RegAllocPBQP.cpp revision cbeb3db8fd502a21f07592f75712d59691ce471f
1//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11// register allocator for LLVM. This allocator works by constructing a PBQP
12// problem representing the register allocation problem under consideration,
13// solving this using a PBQP solver, and mapping the solution back to a
14// register assignment. If any variables are selected for spilling then spill
15// code is inserted and the process repeated.
16//
17// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18// for register allocation. For more information on PBQP for register
19// allocation, see the following papers:
20//
21//   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22//   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23//   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24//
25//   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26//   architectures. In Proceedings of the Joint Conference on Languages,
27//   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28//   NY, USA, 139-148.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "regalloc"
33
34#include "PBQP/HeuristicSolver.h"
35#include "PBQP/Graph.h"
36#include "PBQP/Heuristics/Briggs.h"
37#include "VirtRegMap.h"
38#include "VirtRegRewriter.h"
39#include "llvm/CodeGen/CalcSpillWeights.h"
40#include "llvm/CodeGen/LiveIntervalAnalysis.h"
41#include "llvm/CodeGen/LiveStackAnalysis.h"
42#include "llvm/CodeGen/MachineFunctionPass.h"
43#include "llvm/CodeGen/MachineLoopInfo.h"
44#include "llvm/CodeGen/MachineRegisterInfo.h"
45#include "llvm/CodeGen/RegAllocRegistry.h"
46#include "llvm/CodeGen/RegisterCoalescer.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetMachine.h"
51#include <limits>
52#include <map>
53#include <memory>
54#include <set>
55#include <vector>
56
57using namespace llvm;
58
59static RegisterRegAlloc
60registerPBQPRepAlloc("pbqp", "PBQP register allocator",
61                       llvm::createPBQPRegisterAllocator);
62
63static cl::opt<bool>
64pbqpCoalescing("pbqp-coalescing",
65                cl::desc("Attempt coalescing during PBQP register allocation."),
66                cl::init(false), cl::Hidden);
67
68namespace {
69
70  ///
71  /// PBQP based allocators solve the register allocation problem by mapping
72  /// register allocation problems to Partitioned Boolean Quadratic
73  /// Programming problems.
74  class PBQPRegAlloc : public MachineFunctionPass {
75  public:
76
77    static char ID;
78
79    /// Construct a PBQP register allocator.
80    PBQPRegAlloc() : MachineFunctionPass(&ID) {}
81
82    /// Return the pass name.
83    virtual const char* getPassName() const {
84      return "PBQP Register Allocator";
85    }
86
87    /// PBQP analysis usage.
88    virtual void getAnalysisUsage(AnalysisUsage &au) const {
89      au.addRequired<SlotIndexes>();
90      au.addPreserved<SlotIndexes>();
91      au.addRequired<LiveIntervals>();
92      //au.addRequiredID(SplitCriticalEdgesID);
93      au.addRequired<RegisterCoalescer>();
94      au.addRequired<CalculateSpillWeights>();
95      au.addRequired<LiveStacks>();
96      au.addPreserved<LiveStacks>();
97      au.addRequired<MachineLoopInfo>();
98      au.addPreserved<MachineLoopInfo>();
99      au.addRequired<VirtRegMap>();
100      MachineFunctionPass::getAnalysisUsage(au);
101    }
102
103    /// Perform register allocation
104    virtual bool runOnMachineFunction(MachineFunction &MF);
105
106  private:
107    typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
108    typedef std::vector<const LiveInterval*> Node2LIMap;
109    typedef std::vector<unsigned> AllowedSet;
110    typedef std::vector<AllowedSet> AllowedSetMap;
111    typedef std::set<unsigned> RegSet;
112    typedef std::pair<unsigned, unsigned> RegPair;
113    typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
114
115    typedef std::set<LiveInterval*> LiveIntervalSet;
116
117    typedef std::vector<PBQP::Graph::NodeItr> NodeVector;
118
119    MachineFunction *mf;
120    const TargetMachine *tm;
121    const TargetRegisterInfo *tri;
122    const TargetInstrInfo *tii;
123    const MachineLoopInfo *loopInfo;
124    MachineRegisterInfo *mri;
125
126    LiveIntervals *lis;
127    LiveStacks *lss;
128    VirtRegMap *vrm;
129
130    LI2NodeMap li2Node;
131    Node2LIMap node2LI;
132    AllowedSetMap allowedSets;
133    LiveIntervalSet vregIntervalsToAlloc,
134                    emptyVRegIntervals;
135    NodeVector problemNodes;
136
137
138    /// Builds a PBQP cost vector.
139    template <typename RegContainer>
140    PBQP::Vector buildCostVector(unsigned vReg,
141                                 const RegContainer &allowed,
142                                 const CoalesceMap &cealesces,
143                                 PBQP::PBQPNum spillCost) const;
144
145    /// \brief Builds a PBQP interference matrix.
146    ///
147    /// @return Either a pointer to a non-zero PBQP matrix representing the
148    ///         allocation option costs, or a null pointer for a zero matrix.
149    ///
150    /// Expects allowed sets for two interfering LiveIntervals. These allowed
151    /// sets should contain only allocable registers from the LiveInterval's
152    /// register class, with any interfering pre-colored registers removed.
153    template <typename RegContainer>
154    PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
155                                          const RegContainer &allowed2) const;
156
157    ///
158    /// Expects allowed sets for two potentially coalescable LiveIntervals,
159    /// and an estimated benefit due to coalescing. The allowed sets should
160    /// contain only allocable registers from the LiveInterval's register
161    /// classes, with any interfering pre-colored registers removed.
162    template <typename RegContainer>
163    PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
164                                        const RegContainer &allowed2,
165                                        PBQP::PBQPNum cBenefit) const;
166
167    /// \brief Finds coalescing opportunities and returns them as a map.
168    ///
169    /// Any entries in the map are guaranteed coalescable, even if their
170    /// corresponding live intervals overlap.
171    CoalesceMap findCoalesces();
172
173    /// \brief Finds the initial set of vreg intervals to allocate.
174    void findVRegIntervalsToAlloc();
175
176    /// \brief Constructs a PBQP problem representation of the register
177    /// allocation problem for this function.
178    ///
179    /// @return a PBQP solver object for the register allocation problem.
180    PBQP::Graph constructPBQPProblem();
181
182    /// \brief Adds a stack interval if the given live interval has been
183    /// spilled. Used to support stack slot coloring.
184    void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
185
186    /// \brief Given a solved PBQP problem maps this solution back to a register
187    /// assignment.
188    bool mapPBQPToRegAlloc(const PBQP::Solution &solution);
189
190    /// \brief Postprocessing before final spilling. Sets basic block "live in"
191    /// variables.
192    void finalizeAlloc() const;
193
194  };
195
196  char PBQPRegAlloc::ID = 0;
197}
198
199
200template <typename RegContainer>
201PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
202                                           const RegContainer &allowed,
203                                           const CoalesceMap &coalesces,
204                                           PBQP::PBQPNum spillCost) const {
205
206  typedef typename RegContainer::const_iterator AllowedItr;
207
208  // Allocate vector. Additional element (0th) used for spill option
209  PBQP::Vector v(allowed.size() + 1, 0);
210
211  v[0] = spillCost;
212
213  // Iterate over the allowed registers inserting coalesce benefits if there
214  // are any.
215  unsigned ai = 0;
216  for (AllowedItr itr = allowed.begin(), end = allowed.end();
217       itr != end; ++itr, ++ai) {
218
219    unsigned pReg = *itr;
220
221    CoalesceMap::const_iterator cmItr =
222      coalesces.find(RegPair(vReg, pReg));
223
224    // No coalesce - on to the next preg.
225    if (cmItr == coalesces.end())
226      continue;
227
228    // We have a coalesce - insert the benefit.
229    v[ai + 1] = -cmItr->second;
230  }
231
232  return v;
233}
234
235template <typename RegContainer>
236PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
237      const RegContainer &allowed1, const RegContainer &allowed2) const {
238
239  typedef typename RegContainer::const_iterator RegContainerIterator;
240
241  // Construct a PBQP matrix representing the cost of allocation options. The
242  // rows and columns correspond to the allocation options for the two live
243  // intervals.  Elements will be infinite where corresponding registers alias,
244  // since we cannot allocate aliasing registers to interfering live intervals.
245  // All other elements (non-aliasing combinations) will have zero cost. Note
246  // that the spill option (element 0,0) has zero cost, since we can allocate
247  // both intervals to memory safely (the cost for each individual allocation
248  // to memory is accounted for by the cost vectors for each live interval).
249  PBQP::Matrix *m =
250    new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
251
252  // Assume this is a zero matrix until proven otherwise.  Zero matrices occur
253  // between interfering live ranges with non-overlapping register sets (e.g.
254  // non-overlapping reg classes, or disjoint sets of allowed regs within the
255  // same class). The term "overlapping" is used advisedly: sets which do not
256  // intersect, but contain registers which alias, will have non-zero matrices.
257  // We optimize zero matrices away to improve solver speed.
258  bool isZeroMatrix = true;
259
260
261  // Row index. Starts at 1, since the 0th row is for the spill option, which
262  // is always zero.
263  unsigned ri = 1;
264
265  // Iterate over allowed sets, insert infinities where required.
266  for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
267       a1Itr != a1End; ++a1Itr) {
268
269    // Column index, starts at 1 as for row index.
270    unsigned ci = 1;
271    unsigned reg1 = *a1Itr;
272
273    for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
274         a2Itr != a2End; ++a2Itr) {
275
276      unsigned reg2 = *a2Itr;
277
278      // If the row/column regs are identical or alias insert an infinity.
279      if (tri->regsOverlap(reg1, reg2)) {
280        (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
281        isZeroMatrix = false;
282      }
283
284      ++ci;
285    }
286
287    ++ri;
288  }
289
290  // If this turns out to be a zero matrix...
291  if (isZeroMatrix) {
292    // free it and return null.
293    delete m;
294    return 0;
295  }
296
297  // ...otherwise return the cost matrix.
298  return m;
299}
300
301template <typename RegContainer>
302PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
303      const RegContainer &allowed1, const RegContainer &allowed2,
304      PBQP::PBQPNum cBenefit) const {
305
306  typedef typename RegContainer::const_iterator RegContainerIterator;
307
308  // Construct a PBQP Matrix representing the benefits of coalescing. As with
309  // interference matrices the rows and columns represent allowed registers
310  // for the LiveIntervals which are (potentially) to be coalesced. The amount
311  // -cBenefit will be placed in any element representing the same register
312  // for both intervals.
313  PBQP::Matrix *m =
314    new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
315
316  // Reset costs to zero.
317  m->reset(0);
318
319  // Assume the matrix is zero till proven otherwise. Zero matrices will be
320  // optimized away as in the interference case.
321  bool isZeroMatrix = true;
322
323  // Row index. Starts at 1, since the 0th row is for the spill option, which
324  // is always zero.
325  unsigned ri = 1;
326
327  // Iterate over the allowed sets, insert coalescing benefits where
328  // appropriate.
329  for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
330       a1Itr != a1End; ++a1Itr) {
331
332    // Column index, starts at 1 as for row index.
333    unsigned ci = 1;
334    unsigned reg1 = *a1Itr;
335
336    for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
337         a2Itr != a2End; ++a2Itr) {
338
339      // If the row and column represent the same register insert a beneficial
340      // cost to preference this allocation - it would allow us to eliminate a
341      // move instruction.
342      if (reg1 == *a2Itr) {
343        (*m)[ri][ci] = -cBenefit;
344        isZeroMatrix = false;
345      }
346
347      ++ci;
348    }
349
350    ++ri;
351  }
352
353  // If this turns out to be a zero matrix...
354  if (isZeroMatrix) {
355    // ...free it and return null.
356    delete m;
357    return 0;
358  }
359
360  return m;
361}
362
363PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
364
365  typedef MachineFunction::const_iterator MFIterator;
366  typedef MachineBasicBlock::const_iterator MBBIterator;
367  typedef LiveInterval::const_vni_iterator VNIIterator;
368
369  CoalesceMap coalescesFound;
370
371  // To find coalesces we need to iterate over the function looking for
372  // copy instructions.
373  for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
374       bbItr != bbEnd; ++bbItr) {
375
376    const MachineBasicBlock *mbb = &*bbItr;
377
378    for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
379         iItr != iEnd; ++iItr) {
380
381      const MachineInstr *instr = &*iItr;
382      unsigned srcReg, dstReg, srcSubReg, dstSubReg;
383
384      // If this isn't a copy then continue to the next instruction.
385      if (!tii->isMoveInstr(*instr, srcReg, dstReg, srcSubReg, dstSubReg))
386        continue;
387
388      // If the registers are already the same our job is nice and easy.
389      if (dstReg == srcReg)
390        continue;
391
392      bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
393           dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
394
395      // If both registers are physical then we can't coalesce.
396      if (srcRegIsPhysical && dstRegIsPhysical)
397        continue;
398
399      // If it's a copy that includes two virtual register but the source and
400      // destination classes differ then we can't coalesce.
401      if (!srcRegIsPhysical && !dstRegIsPhysical &&
402          mri->getRegClass(srcReg) != mri->getRegClass(dstReg))
403        continue;
404
405      // If one is physical and one is virtual, check that the physical is
406      // allocatable in the class of the virtual.
407      if (srcRegIsPhysical && !dstRegIsPhysical) {
408        const TargetRegisterClass *dstRegClass = mri->getRegClass(dstReg);
409        if (std::find(dstRegClass->allocation_order_begin(*mf),
410                      dstRegClass->allocation_order_end(*mf), srcReg) ==
411            dstRegClass->allocation_order_end(*mf))
412          continue;
413      }
414      if (!srcRegIsPhysical && dstRegIsPhysical) {
415        const TargetRegisterClass *srcRegClass = mri->getRegClass(srcReg);
416        if (std::find(srcRegClass->allocation_order_begin(*mf),
417                      srcRegClass->allocation_order_end(*mf), dstReg) ==
418            srcRegClass->allocation_order_end(*mf))
419          continue;
420      }
421
422      // If we've made it here we have a copy with compatible register classes.
423      // We can probably coalesce, but we need to consider overlap.
424      const LiveInterval *srcLI = &lis->getInterval(srcReg),
425                         *dstLI = &lis->getInterval(dstReg);
426
427      if (srcLI->overlaps(*dstLI)) {
428        // Even in the case of an overlap we might still be able to coalesce,
429        // but we need to make sure that no definition of either range occurs
430        // while the other range is live.
431
432        // Otherwise start by assuming we're ok.
433        bool badDef = false;
434
435        // Test all defs of the source range.
436        for (VNIIterator
437               vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
438               vniItr != vniEnd; ++vniItr) {
439
440          // If we find a poorly defined def we err on the side of caution.
441          if (!(*vniItr)->def.isValid()) {
442            badDef = true;
443            break;
444          }
445
446          // If we find a def that kills the coalescing opportunity then
447          // record it and break from the loop.
448          if (dstLI->liveAt((*vniItr)->def)) {
449            badDef = true;
450            break;
451          }
452        }
453
454        // If we have a bad def give up, continue to the next instruction.
455        if (badDef)
456          continue;
457
458        // Otherwise test definitions of the destination range.
459        for (VNIIterator
460               vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
461               vniItr != vniEnd; ++vniItr) {
462
463          // We want to make sure we skip the copy instruction itself.
464          if ((*vniItr)->getCopy() == instr)
465            continue;
466
467          if (!(*vniItr)->def.isValid()) {
468            badDef = true;
469            break;
470          }
471
472          if (srcLI->liveAt((*vniItr)->def)) {
473            badDef = true;
474            break;
475          }
476        }
477
478        // As before a bad def we give up and continue to the next instr.
479        if (badDef)
480          continue;
481      }
482
483      // If we make it to here then either the ranges didn't overlap, or they
484      // did, but none of their definitions would prevent us from coalescing.
485      // We're good to go with the coalesce.
486
487      float cBenefit = std::pow(10.0f, (float)loopInfo->getLoopDepth(mbb)) / 5.0;
488
489      coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
490      coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
491    }
492
493  }
494
495  return coalescesFound;
496}
497
498void PBQPRegAlloc::findVRegIntervalsToAlloc() {
499
500  // Iterate over all live ranges.
501  for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
502       itr != end; ++itr) {
503
504    // Ignore physical ones.
505    if (TargetRegisterInfo::isPhysicalRegister(itr->first))
506      continue;
507
508    LiveInterval *li = itr->second;
509
510    // If this live interval is non-empty we will use pbqp to allocate it.
511    // Empty intervals we allocate in a simple post-processing stage in
512    // finalizeAlloc.
513    if (!li->empty()) {
514      vregIntervalsToAlloc.insert(li);
515    }
516    else {
517      emptyVRegIntervals.insert(li);
518    }
519  }
520}
521
522PBQP::Graph PBQPRegAlloc::constructPBQPProblem() {
523
524  typedef std::vector<const LiveInterval*> LIVector;
525  typedef std::vector<unsigned> RegVector;
526
527  // This will store the physical intervals for easy reference.
528  LIVector physIntervals;
529
530  // Start by clearing the old node <-> live interval mappings & allowed sets
531  li2Node.clear();
532  node2LI.clear();
533  allowedSets.clear();
534
535  // Populate physIntervals, update preg use:
536  for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
537       itr != end; ++itr) {
538
539    if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
540      physIntervals.push_back(itr->second);
541      mri->setPhysRegUsed(itr->second->reg);
542    }
543  }
544
545  // Iterate over vreg intervals, construct live interval <-> node number
546  //  mappings.
547  for (LiveIntervalSet::const_iterator
548       itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
549       itr != end; ++itr) {
550    const LiveInterval *li = *itr;
551
552    li2Node[li] = node2LI.size();
553    node2LI.push_back(li);
554  }
555
556  // Get the set of potential coalesces.
557  CoalesceMap coalesces;
558
559  if (pbqpCoalescing) {
560    coalesces = findCoalesces();
561  }
562
563  // Construct a PBQP solver for this problem
564  PBQP::Graph problem;
565  problemNodes.resize(vregIntervalsToAlloc.size());
566
567  // Resize allowedSets container appropriately.
568  allowedSets.resize(vregIntervalsToAlloc.size());
569
570  // Iterate over virtual register intervals to compute allowed sets...
571  for (unsigned node = 0; node < node2LI.size(); ++node) {
572
573    // Grab pointers to the interval and its register class.
574    const LiveInterval *li = node2LI[node];
575    const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
576
577    // Start by assuming all allocable registers in the class are allowed...
578    RegVector liAllowed(liRC->allocation_order_begin(*mf),
579                        liRC->allocation_order_end(*mf));
580
581    // Eliminate the physical registers which overlap with this range, along
582    // with all their aliases.
583    for (LIVector::iterator pItr = physIntervals.begin(),
584       pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
585
586      if (!li->overlaps(**pItr))
587        continue;
588
589      unsigned pReg = (*pItr)->reg;
590
591      // If we get here then the live intervals overlap, but we're still ok
592      // if they're coalescable.
593      if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
594        continue;
595
596      // If we get here then we have a genuine exclusion.
597
598      // Remove the overlapping reg...
599      RegVector::iterator eraseItr =
600        std::find(liAllowed.begin(), liAllowed.end(), pReg);
601
602      if (eraseItr != liAllowed.end())
603        liAllowed.erase(eraseItr);
604
605      const unsigned *aliasItr = tri->getAliasSet(pReg);
606
607      if (aliasItr != 0) {
608        // ...and its aliases.
609        for (; *aliasItr != 0; ++aliasItr) {
610          RegVector::iterator eraseItr =
611            std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
612
613          if (eraseItr != liAllowed.end()) {
614            liAllowed.erase(eraseItr);
615          }
616        }
617      }
618    }
619
620    // Copy the allowed set into a member vector for use when constructing cost
621    // vectors & matrices, and mapping PBQP solutions back to assignments.
622    allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
623
624    // Set the spill cost to the interval weight, or epsilon if the
625    // interval weight is zero
626    PBQP::PBQPNum spillCost = (li->weight != 0.0) ?
627        li->weight : std::numeric_limits<PBQP::PBQPNum>::min();
628
629    // Build a cost vector for this interval.
630    problemNodes[node] =
631      problem.addNode(
632        buildCostVector(li->reg, allowedSets[node], coalesces, spillCost));
633
634  }
635
636
637  // Now add the cost matrices...
638  for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
639    const LiveInterval *li = node2LI[node1];
640
641    // Test for live range overlaps and insert interference matrices.
642    for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
643      const LiveInterval *li2 = node2LI[node2];
644
645      CoalesceMap::const_iterator cmItr =
646        coalesces.find(RegPair(li->reg, li2->reg));
647
648      PBQP::Matrix *m = 0;
649
650      if (cmItr != coalesces.end()) {
651        m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
652                                  cmItr->second);
653      }
654      else if (li->overlaps(*li2)) {
655        m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
656      }
657
658      if (m != 0) {
659        problem.addEdge(problemNodes[node1],
660                        problemNodes[node2],
661                        *m);
662
663        delete m;
664      }
665    }
666  }
667
668  assert(problem.getNumNodes() == allowedSets.size());
669/*
670  std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
671            << problem.getNumEdges() << " edges.\n";
672
673  problem.printDot(std::cerr);
674*/
675  // We're done, PBQP problem constructed - return it.
676  return problem;
677}
678
679void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
680                                    MachineRegisterInfo* mri) {
681  int stackSlot = vrm->getStackSlot(spilled->reg);
682
683  if (stackSlot == VirtRegMap::NO_STACK_SLOT)
684    return;
685
686  const TargetRegisterClass *RC = mri->getRegClass(spilled->reg);
687  LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot, RC);
688
689  VNInfo *vni;
690  if (stackInterval.getNumValNums() != 0)
691    vni = stackInterval.getValNumInfo(0);
692  else
693    vni = stackInterval.getNextValue(
694      SlotIndex(), 0, false, lss->getVNInfoAllocator());
695
696  LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
697  stackInterval.MergeRangesInAsValue(rhsInterval, vni);
698}
699
700bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
701
702  // Set to true if we have any spills
703  bool anotherRoundNeeded = false;
704
705  // Clear the existing allocation.
706  vrm->clearAllVirt();
707
708  // Iterate over the nodes mapping the PBQP solution to a register assignment.
709  for (unsigned node = 0; node < node2LI.size(); ++node) {
710    unsigned virtReg = node2LI[node]->reg,
711             allocSelection = solution.getSelection(problemNodes[node]);
712
713
714    // If the PBQP solution is non-zero it's a physical register...
715    if (allocSelection != 0) {
716      // Get the physical reg, subtracting 1 to account for the spill option.
717      unsigned physReg = allowedSets[node][allocSelection - 1];
718
719      DEBUG(dbgs() << "VREG " << virtReg << " -> "
720                   << tri->getName(physReg) << "\n");
721
722      assert(physReg != 0);
723
724      // Add to the virt reg map and update the used phys regs.
725      vrm->assignVirt2Phys(virtReg, physReg);
726    }
727    // ...Otherwise it's a spill.
728    else {
729
730      // Make sure we ignore this virtual reg on the next round
731      // of allocation
732      vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
733
734      // Insert spill ranges for this live range
735      const LiveInterval *spillInterval = node2LI[node];
736      double oldSpillWeight = spillInterval->weight;
737      SmallVector<LiveInterval*, 8> spillIs;
738      std::vector<LiveInterval*> newSpills =
739        lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm);
740      addStackInterval(spillInterval, mri);
741
742      (void) oldSpillWeight;
743      DEBUG(dbgs() << "VREG " << virtReg << " -> SPILLED (Cost: "
744                   << oldSpillWeight << ", New vregs: ");
745
746      // Copy any newly inserted live intervals into the list of regs to
747      // allocate.
748      for (std::vector<LiveInterval*>::const_iterator
749           itr = newSpills.begin(), end = newSpills.end();
750           itr != end; ++itr) {
751
752        assert(!(*itr)->empty() && "Empty spill range.");
753
754        DEBUG(dbgs() << (*itr)->reg << " ");
755
756        vregIntervalsToAlloc.insert(*itr);
757      }
758
759      DEBUG(dbgs() << ")\n");
760
761      // We need another round if spill intervals were added.
762      anotherRoundNeeded |= !newSpills.empty();
763    }
764  }
765
766  return !anotherRoundNeeded;
767}
768
769void PBQPRegAlloc::finalizeAlloc() const {
770  typedef LiveIntervals::iterator LIIterator;
771  typedef LiveInterval::Ranges::const_iterator LRIterator;
772
773  // First allocate registers for the empty intervals.
774  for (LiveIntervalSet::const_iterator
775         itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
776         itr != end; ++itr) {
777    LiveInterval *li = *itr;
778
779    unsigned physReg = vrm->getRegAllocPref(li->reg);
780
781    if (physReg == 0) {
782      const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
783      physReg = *liRC->allocation_order_begin(*mf);
784    }
785
786    vrm->assignVirt2Phys(li->reg, physReg);
787  }
788
789  // Finally iterate over the basic blocks to compute and set the live-in sets.
790  SmallVector<MachineBasicBlock*, 8> liveInMBBs;
791  MachineBasicBlock *entryMBB = &*mf->begin();
792
793  for (LIIterator liItr = lis->begin(), liEnd = lis->end();
794       liItr != liEnd; ++liItr) {
795
796    const LiveInterval *li = liItr->second;
797    unsigned reg = 0;
798
799    // Get the physical register for this interval
800    if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
801      reg = li->reg;
802    }
803    else if (vrm->isAssignedReg(li->reg)) {
804      reg = vrm->getPhys(li->reg);
805    }
806    else {
807      // Ranges which are assigned a stack slot only are ignored.
808      continue;
809    }
810
811    if (reg == 0) {
812      // Filter out zero regs - they're for intervals that were spilled.
813      continue;
814    }
815
816    // Iterate over the ranges of the current interval...
817    for (LRIterator lrItr = li->begin(), lrEnd = li->end();
818         lrItr != lrEnd; ++lrItr) {
819
820      // Find the set of basic blocks which this range is live into...
821      if (lis->findLiveInMBBs(lrItr->start, lrItr->end,  liveInMBBs)) {
822        // And add the physreg for this interval to their live-in sets.
823        for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
824          if (liveInMBBs[i] != entryMBB) {
825            if (!liveInMBBs[i]->isLiveIn(reg)) {
826              liveInMBBs[i]->addLiveIn(reg);
827            }
828          }
829        }
830        liveInMBBs.clear();
831      }
832    }
833  }
834
835}
836
837bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
838
839  mf = &MF;
840  tm = &mf->getTarget();
841  tri = tm->getRegisterInfo();
842  tii = tm->getInstrInfo();
843  mri = &mf->getRegInfo();
844
845  lis = &getAnalysis<LiveIntervals>();
846  lss = &getAnalysis<LiveStacks>();
847  loopInfo = &getAnalysis<MachineLoopInfo>();
848
849  vrm = &getAnalysis<VirtRegMap>();
850
851  DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n");
852
853  // Allocator main loop:
854  //
855  // * Map current regalloc problem to a PBQP problem
856  // * Solve the PBQP problem
857  // * Map the solution back to a register allocation
858  // * Spill if necessary
859  //
860  // This process is continued till no more spills are generated.
861
862  // Find the vreg intervals in need of allocation.
863  findVRegIntervalsToAlloc();
864
865  // If there are non-empty intervals allocate them using pbqp.
866  if (!vregIntervalsToAlloc.empty()) {
867
868    bool pbqpAllocComplete = false;
869    unsigned round = 0;
870
871    while (!pbqpAllocComplete) {
872      DEBUG(dbgs() << "  PBQP Regalloc round " << round << ":\n");
873
874      PBQP::Graph problem = constructPBQPProblem();
875      PBQP::Solution solution =
876        PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(problem);
877
878      pbqpAllocComplete = mapPBQPToRegAlloc(solution);
879
880      ++round;
881    }
882  }
883
884  // Finalise allocation, allocate empty ranges.
885  finalizeAlloc();
886
887  vregIntervalsToAlloc.clear();
888  emptyVRegIntervals.clear();
889  li2Node.clear();
890  node2LI.clear();
891  allowedSets.clear();
892  problemNodes.clear();
893
894  DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
895
896  // Run rewriter
897  std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
898
899  rewriter->runOnMachineFunction(*mf, *vrm, lis);
900
901  return true;
902}
903
904FunctionPass* llvm::createPBQPRegisterAllocator() {
905  return new PBQPRegAlloc();
906}
907
908
909#undef DEBUG_TYPE
910