RegAllocPBQP.cpp revision 9ccaf53ada99c63737547c0235baeb8454b04e80
1//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11// register allocator for LLVM. This allocator works by constructing a PBQP
12// problem representing the register allocation problem under consideration,
13// solving this using a PBQP solver, and mapping the solution back to a
14// register assignment. If any variables are selected for spilling then spill
15// code is inserted and the process repeated.
16//
17// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18// for register allocation. For more information on PBQP for register
19// allocation, see the following papers:
20//
21//   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22//   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23//   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24//
25//   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26//   architectures. In Proceedings of the Joint Conference on Languages,
27//   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28//   NY, USA, 139-148.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "regalloc"
33
34#include "PBQP/HeuristicSolver.h"
35#include "PBQP/Graph.h"
36#include "PBQP/Heuristics/Briggs.h"
37#include "RenderMachineFunction.h"
38#include "Splitter.h"
39#include "VirtRegMap.h"
40#include "VirtRegRewriter.h"
41#include "llvm/CodeGen/CalcSpillWeights.h"
42#include "llvm/CodeGen/LiveIntervalAnalysis.h"
43#include "llvm/CodeGen/LiveStackAnalysis.h"
44#include "llvm/CodeGen/MachineFunctionPass.h"
45#include "llvm/CodeGen/MachineLoopInfo.h"
46#include "llvm/CodeGen/MachineRegisterInfo.h"
47#include "llvm/CodeGen/RegAllocRegistry.h"
48#include "llvm/CodeGen/RegisterCoalescer.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/Target/TargetInstrInfo.h"
52#include "llvm/Target/TargetMachine.h"
53#include <limits>
54#include <map>
55#include <memory>
56#include <set>
57#include <vector>
58
59using namespace llvm;
60
61static RegisterRegAlloc
62registerPBQPRepAlloc("pbqp", "PBQP register allocator",
63                       llvm::createPBQPRegisterAllocator);
64
65static cl::opt<bool>
66pbqpCoalescing("pbqp-coalescing",
67                cl::desc("Attempt coalescing during PBQP register allocation."),
68                cl::init(false), cl::Hidden);
69
70static cl::opt<bool>
71pbqpPreSplitting("pbqp-pre-splitting",
72                 cl::desc("Pre-splite before PBQP register allocation."),
73                 cl::init(false), cl::Hidden);
74
75namespace {
76
77  ///
78  /// PBQP based allocators solve the register allocation problem by mapping
79  /// register allocation problems to Partitioned Boolean Quadratic
80  /// Programming problems.
81  class PBQPRegAlloc : public MachineFunctionPass {
82  public:
83
84    static char ID;
85
86    /// Construct a PBQP register allocator.
87    PBQPRegAlloc() : MachineFunctionPass(ID) {}
88
89    /// Return the pass name.
90    virtual const char* getPassName() const {
91      return "PBQP Register Allocator";
92    }
93
94    /// PBQP analysis usage.
95    virtual void getAnalysisUsage(AnalysisUsage &au) const {
96      au.addRequired<SlotIndexes>();
97      au.addPreserved<SlotIndexes>();
98      au.addRequired<LiveIntervals>();
99      //au.addRequiredID(SplitCriticalEdgesID);
100      au.addRequired<RegisterCoalescer>();
101      au.addRequired<CalculateSpillWeights>();
102      au.addRequired<LiveStacks>();
103      au.addPreserved<LiveStacks>();
104      au.addRequired<MachineLoopInfo>();
105      au.addPreserved<MachineLoopInfo>();
106      if (pbqpPreSplitting)
107        au.addRequired<LoopSplitter>();
108      au.addRequired<VirtRegMap>();
109      au.addRequired<RenderMachineFunction>();
110      MachineFunctionPass::getAnalysisUsage(au);
111    }
112
113    /// Perform register allocation
114    virtual bool runOnMachineFunction(MachineFunction &MF);
115
116  private:
117
118    class LIOrdering {
119    public:
120      bool operator()(const LiveInterval *li1, const LiveInterval *li2) const {
121        return li1->reg < li2->reg;
122      }
123    };
124
125    typedef std::map<const LiveInterval*, unsigned, LIOrdering> LI2NodeMap;
126    typedef std::vector<const LiveInterval*> Node2LIMap;
127    typedef std::vector<unsigned> AllowedSet;
128    typedef std::vector<AllowedSet> AllowedSetMap;
129    typedef std::set<unsigned> RegSet;
130    typedef std::pair<unsigned, unsigned> RegPair;
131    typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
132
133    typedef std::set<LiveInterval*, LIOrdering> LiveIntervalSet;
134
135    typedef std::vector<PBQP::Graph::NodeItr> NodeVector;
136
137    MachineFunction *mf;
138    const TargetMachine *tm;
139    const TargetRegisterInfo *tri;
140    const TargetInstrInfo *tii;
141    const MachineLoopInfo *loopInfo;
142    MachineRegisterInfo *mri;
143
144    LiveIntervals *lis;
145    LiveStacks *lss;
146    VirtRegMap *vrm;
147
148    LI2NodeMap li2Node;
149    Node2LIMap node2LI;
150    AllowedSetMap allowedSets;
151    LiveIntervalSet vregIntervalsToAlloc,
152                    emptyVRegIntervals;
153    NodeVector problemNodes;
154
155
156    /// Builds a PBQP cost vector.
157    template <typename RegContainer>
158    PBQP::Vector buildCostVector(unsigned vReg,
159                                 const RegContainer &allowed,
160                                 const CoalesceMap &cealesces,
161                                 PBQP::PBQPNum spillCost) const;
162
163    /// \brief Builds a PBQP interference matrix.
164    ///
165    /// @return Either a pointer to a non-zero PBQP matrix representing the
166    ///         allocation option costs, or a null pointer for a zero matrix.
167    ///
168    /// Expects allowed sets for two interfering LiveIntervals. These allowed
169    /// sets should contain only allocable registers from the LiveInterval's
170    /// register class, with any interfering pre-colored registers removed.
171    template <typename RegContainer>
172    PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
173                                          const RegContainer &allowed2) const;
174
175    ///
176    /// Expects allowed sets for two potentially coalescable LiveIntervals,
177    /// and an estimated benefit due to coalescing. The allowed sets should
178    /// contain only allocable registers from the LiveInterval's register
179    /// classes, with any interfering pre-colored registers removed.
180    template <typename RegContainer>
181    PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
182                                        const RegContainer &allowed2,
183                                        PBQP::PBQPNum cBenefit) const;
184
185    /// \brief Finds coalescing opportunities and returns them as a map.
186    ///
187    /// Any entries in the map are guaranteed coalescable, even if their
188    /// corresponding live intervals overlap.
189    CoalesceMap findCoalesces();
190
191    /// \brief Finds the initial set of vreg intervals to allocate.
192    void findVRegIntervalsToAlloc();
193
194    /// \brief Constructs a PBQP problem representation of the register
195    /// allocation problem for this function.
196    ///
197    /// @return a PBQP solver object for the register allocation problem.
198    PBQP::Graph constructPBQPProblem();
199
200    /// \brief Adds a stack interval if the given live interval has been
201    /// spilled. Used to support stack slot coloring.
202    void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
203
204    /// \brief Given a solved PBQP problem maps this solution back to a register
205    /// assignment.
206    bool mapPBQPToRegAlloc(const PBQP::Solution &solution);
207
208    /// \brief Postprocessing before final spilling. Sets basic block "live in"
209    /// variables.
210    void finalizeAlloc() const;
211
212  };
213
214  char PBQPRegAlloc::ID = 0;
215}
216
217
218template <typename RegContainer>
219PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
220                                           const RegContainer &allowed,
221                                           const CoalesceMap &coalesces,
222                                           PBQP::PBQPNum spillCost) const {
223
224  typedef typename RegContainer::const_iterator AllowedItr;
225
226  // Allocate vector. Additional element (0th) used for spill option
227  PBQP::Vector v(allowed.size() + 1, 0);
228
229  v[0] = spillCost;
230
231  // Iterate over the allowed registers inserting coalesce benefits if there
232  // are any.
233  unsigned ai = 0;
234  for (AllowedItr itr = allowed.begin(), end = allowed.end();
235       itr != end; ++itr, ++ai) {
236
237    unsigned pReg = *itr;
238
239    CoalesceMap::const_iterator cmItr =
240      coalesces.find(RegPair(vReg, pReg));
241
242    // No coalesce - on to the next preg.
243    if (cmItr == coalesces.end())
244      continue;
245
246    // We have a coalesce - insert the benefit.
247    v[ai + 1] = -cmItr->second;
248  }
249
250  return v;
251}
252
253template <typename RegContainer>
254PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
255      const RegContainer &allowed1, const RegContainer &allowed2) const {
256
257  typedef typename RegContainer::const_iterator RegContainerIterator;
258
259  // Construct a PBQP matrix representing the cost of allocation options. The
260  // rows and columns correspond to the allocation options for the two live
261  // intervals.  Elements will be infinite where corresponding registers alias,
262  // since we cannot allocate aliasing registers to interfering live intervals.
263  // All other elements (non-aliasing combinations) will have zero cost. Note
264  // that the spill option (element 0,0) has zero cost, since we can allocate
265  // both intervals to memory safely (the cost for each individual allocation
266  // to memory is accounted for by the cost vectors for each live interval).
267  PBQP::Matrix *m =
268    new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
269
270  // Assume this is a zero matrix until proven otherwise.  Zero matrices occur
271  // between interfering live ranges with non-overlapping register sets (e.g.
272  // non-overlapping reg classes, or disjoint sets of allowed regs within the
273  // same class). The term "overlapping" is used advisedly: sets which do not
274  // intersect, but contain registers which alias, will have non-zero matrices.
275  // We optimize zero matrices away to improve solver speed.
276  bool isZeroMatrix = true;
277
278
279  // Row index. Starts at 1, since the 0th row is for the spill option, which
280  // is always zero.
281  unsigned ri = 1;
282
283  // Iterate over allowed sets, insert infinities where required.
284  for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
285       a1Itr != a1End; ++a1Itr) {
286
287    // Column index, starts at 1 as for row index.
288    unsigned ci = 1;
289    unsigned reg1 = *a1Itr;
290
291    for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
292         a2Itr != a2End; ++a2Itr) {
293
294      unsigned reg2 = *a2Itr;
295
296      // If the row/column regs are identical or alias insert an infinity.
297      if (tri->regsOverlap(reg1, reg2)) {
298        (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
299        isZeroMatrix = false;
300      }
301
302      ++ci;
303    }
304
305    ++ri;
306  }
307
308  // If this turns out to be a zero matrix...
309  if (isZeroMatrix) {
310    // free it and return null.
311    delete m;
312    return 0;
313  }
314
315  // ...otherwise return the cost matrix.
316  return m;
317}
318
319template <typename RegContainer>
320PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
321      const RegContainer &allowed1, const RegContainer &allowed2,
322      PBQP::PBQPNum cBenefit) const {
323
324  typedef typename RegContainer::const_iterator RegContainerIterator;
325
326  // Construct a PBQP Matrix representing the benefits of coalescing. As with
327  // interference matrices the rows and columns represent allowed registers
328  // for the LiveIntervals which are (potentially) to be coalesced. The amount
329  // -cBenefit will be placed in any element representing the same register
330  // for both intervals.
331  PBQP::Matrix *m =
332    new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
333
334  // Reset costs to zero.
335  m->reset(0);
336
337  // Assume the matrix is zero till proven otherwise. Zero matrices will be
338  // optimized away as in the interference case.
339  bool isZeroMatrix = true;
340
341  // Row index. Starts at 1, since the 0th row is for the spill option, which
342  // is always zero.
343  unsigned ri = 1;
344
345  // Iterate over the allowed sets, insert coalescing benefits where
346  // appropriate.
347  for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
348       a1Itr != a1End; ++a1Itr) {
349
350    // Column index, starts at 1 as for row index.
351    unsigned ci = 1;
352    unsigned reg1 = *a1Itr;
353
354    for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
355         a2Itr != a2End; ++a2Itr) {
356
357      // If the row and column represent the same register insert a beneficial
358      // cost to preference this allocation - it would allow us to eliminate a
359      // move instruction.
360      if (reg1 == *a2Itr) {
361        (*m)[ri][ci] = -cBenefit;
362        isZeroMatrix = false;
363      }
364
365      ++ci;
366    }
367
368    ++ri;
369  }
370
371  // If this turns out to be a zero matrix...
372  if (isZeroMatrix) {
373    // ...free it and return null.
374    delete m;
375    return 0;
376  }
377
378  return m;
379}
380
381PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
382
383  typedef MachineFunction::const_iterator MFIterator;
384  typedef MachineBasicBlock::const_iterator MBBIterator;
385  typedef LiveInterval::const_vni_iterator VNIIterator;
386
387  CoalesceMap coalescesFound;
388
389  // To find coalesces we need to iterate over the function looking for
390  // copy instructions.
391  for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
392       bbItr != bbEnd; ++bbItr) {
393
394    const MachineBasicBlock *mbb = &*bbItr;
395
396    for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
397         iItr != iEnd; ++iItr) {
398
399      const MachineInstr *instr = &*iItr;
400
401      // If this isn't a copy then continue to the next instruction.
402      if (!instr->isCopy())
403        continue;
404
405      unsigned srcReg = instr->getOperand(1).getReg();
406      unsigned dstReg = instr->getOperand(0).getReg();
407
408      // If the registers are already the same our job is nice and easy.
409      if (dstReg == srcReg)
410        continue;
411
412      bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
413           dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
414
415      // If both registers are physical then we can't coalesce.
416      if (srcRegIsPhysical && dstRegIsPhysical)
417        continue;
418
419      // If it's a copy that includes two virtual register but the source and
420      // destination classes differ then we can't coalesce.
421      if (!srcRegIsPhysical && !dstRegIsPhysical &&
422          mri->getRegClass(srcReg) != mri->getRegClass(dstReg))
423        continue;
424
425      // If one is physical and one is virtual, check that the physical is
426      // allocatable in the class of the virtual.
427      if (srcRegIsPhysical && !dstRegIsPhysical) {
428        const TargetRegisterClass *dstRegClass = mri->getRegClass(dstReg);
429        if (std::find(dstRegClass->allocation_order_begin(*mf),
430                      dstRegClass->allocation_order_end(*mf), srcReg) ==
431            dstRegClass->allocation_order_end(*mf))
432          continue;
433      }
434      if (!srcRegIsPhysical && dstRegIsPhysical) {
435        const TargetRegisterClass *srcRegClass = mri->getRegClass(srcReg);
436        if (std::find(srcRegClass->allocation_order_begin(*mf),
437                      srcRegClass->allocation_order_end(*mf), dstReg) ==
438            srcRegClass->allocation_order_end(*mf))
439          continue;
440      }
441
442      // If we've made it here we have a copy with compatible register classes.
443      // We can probably coalesce, but we need to consider overlap.
444      const LiveInterval *srcLI = &lis->getInterval(srcReg),
445                         *dstLI = &lis->getInterval(dstReg);
446
447      if (srcLI->overlaps(*dstLI)) {
448        // Even in the case of an overlap we might still be able to coalesce,
449        // but we need to make sure that no definition of either range occurs
450        // while the other range is live.
451
452        // Otherwise start by assuming we're ok.
453        bool badDef = false;
454
455        // Test all defs of the source range.
456        for (VNIIterator
457               vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
458               vniItr != vniEnd; ++vniItr) {
459
460          // If we find a poorly defined def we err on the side of caution.
461          if (!(*vniItr)->def.isValid()) {
462            badDef = true;
463            break;
464          }
465
466          // If we find a def that kills the coalescing opportunity then
467          // record it and break from the loop.
468          if (dstLI->liveAt((*vniItr)->def)) {
469            badDef = true;
470            break;
471          }
472        }
473
474        // If we have a bad def give up, continue to the next instruction.
475        if (badDef)
476          continue;
477
478        // Otherwise test definitions of the destination range.
479        for (VNIIterator
480               vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
481               vniItr != vniEnd; ++vniItr) {
482
483          // We want to make sure we skip the copy instruction itself.
484          if ((*vniItr)->getCopy() == instr)
485            continue;
486
487          if (!(*vniItr)->def.isValid()) {
488            badDef = true;
489            break;
490          }
491
492          if (srcLI->liveAt((*vniItr)->def)) {
493            badDef = true;
494            break;
495          }
496        }
497
498        // As before a bad def we give up and continue to the next instr.
499        if (badDef)
500          continue;
501      }
502
503      // If we make it to here then either the ranges didn't overlap, or they
504      // did, but none of their definitions would prevent us from coalescing.
505      // We're good to go with the coalesce.
506
507      float cBenefit = std::pow(10.0f, (float)loopInfo->getLoopDepth(mbb)) / 5.0;
508
509      coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
510      coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
511    }
512
513  }
514
515  return coalescesFound;
516}
517
518void PBQPRegAlloc::findVRegIntervalsToAlloc() {
519
520  // Iterate over all live ranges.
521  for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
522       itr != end; ++itr) {
523
524    // Ignore physical ones.
525    if (TargetRegisterInfo::isPhysicalRegister(itr->first))
526      continue;
527
528    LiveInterval *li = itr->second;
529
530    // If this live interval is non-empty we will use pbqp to allocate it.
531    // Empty intervals we allocate in a simple post-processing stage in
532    // finalizeAlloc.
533    if (!li->empty()) {
534      vregIntervalsToAlloc.insert(li);
535    }
536    else {
537      emptyVRegIntervals.insert(li);
538    }
539  }
540}
541
542PBQP::Graph PBQPRegAlloc::constructPBQPProblem() {
543
544  typedef std::vector<const LiveInterval*> LIVector;
545  typedef std::vector<unsigned> RegVector;
546
547  // This will store the physical intervals for easy reference.
548  LIVector physIntervals;
549
550  // Start by clearing the old node <-> live interval mappings & allowed sets
551  li2Node.clear();
552  node2LI.clear();
553  allowedSets.clear();
554
555  // Populate physIntervals, update preg use:
556  for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
557       itr != end; ++itr) {
558
559    if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
560      physIntervals.push_back(itr->second);
561      mri->setPhysRegUsed(itr->second->reg);
562    }
563  }
564
565  // Iterate over vreg intervals, construct live interval <-> node number
566  //  mappings.
567  for (LiveIntervalSet::const_iterator
568       itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
569       itr != end; ++itr) {
570    const LiveInterval *li = *itr;
571
572    li2Node[li] = node2LI.size();
573    node2LI.push_back(li);
574  }
575
576  // Get the set of potential coalesces.
577  CoalesceMap coalesces;
578
579  if (pbqpCoalescing) {
580    coalesces = findCoalesces();
581  }
582
583  // Construct a PBQP solver for this problem
584  PBQP::Graph problem;
585  problemNodes.resize(vregIntervalsToAlloc.size());
586
587  // Resize allowedSets container appropriately.
588  allowedSets.resize(vregIntervalsToAlloc.size());
589
590  // Iterate over virtual register intervals to compute allowed sets...
591  for (unsigned node = 0; node < node2LI.size(); ++node) {
592
593    // Grab pointers to the interval and its register class.
594    const LiveInterval *li = node2LI[node];
595    const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
596
597    // Start by assuming all allocable registers in the class are allowed...
598    RegVector liAllowed(liRC->allocation_order_begin(*mf),
599                        liRC->allocation_order_end(*mf));
600
601    // Eliminate the physical registers which overlap with this range, along
602    // with all their aliases.
603    for (LIVector::iterator pItr = physIntervals.begin(),
604       pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
605
606      if (!li->overlaps(**pItr))
607        continue;
608
609      unsigned pReg = (*pItr)->reg;
610
611      // If we get here then the live intervals overlap, but we're still ok
612      // if they're coalescable.
613      if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
614        continue;
615
616      // If we get here then we have a genuine exclusion.
617
618      // Remove the overlapping reg...
619      RegVector::iterator eraseItr =
620        std::find(liAllowed.begin(), liAllowed.end(), pReg);
621
622      if (eraseItr != liAllowed.end())
623        liAllowed.erase(eraseItr);
624
625      const unsigned *aliasItr = tri->getAliasSet(pReg);
626
627      if (aliasItr != 0) {
628        // ...and its aliases.
629        for (; *aliasItr != 0; ++aliasItr) {
630          RegVector::iterator eraseItr =
631            std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
632
633          if (eraseItr != liAllowed.end()) {
634            liAllowed.erase(eraseItr);
635          }
636        }
637      }
638    }
639
640    // Copy the allowed set into a member vector for use when constructing cost
641    // vectors & matrices, and mapping PBQP solutions back to assignments.
642    allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
643
644    // Set the spill cost to the interval weight, or epsilon if the
645    // interval weight is zero
646    PBQP::PBQPNum spillCost = (li->weight != 0.0) ?
647        li->weight : std::numeric_limits<PBQP::PBQPNum>::min();
648
649    // Build a cost vector for this interval.
650    problemNodes[node] =
651      problem.addNode(
652        buildCostVector(li->reg, allowedSets[node], coalesces, spillCost));
653
654  }
655
656
657  // Now add the cost matrices...
658  for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
659    const LiveInterval *li = node2LI[node1];
660
661    // Test for live range overlaps and insert interference matrices.
662    for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
663      const LiveInterval *li2 = node2LI[node2];
664
665      CoalesceMap::const_iterator cmItr =
666        coalesces.find(RegPair(li->reg, li2->reg));
667
668      PBQP::Matrix *m = 0;
669
670      if (cmItr != coalesces.end()) {
671        m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
672                                  cmItr->second);
673      }
674      else if (li->overlaps(*li2)) {
675        m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
676      }
677
678      if (m != 0) {
679        problem.addEdge(problemNodes[node1],
680                        problemNodes[node2],
681                        *m);
682
683        delete m;
684      }
685    }
686  }
687
688  assert(problem.getNumNodes() == allowedSets.size());
689/*
690  std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
691            << problem.getNumEdges() << " edges.\n";
692
693  problem.printDot(std::cerr);
694*/
695  // We're done, PBQP problem constructed - return it.
696  return problem;
697}
698
699void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
700                                    MachineRegisterInfo* mri) {
701  int stackSlot = vrm->getStackSlot(spilled->reg);
702
703  if (stackSlot == VirtRegMap::NO_STACK_SLOT)
704    return;
705
706  const TargetRegisterClass *RC = mri->getRegClass(spilled->reg);
707  LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot, RC);
708
709  VNInfo *vni;
710  if (stackInterval.getNumValNums() != 0)
711    vni = stackInterval.getValNumInfo(0);
712  else
713    vni = stackInterval.getNextValue(
714      SlotIndex(), 0, false, lss->getVNInfoAllocator());
715
716  LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
717  stackInterval.MergeRangesInAsValue(rhsInterval, vni);
718}
719
720bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
721
722  // Set to true if we have any spills
723  bool anotherRoundNeeded = false;
724
725  // Clear the existing allocation.
726  vrm->clearAllVirt();
727
728  // Iterate over the nodes mapping the PBQP solution to a register assignment.
729  for (unsigned node = 0; node < node2LI.size(); ++node) {
730    unsigned virtReg = node2LI[node]->reg,
731             allocSelection = solution.getSelection(problemNodes[node]);
732
733
734    // If the PBQP solution is non-zero it's a physical register...
735    if (allocSelection != 0) {
736      // Get the physical reg, subtracting 1 to account for the spill option.
737      unsigned physReg = allowedSets[node][allocSelection - 1];
738
739      DEBUG(dbgs() << "VREG " << virtReg << " -> "
740                   << tri->getName(physReg) << "\n");
741
742      assert(physReg != 0);
743
744      // Add to the virt reg map and update the used phys regs.
745      vrm->assignVirt2Phys(virtReg, physReg);
746    }
747    // ...Otherwise it's a spill.
748    else {
749
750      // Make sure we ignore this virtual reg on the next round
751      // of allocation
752      vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
753
754      // Insert spill ranges for this live range
755      const LiveInterval *spillInterval = node2LI[node];
756      double oldSpillWeight = spillInterval->weight;
757      SmallVector<LiveInterval*, 8> spillIs;
758      std::vector<LiveInterval*> newSpills =
759        lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm);
760      addStackInterval(spillInterval, mri);
761
762      (void) oldSpillWeight;
763      DEBUG(dbgs() << "VREG " << virtReg << " -> SPILLED (Cost: "
764                   << oldSpillWeight << ", New vregs: ");
765
766      // Copy any newly inserted live intervals into the list of regs to
767      // allocate.
768      for (std::vector<LiveInterval*>::const_iterator
769           itr = newSpills.begin(), end = newSpills.end();
770           itr != end; ++itr) {
771
772        assert(!(*itr)->empty() && "Empty spill range.");
773
774        DEBUG(dbgs() << (*itr)->reg << " ");
775
776        vregIntervalsToAlloc.insert(*itr);
777      }
778
779      DEBUG(dbgs() << ")\n");
780
781      // We need another round if spill intervals were added.
782      anotherRoundNeeded |= !newSpills.empty();
783    }
784  }
785
786  return !anotherRoundNeeded;
787}
788
789void PBQPRegAlloc::finalizeAlloc() const {
790  typedef LiveIntervals::iterator LIIterator;
791  typedef LiveInterval::Ranges::const_iterator LRIterator;
792
793  // First allocate registers for the empty intervals.
794  for (LiveIntervalSet::const_iterator
795         itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
796         itr != end; ++itr) {
797    LiveInterval *li = *itr;
798
799    unsigned physReg = vrm->getRegAllocPref(li->reg);
800
801    if (physReg == 0) {
802      const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
803      physReg = *liRC->allocation_order_begin(*mf);
804    }
805
806    vrm->assignVirt2Phys(li->reg, physReg);
807  }
808
809  // Finally iterate over the basic blocks to compute and set the live-in sets.
810  SmallVector<MachineBasicBlock*, 8> liveInMBBs;
811  MachineBasicBlock *entryMBB = &*mf->begin();
812
813  for (LIIterator liItr = lis->begin(), liEnd = lis->end();
814       liItr != liEnd; ++liItr) {
815
816    const LiveInterval *li = liItr->second;
817    unsigned reg = 0;
818
819    // Get the physical register for this interval
820    if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
821      reg = li->reg;
822    }
823    else if (vrm->isAssignedReg(li->reg)) {
824      reg = vrm->getPhys(li->reg);
825    }
826    else {
827      // Ranges which are assigned a stack slot only are ignored.
828      continue;
829    }
830
831    if (reg == 0) {
832      // Filter out zero regs - they're for intervals that were spilled.
833      continue;
834    }
835
836    // Iterate over the ranges of the current interval...
837    for (LRIterator lrItr = li->begin(), lrEnd = li->end();
838         lrItr != lrEnd; ++lrItr) {
839
840      // Find the set of basic blocks which this range is live into...
841      if (lis->findLiveInMBBs(lrItr->start, lrItr->end,  liveInMBBs)) {
842        // And add the physreg for this interval to their live-in sets.
843        for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
844          if (liveInMBBs[i] != entryMBB) {
845            if (!liveInMBBs[i]->isLiveIn(reg)) {
846              liveInMBBs[i]->addLiveIn(reg);
847            }
848          }
849        }
850        liveInMBBs.clear();
851      }
852    }
853  }
854
855}
856
857bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
858
859  mf = &MF;
860  tm = &mf->getTarget();
861  tri = tm->getRegisterInfo();
862  tii = tm->getInstrInfo();
863  mri = &mf->getRegInfo();
864
865  lis = &getAnalysis<LiveIntervals>();
866  lss = &getAnalysis<LiveStacks>();
867  loopInfo = &getAnalysis<MachineLoopInfo>();
868  RenderMachineFunction *rmf = &getAnalysis<RenderMachineFunction>();
869
870  vrm = &getAnalysis<VirtRegMap>();
871
872
873  DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n");
874
875  // Allocator main loop:
876  //
877  // * Map current regalloc problem to a PBQP problem
878  // * Solve the PBQP problem
879  // * Map the solution back to a register allocation
880  // * Spill if necessary
881  //
882  // This process is continued till no more spills are generated.
883
884  // Find the vreg intervals in need of allocation.
885  findVRegIntervalsToAlloc();
886
887  // If there are non-empty intervals allocate them using pbqp.
888  if (!vregIntervalsToAlloc.empty()) {
889
890    bool pbqpAllocComplete = false;
891    unsigned round = 0;
892
893    while (!pbqpAllocComplete) {
894      DEBUG(dbgs() << "  PBQP Regalloc round " << round << ":\n");
895
896      PBQP::Graph problem = constructPBQPProblem();
897      PBQP::Solution solution =
898        PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(problem);
899
900      pbqpAllocComplete = mapPBQPToRegAlloc(solution);
901
902      ++round;
903    }
904  }
905
906  // Finalise allocation, allocate empty ranges.
907  finalizeAlloc();
908
909  rmf->renderMachineFunction("After PBQP register allocation.", vrm);
910
911  vregIntervalsToAlloc.clear();
912  emptyVRegIntervals.clear();
913  li2Node.clear();
914  node2LI.clear();
915  allowedSets.clear();
916  problemNodes.clear();
917
918  DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
919
920  // Run rewriter
921  std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
922
923  rewriter->runOnMachineFunction(*mf, *vrm, lis);
924
925  return true;
926}
927
928FunctionPass* llvm::createPBQPRegisterAllocator() {
929  return new PBQPRegAlloc();
930}
931
932
933#undef DEBUG_TYPE
934