RegAllocPBQP.cpp revision d735b8019b0f297d7c14b55adcd887af24d8e602
1//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11// register allocator for LLVM. This allocator works by constructing a PBQP
12// problem representing the register allocation problem under consideration,
13// solving this using a PBQP solver, and mapping the solution back to a
14// register assignment. If any variables are selected for spilling then spill
15// code is inserted and the process repeated.
16//
17// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18// for register allocation. For more information on PBQP for register
19// allocation see the following papers:
20//
21//   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22//   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23//   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24//
25//   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26//   architectures. In Proceedings of the Joint Conference on Languages,
27//   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28//   NY, USA, 139-148.
29//
30// Author: Lang Hames
31// Email: lhames@gmail.com
32//
33//===----------------------------------------------------------------------===//
34
35// TODO:
36//
37// * Use of std::set in constructPBQPProblem destroys allocation order preference.
38// Switch to an order preserving container.
39//
40// * Coalescing support.
41
42#define DEBUG_TYPE "regalloc"
43
44#include "PBQP.h"
45#include "VirtRegMap.h"
46#include "llvm/CodeGen/MachineFunctionPass.h"
47#include "llvm/CodeGen/RegAllocRegistry.h"
48#include "llvm/CodeGen/LiveIntervalAnalysis.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/CodeGen/MachineLoopInfo.h"
51#include "llvm/Target/TargetMachine.h"
52#include "llvm/Target/TargetInstrInfo.h"
53#include "llvm/Support/Debug.h"
54#include <memory>
55#include <map>
56#include <set>
57#include <vector>
58#include <limits>
59
60using namespace llvm;
61
62static RegisterRegAlloc
63registerPBQPRepAlloc("pbqp", "  PBQP register allocator",
64                     createPBQPRegisterAllocator);
65
66
67namespace {
68
69  //!
70  //! PBQP based allocators solve the register allocation problem by mapping
71  //! register allocation problems to Partitioned Boolean Quadratic
72  //! Programming problems.
73  class VISIBILITY_HIDDEN PBQPRegAlloc : public MachineFunctionPass {
74  public:
75
76    static char ID;
77
78    //! Construct a PBQP register allocator.
79    PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID) {}
80
81    //! Return the pass name.
82    virtual const char* getPassName() const throw() {
83      return "PBQP Register Allocator";
84    }
85
86    //! PBQP analysis usage.
87    virtual void getAnalysisUsage(AnalysisUsage &au) const {
88      au.addRequired<LiveIntervals>();
89      au.addRequired<MachineLoopInfo>();
90      MachineFunctionPass::getAnalysisUsage(au);
91    }
92
93    //! Perform register allocation
94    virtual bool runOnMachineFunction(MachineFunction &MF);
95
96  private:
97    typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
98    typedef std::vector<const LiveInterval*> Node2LIMap;
99    typedef std::vector<unsigned> AllowedSet;
100    typedef std::vector<AllowedSet> AllowedSetMap;
101    typedef std::set<unsigned> IgnoreSet;
102
103    MachineFunction *mf;
104    const TargetMachine *tm;
105    const TargetRegisterInfo *tri;
106    const TargetInstrInfo *tii;
107    const MachineLoopInfo *loopInfo;
108    MachineRegisterInfo *mri;
109
110    LiveIntervals *li;
111    VirtRegMap *vrm;
112
113    LI2NodeMap li2Node;
114    Node2LIMap node2LI;
115    AllowedSetMap allowedSets;
116    IgnoreSet ignoreSet;
117
118    //! Builds a PBQP cost vector.
119    template <typename Container>
120    PBQPVector* buildCostVector(const Container &allowed,
121                                PBQPNum spillCost) const;
122
123    //! \brief Builds a PBQP interfernce matrix.
124    //!
125    //! @return Either a pointer to a non-zero PBQP matrix representing the
126    //!         allocation option costs, or a null pointer for a zero matrix.
127    //!
128    //! Expects allowed sets for two interfering LiveIntervals. These allowed
129    //! sets should contain only allocable registers from the LiveInterval's
130    //! register class, with any interfering pre-colored registers removed.
131    template <typename Container>
132    PBQPMatrix* buildInterferenceMatrix(const Container &allowed1,
133                                        const Container &allowed2) const;
134
135    //!
136    //! Expects allowed sets for two potentially coalescable LiveIntervals,
137    //! and an estimated benefit due to coalescing. The allowed sets should
138    //! contain only allocable registers from the LiveInterval's register
139    //! classes, with any interfering pre-colored registers removed.
140    template <typename Container>
141    PBQPMatrix* buildCoalescingMatrix(const Container &allowed1,
142                                      const Container &allowed2,
143                                      PBQPNum cBenefit) const;
144
145    //! \brief Helper functior for constructInitialPBQPProblem().
146    //!
147    //! This function iterates over the Function we are about to allocate for
148    //! and computes spill costs.
149    void calcSpillCosts();
150
151    //! \brief Scans the MachineFunction being allocated to find coalescing
152    //  opportunities.
153    void findCoalescingOpportunities();
154
155    //! \brief Constructs a PBQP problem representation of the register
156    //! allocation problem for this function.
157    //!
158    //! @return a PBQP solver object for the register allocation problem.
159    pbqp* constructPBQPProblem();
160
161    //! \brief Given a solved PBQP problem maps this solution back to a register
162    //! assignment.
163    bool mapPBQPToRegAlloc(pbqp *problem);
164
165  };
166
167  char PBQPRegAlloc::ID = 0;
168}
169
170
171template <typename Container>
172PBQPVector* PBQPRegAlloc::buildCostVector(const Container &allowed,
173                                          PBQPNum spillCost) const {
174
175  // Allocate vector. Additional element (0th) used for spill option
176  PBQPVector *v = new PBQPVector(allowed.size() + 1);
177
178  (*v)[0] = spillCost;
179
180  return v;
181}
182
183template <typename Container>
184PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
185      const Container &allowed1, const Container &allowed2) const {
186
187  typedef typename Container::const_iterator ContainerIterator;
188
189  // Construct a PBQP matrix representing the cost of allocation options. The
190  // rows and columns correspond to the allocation options for the two live
191  // intervals.  Elements will be infinite where corresponding registers alias,
192  // since we cannot allocate aliasing registers to interfering live intervals.
193  // All other elements (non-aliasing combinations) will have zero cost. Note
194  // that the spill option (element 0,0) has zero cost, since we can allocate
195  // both intervals to memory safely (the cost for each individual allocation
196  // to memory is accounted for by the cost vectors for each live interval).
197  PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
198
199  // Assume this is a zero matrix until proven otherwise.  Zero matrices occur
200  // between interfering live ranges with non-overlapping register sets (e.g.
201  // non-overlapping reg classes, or disjoint sets of allowed regs within the
202  // same class). The term "overlapping" is used advisedly: sets which do not
203  // intersect, but contain registers which alias, will have non-zero matrices.
204  // We optimize zero matrices away to improve solver speed.
205  bool isZeroMatrix = true;
206
207
208  // Row index. Starts at 1, since the 0th row is for the spill option, which
209  // is always zero.
210  unsigned ri = 1;
211
212  // Iterate over allowed sets, insert infinities where required.
213  for (ContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
214       a1Itr != a1End; ++a1Itr) {
215
216    // Column index, starts at 1 as for row index.
217    unsigned ci = 1;
218    unsigned reg1 = *a1Itr;
219
220    for (ContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
221         a2Itr != a2End; ++a2Itr) {
222
223      unsigned reg2 = *a2Itr;
224
225      // If the row/column regs are identical or alias insert an infinity.
226      if ((reg1 == reg2) || tri->areAliases(reg1, reg2)) {
227        (*m)[ri][ci] = std::numeric_limits<PBQPNum>::infinity();
228        isZeroMatrix = false;
229      }
230
231      ++ci;
232    }
233
234    ++ri;
235  }
236
237  // If this turns out to be a zero matrix...
238  if (isZeroMatrix) {
239    // free it and return null.
240    delete m;
241    return 0;
242  }
243
244  // ...otherwise return the cost matrix.
245  return m;
246}
247
248void PBQPRegAlloc::calcSpillCosts() {
249
250  // Calculate the spill cost for each live interval by iterating over the
251  // function counting loads and stores, with loop depth taken into account.
252  for (MachineFunction::const_iterator bbItr = mf->begin(), bbEnd = mf->end();
253       bbItr != bbEnd; ++bbItr) {
254
255    const MachineBasicBlock *mbb = &*bbItr;
256    float loopDepth = loopInfo->getLoopDepth(mbb);
257
258    for (MachineBasicBlock::const_iterator
259         iItr = mbb->begin(), iEnd = mbb->end(); iItr != iEnd; ++iItr) {
260
261      const MachineInstr *instr = &*iItr;
262
263      for (unsigned opNo = 0; opNo < instr->getNumOperands(); ++opNo) {
264
265        const MachineOperand &mo = instr->getOperand(opNo);
266
267        // We're not interested in non-registers...
268        if (!mo.isReg())
269          continue;
270
271        unsigned moReg = mo.getReg();
272
273        // ...Or invalid registers...
274        if (moReg == 0)
275          continue;
276
277        // ...Or physical registers...
278        if (TargetRegisterInfo::isPhysicalRegister(moReg))
279          continue;
280
281        assert ((mo.isUse() || mo.isDef()) &&
282                "Not a use, not a def, what is it?");
283
284	//... Just the virtual registers. We treat loads and stores as equal.
285	li->getInterval(moReg).weight += powf(10.0f, loopDepth);
286      }
287
288    }
289
290  }
291
292}
293
294pbqp* PBQPRegAlloc::constructPBQPProblem() {
295
296  typedef std::vector<const LiveInterval*> LIVector;
297  typedef std::set<unsigned> RegSet;
298
299  // These will store the physical & virtual intervals, respectively.
300  LIVector physIntervals, virtIntervals;
301
302  // Start by clearing the old node <-> live interval mappings & allowed sets
303  li2Node.clear();
304  node2LI.clear();
305  allowedSets.clear();
306
307  // Iterate over intervals classifying them as physical or virtual, and
308  // constructing live interval <-> node number mappings.
309  for (LiveIntervals::iterator itr = li->begin(), end = li->end();
310       itr != end; ++itr) {
311
312    if (itr->second->getNumValNums() != 0) {
313      DOUT << "Live range has " << itr->second->getNumValNums() << ": " << itr->second << "\n";
314    }
315
316    if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
317      physIntervals.push_back(itr->second);
318      mri->setPhysRegUsed(itr->second->reg);
319    }
320    else {
321
322      // If we've allocated this virtual register interval a stack slot on a
323      // previous round then it's not an allocation candidate
324      if (ignoreSet.find(itr->first) != ignoreSet.end())
325        continue;
326
327      li2Node[itr->second] = node2LI.size();
328      node2LI.push_back(itr->second);
329      virtIntervals.push_back(itr->second);
330    }
331  }
332
333  // Early out if there's no regs to allocate for.
334  if (virtIntervals.empty())
335    return 0;
336
337  // Construct a PBQP solver for this problem
338  pbqp *solver = alloc_pbqp(virtIntervals.size());
339
340  // Resize allowedSets container appropriately.
341  allowedSets.resize(virtIntervals.size());
342
343  // Iterate over virtual register intervals to compute allowed sets...
344  for (unsigned node = 0; node < node2LI.size(); ++node) {
345
346    // Grab pointers to the interval and its register class.
347    const LiveInterval *li = node2LI[node];
348    const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
349
350    // Start by assuming all allocable registers in the class are allowed...
351    RegSet liAllowed(liRC->allocation_order_begin(*mf),
352                     liRC->allocation_order_end(*mf));
353
354    // If this range is non-empty then eliminate the physical registers which
355    // overlap with this range, along with all their aliases.
356    if (!li->empty()) {
357      for (LIVector::iterator pItr = physIntervals.begin(),
358           pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
359
360        if (li->overlaps(**pItr)) {
361
362          unsigned pReg = (*pItr)->reg;
363
364          // Remove the overlapping reg...
365          liAllowed.erase(pReg);
366
367          const unsigned *aliasItr = tri->getAliasSet(pReg);
368
369          if (aliasItr != 0) {
370            // ...and its aliases.
371            for (; *aliasItr != 0; ++aliasItr) {
372              liAllowed.erase(*aliasItr);
373            }
374
375          }
376
377        }
378
379      }
380
381    }
382
383    // Copy the allowed set into a member vector for use when constructing cost
384    // vectors & matrices, and mapping PBQP solutions back to assignments.
385    allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
386
387    // Set the spill cost to the interval weight, or epsilon if the
388    // interval weight is zero
389    PBQPNum spillCost = (li->weight != 0.0) ?
390        li->weight : std::numeric_limits<PBQPNum>::min();
391
392    // Build a cost vector for this interval.
393    add_pbqp_nodecosts(solver, node,
394                       buildCostVector(allowedSets[node], spillCost));
395
396  }
397
398  // Now add the cost matrices...
399  for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
400
401    const LiveInterval *li = node2LI[node1];
402
403    if (li->empty())
404      continue;
405
406    // Test for live range overlaps and insert interference matrices.
407    for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
408      const LiveInterval *li2 = node2LI[node2];
409
410      if (li2->empty())
411        continue;
412
413      if (li->overlaps(*li2)) {
414        PBQPMatrix *m =
415          buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
416
417        if (m != 0) {
418          add_pbqp_edgecosts(solver, node1, node2, m);
419          delete m;
420        }
421      }
422    }
423  }
424
425  // We're done, PBQP problem constructed - return it.
426  return solver;
427}
428
429bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
430
431  // Set to true if we have any spills
432  bool anotherRoundNeeded = false;
433
434  // Clear the existing allocation.
435  vrm->clearAllVirt();
436
437  // Iterate over the nodes mapping the PBQP solution to a register assignment.
438  for (unsigned node = 0; node < node2LI.size(); ++node) {
439    unsigned symReg = node2LI[node]->reg,
440             allocSelection = get_pbqp_solution(problem, node);
441
442    // If the PBQP solution is non-zero it's a physical register...
443    if (allocSelection != 0) {
444      // Get the physical reg, subtracting 1 to account for the spill option.
445      unsigned physReg = allowedSets[node][allocSelection - 1];
446
447      // Add to the virt reg map and update the used phys regs.
448      vrm->assignVirt2Phys(symReg, physReg);
449      mri->setPhysRegUsed(physReg);
450    }
451    // ...Otherwise it's a spill.
452    else {
453
454      // Make sure we ignore this virtual reg on the next round
455      // of allocation
456      ignoreSet.insert(node2LI[node]->reg);
457
458      float SSWeight;
459
460      // Insert spill ranges for this live range
461      SmallVector<LiveInterval*, 8> spillIs;
462      std::vector<LiveInterval*> newSpills =
463        li->addIntervalsForSpills(*node2LI[node], spillIs, loopInfo, *vrm,
464                                  SSWeight);
465
466      // We need another round if spill intervals were added.
467      anotherRoundNeeded |= !newSpills.empty();
468    }
469  }
470
471  return !anotherRoundNeeded;
472}
473
474bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
475
476  mf = &MF;
477  tm = &mf->getTarget();
478  tri = tm->getRegisterInfo();
479  mri = &mf->getRegInfo();
480
481  li = &getAnalysis<LiveIntervals>();
482  loopInfo = &getAnalysis<MachineLoopInfo>();
483
484  std::auto_ptr<VirtRegMap> vrmAutoPtr(new VirtRegMap(*mf));
485  vrm = vrmAutoPtr.get();
486
487  // Allocator main loop:
488  //
489  // * Map current regalloc problem to a PBQP problem
490  // * Solve the PBQP problem
491  // * Map the solution back to a register allocation
492  // * Spill if necessary
493  //
494  // This process is continued till no more spills are generated.
495
496  bool regallocComplete = false;
497
498  // Calculate spill costs for intervals
499  calcSpillCosts();
500
501  while (!regallocComplete) {
502    pbqp *problem = constructPBQPProblem();
503
504    // Fast out if there's no problem to solve.
505    if (problem == 0)
506      return true;
507
508    solve_pbqp(problem);
509
510    regallocComplete = mapPBQPToRegAlloc(problem);
511
512    free_pbqp(problem);
513  }
514
515  ignoreSet.clear();
516
517  std::auto_ptr<Spiller> spiller(createSpiller());
518
519  spiller->runOnMachineFunction(*mf, *vrm);
520
521  return true;
522}
523
524FunctionPass* llvm::createPBQPRegisterAllocator() {
525  return new PBQPRegAlloc();
526}
527
528
529#undef DEBUG_TYPE
530