  PBQP::SimpleGraph problem;
557  NodeVector problemNodes(vregIntervalsToAlloc.size());
558
559  // Resize allowedSets container appropriately.
560  allowedSets.resize(vregIntervalsToAlloc.size());
561
562  // Iterate over virtual register intervals to compute allowed sets...
563  for (unsigned node = 0; node < node2LI.size(); ++node) {
564
565    // Grab pointers to the interval and its register class.
566    const LiveInterval *li = node2LI[node];
567    const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
568
569    // Start by assuming all allocable registers in the class are allowed...
570    RegVector liAllowed(liRC->allocation_order_begin(*mf),
571                        liRC->allocation_order_end(*mf));
572
573    // Eliminate the physical registers which overlap with this range, along
574    // with all their aliases.
575    for (LIVector::iterator pItr = physIntervals.begin(),
576       pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
577
578      if (!li->overlaps(**pItr))
579        continue;
580
581      unsigned pReg = (*pItr)->reg;
582
583      // If we get here then the live intervals overlap, but we're still ok
584      // if they're coalescable.
585      if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
586        continue;
587
588      // If we get here then we have a genuine exclusion.
589
590      // Remove the overlapping reg...
591      RegVector::iterator eraseItr =
592        std::find(liAllowed.begin(), liAllowed.end(), pReg);
593
594      if (eraseItr != liAllowed.end())
595        liAllowed.erase(eraseItr);
596
597      const unsigned *aliasItr = tri->getAliasSet(pReg);
598
599      if (aliasItr != 0) {
600        // ...and its aliases.
601        for (; *aliasItr != 0; ++aliasItr) {
602          RegVector::iterator eraseItr =
603            std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
604
605          if (eraseItr != liAllowed.end()) {
606            liAllowed.erase(eraseItr);
607          }
608        }
609      }
610    }
611
612    // Copy the allowed set into a member vector for use when constructing cost
613    // vectors & matrices, and mapping PBQP solutions back to assignments.
614    allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
615
616    // Set the spill cost to the interval weight, or epsilon if the
617    // interval weight is zero
618    PBQP::PBQPNum spillCost = (li->weight != 0.0) ?
619        li->weight : std::numeric_limits<PBQP::PBQPNum>::min();
620
621    // Build a cost vector for this interval.
622    problemNodes[node] =
623      problem.addNode(
624        buildCostVector(li->reg, allowedSets[node], coalesces, spillCost));
625
626  }
627
628
629  // Now add the cost matrices...
630  for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
631    const LiveInterval *li = node2LI[node1];
632
633    // Test for live range overlaps and insert interference matrices.
634    for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
635      const LiveInterval *li2 = node2LI[node2];
636
637      CoalesceMap::const_iterator cmItr =
638        coalesces.find(RegPair(li->reg, li2->reg));
639
640      PBQP::Matrix *m = 0;
641
642      if (cmItr != coalesces.end()) {
643        m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
644                                  cmItr->second);
645      }
646      else if (li->overlaps(*li2)) {
647        m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
648      }
649
650      if (m != 0) {
651        problem.addEdge(problemNodes[node1],
652                        problemNodes[node2],
653                        *m);
654
655        delete m;
656      }
657    }
658  }
659
660  problem.assignNodeIDs();
661
662  assert(problem.getNumNodes() == allowedSets.size());
663  for (unsigned i = 0; i < allowedSets.size(); ++i) {
664    assert(problem.getNodeItr(i) == problemNodes[i]);
665  }
666/*
667  std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
668            << problem.getNumEdges() << " edges.\n";
669
670  problem.printDot(std::cerr);
671*/
672  // We're done, PBQP problem constructed - return it.
673  return problem;
674}
675
676void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
677                                    MachineRegisterInfo* mri) {
678  int stackSlot = vrm->getStackSlot(spilled->reg);
679
680  if (stackSlot == VirtRegMap::NO_STACK_SLOT)
681    return;
682
683  const TargetRegisterClass *RC = mri->getRegClass(spilled->reg);
684  LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot, RC);
685
686  VNInfo *vni;
687  if (stackInterval.getNumValNums() != 0)
688    vni = stackInterval.getValNumInfo(0);
689  else
690    vni = stackInterval.getNextValue(
691      SlotIndex(), 0, false, lss->getVNInfoAllocator());
692
693  LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
694  stackInterval.MergeRangesInAsValue(rhsInterval, vni);
695}
696
697bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
698
699  // Assert that this is a valid solution to the regalloc problem.
700  assert(solution.getCost() != std::numeric_limits<PBQP::PBQPNum>::infinity() &&
701         "Invalid (infinite cost) solution for PBQP problem.");
702
703  // Set to true if we have any spills
704  bool anotherRoundNeeded = false;
705
706  // Clear the existing allocation.
707  vrm->clearAllVirt();
708
709  // Iterate over the nodes mapping the PBQP solution to a register assignment.
710  for (unsigned node = 0; node < node2LI.size(); ++node) {
711    unsigned virtReg = node2LI[node]->reg,
712             allocSelection = solution.getSelection(node);
713
714
715    // If the PBQP solution is non-zero it's a physical register...
716    if (allocSelection != 0) {
717      // Get the physical reg, subtracting 1 to account for the spill option.
718      unsigned physReg = allowedSets[node][allocSelection - 1];
719
720      DEBUG(dbgs() << "VREG " << virtReg << " -> "
721                   << tri->getName(physReg) << "\n");
722
723      assert(physReg != 0);
724
725      // Add to the virt reg map and update the used phys regs.
726      vrm->assignVirt2Phys(virtReg, physReg);
727    }
728    // ...Otherwise it's a spill.
729    else {
730
731      // Make sure we ignore this virtual reg on the next round
732      // of allocation
733      vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
734
735      // Insert spill ranges for this live range
736      const LiveInterval *spillInterval = node2LI[node];
737      double oldSpillWeight = spillInterval->weight;
738      SmallVector<LiveInterval*, 8> spillIs;
739      std::vector<LiveInterval*> newSpills =
740        lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm);
741      addStackInterval(spillInterval, mri);
742
743      (void) oldSpillWeight;
744      DEBUG(dbgs() << "VREG " << virtReg << " -> SPILLED (Cost: "
745                   << oldSpillWeight << ", New vregs: ");
746
747      // Copy any newly inserted live intervals into the list of regs to
748      // allocate.
749      for (std::vector<LiveInterval*>::const_iterator
750           itr = newSpills.begin(), end = newSpills.end();
751           itr != end; ++itr) {
752
753        assert(!(*itr)->empty() && "Empty spill range.");
754
755        DEBUG(dbgs() << (*itr)->reg << " ");
756
757        vregIntervalsToAlloc.insert(*itr);
758      }
759
760      DEBUG(dbgs() << ")\n");
761
762      // We need another round if spill intervals were added.
763      anotherRoundNeeded |= !newSpills.empty();
764    }
765  }
766
767  return !anotherRoundNeeded;
768}
769
770void PBQPRegAlloc::finalizeAlloc() const {
771  typedef LiveIntervals::iterator LIIterator;
772  typedef LiveInterval::Ranges::const_iterator LRIterator;
773
774  // First allocate registers for the empty intervals.
775  for (LiveIntervalSet::const_iterator
776         itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
777         itr != end; ++itr) {
778    LiveInterval *li = *itr;
779
780    unsigned physReg = vrm->getRegAllocPref(li->reg);
781
782    if (physReg == 0) {
783      const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
784      physReg = *liRC->allocation_order_begin(*mf);
785    }
786
787    vrm->assignVirt2Phys(li->reg, physReg);
788  }
789
790  // Finally iterate over the basic blocks to compute and set the live-in sets.
791  SmallVector<MachineBasicBlock*, 8> liveInMBBs;
792  MachineBasicBlock *entryMBB = &*mf->begin();
793
794  for (LIIterator liItr = lis->begin(), liEnd = lis->end();
795       liItr != liEnd; ++liItr) {
796
797    const LiveInterval *li = liItr->second;
798    unsigned reg = 0;
799
800    // Get the physical register for this interval
801    if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
802      reg = li->reg;
803    }
804    else if (vrm->isAssignedReg(li->reg)) {
805      reg = vrm->getPhys(li->reg);
806    }
807    else {
808      // Ranges which are assigned a stack slot only are ignored.
809      continue;
810    }
811
812    if (reg == 0) {
813      // Filter out zero regs - they're for intervals that were spilled.
814      continue;
815    }
816
817    // Iterate over the ranges of the current interval...
818    for (LRIterator lrItr = li->begin(), lrEnd = li->end();
819         lrItr != lrEnd; ++lrItr) {
820
821      // Find the set of basic blocks which this range is live into...
822      if (lis->findLiveInMBBs(lrItr->start, lrItr->end,  liveInMBBs)) {
823        // And add the physreg for this interval to their live-in sets.
824        for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
825          if (liveInMBBs[i] != entryMBB) {
826            if (!liveInMBBs[i]->isLiveIn(reg)) {
827              liveInMBBs[i]->addLiveIn(reg);
828            }
829          }
830        }
831        liveInMBBs.clear();
832      }
833    }
834  }
835
836}
837
838bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
839
840  mf = &MF;
841  tm = &mf->getTarget();
842  tri = tm->getRegisterInfo();
843  tii = tm->getInstrInfo();
844  mri = &mf->getRegInfo();
845
846  lis = &getAnalysis<LiveIntervals>();
847  lss = &getAnalysis<LiveStacks>();
848  loopInfo = &getAnalysis<MachineLoopInfo>();
849
850  vrm = &getAnalysis<VirtRegMap>();
851
852  DEBUG(dbgs() << "PBQP2 Register Allocating for " << mf->getFunction()->getName() << "\n");
853
854  // Allocator main loop:
855  //
856  // * Map current regalloc problem to a PBQP problem
857  // * Solve the PBQP problem
858  // * Map the solution back to a register allocation
859  // * Spill if necessary
860  //
861  // This process is continued till no more spills are generated.
862
863  // Find the vreg intervals in need of allocation.
864  findVRegIntervalsToAlloc();
865
866  // If there aren't any then we're done here.
867  if (vregIntervalsToAlloc.empty() && emptyVRegIntervals.empty())
868    return true;
869
870  // If there are non-empty intervals allocate them using pbqp.
871  if (!vregIntervalsToAlloc.empty()) {
872
873    bool pbqpAllocComplete = false;
874    unsigned round = 0;
875
876    while (!pbqpAllocComplete) {
877      DEBUG(dbgs() << "  PBQP Regalloc round " << round << ":\n");
878
879      PBQP::SimpleGraph problem = constructPBQPProblem();
880      PBQP::HeuristicSolver<PBQP::Heuristics::Briggs> solver;
881      problem.assignNodeIDs();
882      PBQP::Solution solution = solver.solve(problem);
883
884      pbqpAllocComplete = mapPBQPToRegAlloc(solution);
885
886      ++round;
887    }
888  }
889
890  // Finalise allocation, allocate empty ranges.
891  finalizeAlloc();
892
893  vregIntervalsToAlloc.clear();
894  emptyVRegIntervals.clear();
895  li2Node.clear();
896  node2LI.clear();
897  allowedSets.clear();
898
899  DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
900
901  // Run rewriter
902  std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
903
904  rewriter->runOnMachineFunction(*mf, *vrm, lis);
905
906  return true;
907}
908
909FunctionPass* llvm::createPBQPRegisterAllocator() {
910  return new PBQPRegAlloc();
911}
912
913
914#undef DEBUG_TYPE
915