ScheduleDAGRRList.cpp revision 0d93a110e31b384f59d91d6be27388d8ded5f03c
1//===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms.  The basic approach uses a priority
12// queue of available nodes to schedule.  One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "pre-RA-sched"
19#include "ScheduleDAGSDNodes.h"
20#include "llvm/InlineAsm.h"
21#include "llvm/CodeGen/SchedulerRegistry.h"
22#include "llvm/CodeGen/SelectionDAGISel.h"
23#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
24#include "llvm/Target/TargetRegisterInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include <climits>
36using namespace llvm;
37
38STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
39STATISTIC(NumUnfolds,    "Number of nodes unfolded");
40STATISTIC(NumDups,       "Number of duplicated nodes");
41STATISTIC(NumPRCopies,   "Number of physical register copies");
42
43static RegisterScheduler
44  burrListDAGScheduler("list-burr",
45                       "Bottom-up register reduction list scheduling",
46                       createBURRListDAGScheduler);
47static RegisterScheduler
48  tdrListrDAGScheduler("list-tdrr",
49                       "Top-down register reduction list scheduling",
50                       createTDRRListDAGScheduler);
51static RegisterScheduler
52  sourceListDAGScheduler("source",
53                         "Similar to list-burr but schedules in source "
54                         "order when possible",
55                         createSourceListDAGScheduler);
56
57static RegisterScheduler
58  hybridListDAGScheduler("list-hybrid",
59                         "Bottom-up register pressure aware list scheduling "
60                         "which tries to balance latency and register pressure",
61                         createHybridListDAGScheduler);
62
63static RegisterScheduler
64  ILPListDAGScheduler("list-ilp",
65                      "Bottom-up register pressure aware list scheduling "
66                      "which tries to balance ILP and register pressure",
67                      createILPListDAGScheduler);
68
69static cl::opt<bool> DisableSchedCycles(
70  "disable-sched-cycles", cl::Hidden, cl::init(false),
71  cl::desc("Disable cycle-level precision during preRA scheduling"));
72
73// Temporary sched=list-ilp flags until the heuristics are robust.
74static cl::opt<bool> DisableSchedRegPressure(
75  "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
76  cl::desc("Disable regpressure priority in sched=list-ilp"));
77static cl::opt<bool> DisableSchedLiveUses(
78  "disable-sched-live-uses", cl::Hidden, cl::init(true),
79  cl::desc("Disable live use priority in sched=list-ilp"));
80static cl::opt<bool> DisableSchedStalls(
81  "disable-sched-stalls", cl::Hidden, cl::init(true),
82  cl::desc("Disable no-stall priority in sched=list-ilp"));
83static cl::opt<bool> DisableSchedCriticalPath(
84  "disable-sched-critical-path", cl::Hidden, cl::init(false),
85  cl::desc("Disable critical path priority in sched=list-ilp"));
86static cl::opt<bool> DisableSchedHeight(
87  "disable-sched-height", cl::Hidden, cl::init(false),
88  cl::desc("Disable scheduled-height priority in sched=list-ilp"));
89
90static cl::opt<int> MaxReorderWindow(
91  "max-sched-reorder", cl::Hidden, cl::init(6),
92  cl::desc("Number of instructions to allow ahead of the critical path "
93           "in sched=list-ilp"));
94
95static cl::opt<unsigned> AvgIPC(
96  "sched-avg-ipc", cl::Hidden, cl::init(1),
97  cl::desc("Average inst/cycle whan no target itinerary exists."));
98
99#ifndef NDEBUG
100namespace {
101  // For sched=list-ilp, Count the number of times each factor comes into play.
102  enum { FactPressureDiff, FactRegUses, FactHeight, FactDepth, FactStatic,
103         FactOther, NumFactors };
104}
105static const char *FactorName[NumFactors] =
106{"PressureDiff", "RegUses", "Height", "Depth","Static", "Other"};
107static int FactorCount[NumFactors];
108#endif //!NDEBUG
109
110namespace {
111//===----------------------------------------------------------------------===//
112/// ScheduleDAGRRList - The actual register reduction list scheduler
113/// implementation.  This supports both top-down and bottom-up scheduling.
114///
115class ScheduleDAGRRList : public ScheduleDAGSDNodes {
116private:
117  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
118  /// it is top-down.
119  bool isBottomUp;
120
121  /// NeedLatency - True if the scheduler will make use of latency information.
122  ///
123  bool NeedLatency;
124
125  /// AvailableQueue - The priority queue to use for the available SUnits.
126  SchedulingPriorityQueue *AvailableQueue;
127
128  /// PendingQueue - This contains all of the instructions whose operands have
129  /// been issued, but their results are not ready yet (due to the latency of
130  /// the operation).  Once the operands becomes available, the instruction is
131  /// added to the AvailableQueue.
132  std::vector<SUnit*> PendingQueue;
133
134  /// HazardRec - The hazard recognizer to use.
135  ScheduleHazardRecognizer *HazardRec;
136
137  /// CurCycle - The current scheduler state corresponds to this cycle.
138  unsigned CurCycle;
139
140  /// MinAvailableCycle - Cycle of the soonest available instruction.
141  unsigned MinAvailableCycle;
142
143  /// IssueCount - Count instructions issued in this cycle
144  /// Currently valid only for bottom-up scheduling.
145  unsigned IssueCount;
146
147  /// LiveRegDefs - A set of physical registers and their definition
148  /// that are "live". These nodes must be scheduled before any other nodes that
149  /// modifies the registers can be scheduled.
150  unsigned NumLiveRegs;
151  std::vector<SUnit*> LiveRegDefs;
152  std::vector<SUnit*> LiveRegGens;
153
154  /// Topo - A topological ordering for SUnits which permits fast IsReachable
155  /// and similar queries.
156  ScheduleDAGTopologicalSort Topo;
157
158public:
159  ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
160                    SchedulingPriorityQueue *availqueue,
161                    CodeGenOpt::Level OptLevel)
162    : ScheduleDAGSDNodes(mf), isBottomUp(availqueue->isBottomUp()),
163      NeedLatency(needlatency), AvailableQueue(availqueue), CurCycle(0),
164      Topo(SUnits) {
165
166    const TargetMachine &tm = mf.getTarget();
167    if (DisableSchedCycles || !NeedLatency)
168      HazardRec = new ScheduleHazardRecognizer();
169    else
170      HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(&tm, this);
171  }
172
173  ~ScheduleDAGRRList() {
174    delete HazardRec;
175    delete AvailableQueue;
176  }
177
178  void Schedule();
179
180  ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
181
182  /// IsReachable - Checks if SU is reachable from TargetSU.
183  bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
184    return Topo.IsReachable(SU, TargetSU);
185  }
186
187  /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
188  /// create a cycle.
189  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
190    return Topo.WillCreateCycle(SU, TargetSU);
191  }
192
193  /// AddPred - adds a predecessor edge to SUnit SU.
194  /// This returns true if this is a new predecessor.
195  /// Updates the topological ordering if required.
196  void AddPred(SUnit *SU, const SDep &D) {
197    Topo.AddPred(SU, D.getSUnit());
198    SU->addPred(D);
199  }
200
201  /// RemovePred - removes a predecessor edge from SUnit SU.
202  /// This returns true if an edge was removed.
203  /// Updates the topological ordering if required.
204  void RemovePred(SUnit *SU, const SDep &D) {
205    Topo.RemovePred(SU, D.getSUnit());
206    SU->removePred(D);
207  }
208
209private:
210  bool isReady(SUnit *SU) {
211    return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
212      AvailableQueue->isReady(SU);
213  }
214
215  void ReleasePred(SUnit *SU, const SDep *PredEdge);
216  void ReleasePredecessors(SUnit *SU);
217  void ReleaseSucc(SUnit *SU, const SDep *SuccEdge);
218  void ReleaseSuccessors(SUnit *SU);
219  void ReleasePending();
220  void AdvanceToCycle(unsigned NextCycle);
221  void AdvancePastStalls(SUnit *SU);
222  void EmitNode(SUnit *SU);
223  void ScheduleNodeBottomUp(SUnit*);
224  void CapturePred(SDep *PredEdge);
225  void UnscheduleNodeBottomUp(SUnit*);
226  void RestoreHazardCheckerBottomUp();
227  void BacktrackBottomUp(SUnit*, SUnit*);
228  SUnit *CopyAndMoveSuccessors(SUnit*);
229  void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
230                                const TargetRegisterClass*,
231                                const TargetRegisterClass*,
232                                SmallVector<SUnit*, 2>&);
233  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
234
235  SUnit *PickNodeToScheduleBottomUp();
236  void ListScheduleBottomUp();
237
238  void ScheduleNodeTopDown(SUnit*);
239  void ListScheduleTopDown();
240
241
242  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
243  /// Updates the topological ordering if required.
244  SUnit *CreateNewSUnit(SDNode *N) {
245    unsigned NumSUnits = SUnits.size();
246    SUnit *NewNode = NewSUnit(N);
247    // Update the topological ordering.
248    if (NewNode->NodeNum >= NumSUnits)
249      Topo.InitDAGTopologicalSorting();
250    return NewNode;
251  }
252
253  /// CreateClone - Creates a new SUnit from an existing one.
254  /// Updates the topological ordering if required.
255  SUnit *CreateClone(SUnit *N) {
256    unsigned NumSUnits = SUnits.size();
257    SUnit *NewNode = Clone(N);
258    // Update the topological ordering.
259    if (NewNode->NodeNum >= NumSUnits)
260      Topo.InitDAGTopologicalSorting();
261    return NewNode;
262  }
263
264  /// ForceUnitLatencies - Register-pressure-reducing scheduling doesn't
265  /// need actual latency information but the hybrid scheduler does.
266  bool ForceUnitLatencies() const {
267    return !NeedLatency;
268  }
269};
270}  // end anonymous namespace
271
272
273/// Schedule - Schedule the DAG using list scheduling.
274void ScheduleDAGRRList::Schedule() {
275  DEBUG(dbgs()
276        << "********** List Scheduling BB#" << BB->getNumber()
277        << " '" << BB->getName() << "' **********\n");
278#ifndef NDEBUG
279  for (int i = 0; i < NumFactors; ++i) {
280    FactorCount[i] = 0;
281  }
282#endif //!NDEBUG
283
284  CurCycle = 0;
285  IssueCount = 0;
286  MinAvailableCycle = DisableSchedCycles ? 0 : UINT_MAX;
287  NumLiveRegs = 0;
288  LiveRegDefs.resize(TRI->getNumRegs(), NULL);
289  LiveRegGens.resize(TRI->getNumRegs(), NULL);
290
291  // Build the scheduling graph.
292  BuildSchedGraph(NULL);
293
294  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
295          SUnits[su].dumpAll(this));
296  Topo.InitDAGTopologicalSorting();
297
298  AvailableQueue->initNodes(SUnits);
299
300  HazardRec->Reset();
301
302  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
303  if (isBottomUp)
304    ListScheduleBottomUp();
305  else
306    ListScheduleTopDown();
307
308#ifndef NDEBUG
309  for (int i = 0; i < NumFactors; ++i) {
310    DEBUG(dbgs() << FactorName[i] << "\t" << FactorCount[i] << "\n");
311  }
312#endif // !NDEBUG
313  AvailableQueue->releaseState();
314}
315
316//===----------------------------------------------------------------------===//
317//  Bottom-Up Scheduling
318//===----------------------------------------------------------------------===//
319
320/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
321/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
322void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
323  SUnit *PredSU = PredEdge->getSUnit();
324
325#ifndef NDEBUG
326  if (PredSU->NumSuccsLeft == 0) {
327    dbgs() << "*** Scheduling failed! ***\n";
328    PredSU->dump(this);
329    dbgs() << " has been released too many times!\n";
330    llvm_unreachable(0);
331  }
332#endif
333  --PredSU->NumSuccsLeft;
334
335  if (!ForceUnitLatencies()) {
336    // Updating predecessor's height. This is now the cycle when the
337    // predecessor can be scheduled without causing a pipeline stall.
338    PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
339  }
340
341  // If all the node's successors are scheduled, this node is ready
342  // to be scheduled. Ignore the special EntrySU node.
343  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
344    PredSU->isAvailable = true;
345
346    unsigned Height = PredSU->getHeight();
347    if (Height < MinAvailableCycle)
348      MinAvailableCycle = Height;
349
350    if (isReady(PredSU)) {
351      AvailableQueue->push(PredSU);
352    }
353    // CapturePred and others may have left the node in the pending queue, avoid
354    // adding it twice.
355    else if (!PredSU->isPending) {
356      PredSU->isPending = true;
357      PendingQueue.push_back(PredSU);
358    }
359  }
360}
361
362/// Call ReleasePred for each predecessor, then update register live def/gen.
363/// Always update LiveRegDefs for a register dependence even if the current SU
364/// also defines the register. This effectively create one large live range
365/// across a sequence of two-address node. This is important because the
366/// entire chain must be scheduled together. Example:
367///
368/// flags = (3) add
369/// flags = (2) addc flags
370/// flags = (1) addc flags
371///
372/// results in
373///
374/// LiveRegDefs[flags] = 3
375/// LiveRegGens[flags] = 1
376///
377/// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
378/// interference on flags.
379void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
380  // Bottom up: release predecessors
381  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
382       I != E; ++I) {
383    ReleasePred(SU, &*I);
384    if (I->isAssignedRegDep()) {
385      // This is a physical register dependency and it's impossible or
386      // expensive to copy the register. Make sure nothing that can
387      // clobber the register is scheduled between the predecessor and
388      // this node.
389      SUnit *RegDef = LiveRegDefs[I->getReg()]; (void)RegDef;
390      assert((!RegDef || RegDef == SU || RegDef == I->getSUnit()) &&
391             "interference on register dependence");
392      LiveRegDefs[I->getReg()] = I->getSUnit();
393      if (!LiveRegGens[I->getReg()]) {
394        ++NumLiveRegs;
395        LiveRegGens[I->getReg()] = SU;
396      }
397    }
398  }
399}
400
401/// Check to see if any of the pending instructions are ready to issue.  If
402/// so, add them to the available queue.
403void ScheduleDAGRRList::ReleasePending() {
404  if (DisableSchedCycles) {
405    assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
406    return;
407  }
408
409  // If the available queue is empty, it is safe to reset MinAvailableCycle.
410  if (AvailableQueue->empty())
411    MinAvailableCycle = UINT_MAX;
412
413  // Check to see if any of the pending instructions are ready to issue.  If
414  // so, add them to the available queue.
415  for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
416    unsigned ReadyCycle =
417      isBottomUp ? PendingQueue[i]->getHeight() : PendingQueue[i]->getDepth();
418    if (ReadyCycle < MinAvailableCycle)
419      MinAvailableCycle = ReadyCycle;
420
421    if (PendingQueue[i]->isAvailable) {
422      if (!isReady(PendingQueue[i]))
423          continue;
424      AvailableQueue->push(PendingQueue[i]);
425    }
426    PendingQueue[i]->isPending = false;
427    PendingQueue[i] = PendingQueue.back();
428    PendingQueue.pop_back();
429    --i; --e;
430  }
431}
432
433/// Move the scheduler state forward by the specified number of Cycles.
434void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
435  if (NextCycle <= CurCycle)
436    return;
437
438  IssueCount = 0;
439  AvailableQueue->setCurCycle(NextCycle);
440  if (!HazardRec->isEnabled()) {
441    // Bypass lots of virtual calls in case of long latency.
442    CurCycle = NextCycle;
443  }
444  else {
445    for (; CurCycle != NextCycle; ++CurCycle) {
446      if (isBottomUp)
447        HazardRec->RecedeCycle();
448      else
449        HazardRec->AdvanceCycle();
450    }
451  }
452  // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
453  // available Q to release pending nodes at least once before popping.
454  ReleasePending();
455}
456
457/// Move the scheduler state forward until the specified node's dependents are
458/// ready and can be scheduled with no resource conflicts.
459void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
460  if (DisableSchedCycles)
461    return;
462
463  unsigned ReadyCycle = isBottomUp ? SU->getHeight() : SU->getDepth();
464
465  // Bump CurCycle to account for latency. We assume the latency of other
466  // available instructions may be hidden by the stall (not a full pipe stall).
467  // This updates the hazard recognizer's cycle before reserving resources for
468  // this instruction.
469  AdvanceToCycle(ReadyCycle);
470
471  // Calls are scheduled in their preceding cycle, so don't conflict with
472  // hazards from instructions after the call. EmitNode will reset the
473  // scoreboard state before emitting the call.
474  if (isBottomUp && SU->isCall)
475    return;
476
477  // FIXME: For resource conflicts in very long non-pipelined stages, we
478  // should probably skip ahead here to avoid useless scoreboard checks.
479  int Stalls = 0;
480  while (true) {
481    ScheduleHazardRecognizer::HazardType HT =
482      HazardRec->getHazardType(SU, isBottomUp ? -Stalls : Stalls);
483
484    if (HT == ScheduleHazardRecognizer::NoHazard)
485      break;
486
487    ++Stalls;
488  }
489  AdvanceToCycle(CurCycle + Stalls);
490}
491
492/// Record this SUnit in the HazardRecognizer.
493/// Does not update CurCycle.
494void ScheduleDAGRRList::EmitNode(SUnit *SU) {
495  if (!HazardRec->isEnabled())
496    return;
497
498  // Check for phys reg copy.
499  if (!SU->getNode())
500    return;
501
502  switch (SU->getNode()->getOpcode()) {
503  default:
504    assert(SU->getNode()->isMachineOpcode() &&
505           "This target-independent node should not be scheduled.");
506    break;
507  case ISD::MERGE_VALUES:
508  case ISD::TokenFactor:
509  case ISD::CopyToReg:
510  case ISD::CopyFromReg:
511  case ISD::EH_LABEL:
512    // Noops don't affect the scoreboard state. Copies are likely to be
513    // removed.
514    return;
515  case ISD::INLINEASM:
516    // For inline asm, clear the pipeline state.
517    HazardRec->Reset();
518    return;
519  }
520  if (isBottomUp && SU->isCall) {
521    // Calls are scheduled with their preceding instructions. For bottom-up
522    // scheduling, clear the pipeline state before emitting.
523    HazardRec->Reset();
524  }
525
526  HazardRec->EmitInstruction(SU);
527
528  if (!isBottomUp && SU->isCall) {
529    HazardRec->Reset();
530  }
531}
532
533/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
534/// count of its predecessors. If a predecessor pending count is zero, add it to
535/// the Available queue.
536void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
537  DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
538  DEBUG(SU->dump(this));
539
540#ifndef NDEBUG
541  if (CurCycle < SU->getHeight())
542    DEBUG(dbgs() << "   Height [" << SU->getHeight() << "] pipeline stall!\n");
543#endif
544
545  // FIXME: Do not modify node height. It may interfere with
546  // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
547  // node its ready cycle can aid heuristics, and after scheduling it can
548  // indicate the scheduled cycle.
549  SU->setHeightToAtLeast(CurCycle);
550
551  // Reserve resources for the scheduled intruction.
552  EmitNode(SU);
553
554  Sequence.push_back(SU);
555
556  AvailableQueue->ScheduledNode(SU);
557
558  // If HazardRec is disabled, and each inst counts as one cycle, then
559  // advance CurCycle before ReleasePredecessors to avoid useles pushed to
560  // PendingQueue for schedulers that implement HasReadyFilter.
561  if (!HazardRec->isEnabled() && AvgIPC < 2)
562    AdvanceToCycle(CurCycle + 1);
563
564  // Update liveness of predecessors before successors to avoid treating a
565  // two-address node as a live range def.
566  ReleasePredecessors(SU);
567
568  // Release all the implicit physical register defs that are live.
569  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
570       I != E; ++I) {
571    // LiveRegDegs[I->getReg()] != SU when SU is a two-address node.
572    if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] == SU) {
573      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
574      --NumLiveRegs;
575      LiveRegDefs[I->getReg()] = NULL;
576      LiveRegGens[I->getReg()] = NULL;
577    }
578  }
579
580  SU->isScheduled = true;
581
582  // Conditions under which the scheduler should eagerly advance the cycle:
583  // (1) No available instructions
584  // (2) All pipelines full, so available instructions must have hazards.
585  //
586  // If HazardRec is disabled, the cycle was advanced earlier.
587  //
588  // Check AvailableQueue after ReleasePredecessors in case of zero latency.
589  ++IssueCount;
590  if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
591      || (!HazardRec->isEnabled() && AvgIPC > 1 && IssueCount == AvgIPC)
592      || AvailableQueue->empty())
593    AdvanceToCycle(CurCycle + 1);
594}
595
596/// CapturePred - This does the opposite of ReleasePred. Since SU is being
597/// unscheduled, incrcease the succ left count of its predecessors. Remove
598/// them from AvailableQueue if necessary.
599void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
600  SUnit *PredSU = PredEdge->getSUnit();
601  if (PredSU->isAvailable) {
602    PredSU->isAvailable = false;
603    if (!PredSU->isPending)
604      AvailableQueue->remove(PredSU);
605  }
606
607  assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
608  ++PredSU->NumSuccsLeft;
609}
610
611/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
612/// its predecessor states to reflect the change.
613void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
614  DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
615  DEBUG(SU->dump(this));
616
617  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
618       I != E; ++I) {
619    CapturePred(&*I);
620    if (I->isAssignedRegDep() && SU == LiveRegGens[I->getReg()]){
621      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
622      assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
623             "Physical register dependency violated?");
624      --NumLiveRegs;
625      LiveRegDefs[I->getReg()] = NULL;
626      LiveRegGens[I->getReg()] = NULL;
627    }
628  }
629
630  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
631       I != E; ++I) {
632    if (I->isAssignedRegDep()) {
633      // This becomes the nearest def. Note that an earlier def may still be
634      // pending if this is a two-address node.
635      LiveRegDefs[I->getReg()] = SU;
636      if (!LiveRegDefs[I->getReg()]) {
637        ++NumLiveRegs;
638      }
639      if (LiveRegGens[I->getReg()] == NULL ||
640          I->getSUnit()->getHeight() < LiveRegGens[I->getReg()]->getHeight())
641        LiveRegGens[I->getReg()] = I->getSUnit();
642    }
643  }
644  if (SU->getHeight() < MinAvailableCycle)
645    MinAvailableCycle = SU->getHeight();
646
647  SU->setHeightDirty();
648  SU->isScheduled = false;
649  SU->isAvailable = true;
650  if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
651    // Don't make available until backtracking is complete.
652    SU->isPending = true;
653    PendingQueue.push_back(SU);
654  }
655  else {
656    AvailableQueue->push(SU);
657  }
658  AvailableQueue->UnscheduledNode(SU);
659}
660
661/// After backtracking, the hazard checker needs to be restored to a state
662/// corresponding the the current cycle.
663void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
664  HazardRec->Reset();
665
666  unsigned LookAhead = std::min((unsigned)Sequence.size(),
667                                HazardRec->getMaxLookAhead());
668  if (LookAhead == 0)
669    return;
670
671  std::vector<SUnit*>::const_iterator I = (Sequence.end() - LookAhead);
672  unsigned HazardCycle = (*I)->getHeight();
673  for (std::vector<SUnit*>::const_iterator E = Sequence.end(); I != E; ++I) {
674    SUnit *SU = *I;
675    for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
676      HazardRec->RecedeCycle();
677    }
678    EmitNode(SU);
679  }
680}
681
682/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
683/// BTCycle in order to schedule a specific node.
684void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
685  SUnit *OldSU = Sequence.back();
686  while (true) {
687    Sequence.pop_back();
688    if (SU->isSucc(OldSU))
689      // Don't try to remove SU from AvailableQueue.
690      SU->isAvailable = false;
691    // FIXME: use ready cycle instead of height
692    CurCycle = OldSU->getHeight();
693    UnscheduleNodeBottomUp(OldSU);
694    AvailableQueue->setCurCycle(CurCycle);
695    if (OldSU == BtSU)
696      break;
697    OldSU = Sequence.back();
698  }
699
700  assert(!SU->isSucc(OldSU) && "Something is wrong!");
701
702  RestoreHazardCheckerBottomUp();
703
704  ReleasePending();
705
706  ++NumBacktracks;
707}
708
709static bool isOperandOf(const SUnit *SU, SDNode *N) {
710  for (const SDNode *SUNode = SU->getNode(); SUNode;
711       SUNode = SUNode->getGluedNode()) {
712    if (SUNode->isOperandOf(N))
713      return true;
714  }
715  return false;
716}
717
718/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
719/// successors to the newly created node.
720SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
721  SDNode *N = SU->getNode();
722  if (!N)
723    return NULL;
724
725  if (SU->getNode()->getGluedNode())
726    return NULL;
727
728  SUnit *NewSU;
729  bool TryUnfold = false;
730  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
731    EVT VT = N->getValueType(i);
732    if (VT == MVT::Glue)
733      return NULL;
734    else if (VT == MVT::Other)
735      TryUnfold = true;
736  }
737  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
738    const SDValue &Op = N->getOperand(i);
739    EVT VT = Op.getNode()->getValueType(Op.getResNo());
740    if (VT == MVT::Glue)
741      return NULL;
742  }
743
744  if (TryUnfold) {
745    SmallVector<SDNode*, 2> NewNodes;
746    if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
747      return NULL;
748
749    DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
750    assert(NewNodes.size() == 2 && "Expected a load folding node!");
751
752    N = NewNodes[1];
753    SDNode *LoadNode = NewNodes[0];
754    unsigned NumVals = N->getNumValues();
755    unsigned OldNumVals = SU->getNode()->getNumValues();
756    for (unsigned i = 0; i != NumVals; ++i)
757      DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
758    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
759                                   SDValue(LoadNode, 1));
760
761    // LoadNode may already exist. This can happen when there is another
762    // load from the same location and producing the same type of value
763    // but it has different alignment or volatileness.
764    bool isNewLoad = true;
765    SUnit *LoadSU;
766    if (LoadNode->getNodeId() != -1) {
767      LoadSU = &SUnits[LoadNode->getNodeId()];
768      isNewLoad = false;
769    } else {
770      LoadSU = CreateNewSUnit(LoadNode);
771      LoadNode->setNodeId(LoadSU->NodeNum);
772
773      InitNumRegDefsLeft(LoadSU);
774      ComputeLatency(LoadSU);
775    }
776
777    SUnit *NewSU = CreateNewSUnit(N);
778    assert(N->getNodeId() == -1 && "Node already inserted!");
779    N->setNodeId(NewSU->NodeNum);
780
781    const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
782    for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
783      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
784        NewSU->isTwoAddress = true;
785        break;
786      }
787    }
788    if (TID.isCommutable())
789      NewSU->isCommutable = true;
790
791    InitNumRegDefsLeft(NewSU);
792    ComputeLatency(NewSU);
793
794    // Record all the edges to and from the old SU, by category.
795    SmallVector<SDep, 4> ChainPreds;
796    SmallVector<SDep, 4> ChainSuccs;
797    SmallVector<SDep, 4> LoadPreds;
798    SmallVector<SDep, 4> NodePreds;
799    SmallVector<SDep, 4> NodeSuccs;
800    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
801         I != E; ++I) {
802      if (I->isCtrl())
803        ChainPreds.push_back(*I);
804      else if (isOperandOf(I->getSUnit(), LoadNode))
805        LoadPreds.push_back(*I);
806      else
807        NodePreds.push_back(*I);
808    }
809    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
810         I != E; ++I) {
811      if (I->isCtrl())
812        ChainSuccs.push_back(*I);
813      else
814        NodeSuccs.push_back(*I);
815    }
816
817    // Now assign edges to the newly-created nodes.
818    for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
819      const SDep &Pred = ChainPreds[i];
820      RemovePred(SU, Pred);
821      if (isNewLoad)
822        AddPred(LoadSU, Pred);
823    }
824    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
825      const SDep &Pred = LoadPreds[i];
826      RemovePred(SU, Pred);
827      if (isNewLoad)
828        AddPred(LoadSU, Pred);
829    }
830    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
831      const SDep &Pred = NodePreds[i];
832      RemovePred(SU, Pred);
833      AddPred(NewSU, Pred);
834    }
835    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
836      SDep D = NodeSuccs[i];
837      SUnit *SuccDep = D.getSUnit();
838      D.setSUnit(SU);
839      RemovePred(SuccDep, D);
840      D.setSUnit(NewSU);
841      AddPred(SuccDep, D);
842      // Balance register pressure.
843      if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled
844          && !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
845        --NewSU->NumRegDefsLeft;
846    }
847    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
848      SDep D = ChainSuccs[i];
849      SUnit *SuccDep = D.getSUnit();
850      D.setSUnit(SU);
851      RemovePred(SuccDep, D);
852      if (isNewLoad) {
853        D.setSUnit(LoadSU);
854        AddPred(SuccDep, D);
855      }
856    }
857
858    // Add a data dependency to reflect that NewSU reads the value defined
859    // by LoadSU.
860    AddPred(NewSU, SDep(LoadSU, SDep::Data, LoadSU->Latency));
861
862    if (isNewLoad)
863      AvailableQueue->addNode(LoadSU);
864    AvailableQueue->addNode(NewSU);
865
866    ++NumUnfolds;
867
868    if (NewSU->NumSuccsLeft == 0) {
869      NewSU->isAvailable = true;
870      return NewSU;
871    }
872    SU = NewSU;
873  }
874
875  DEBUG(dbgs() << "    Duplicating SU #" << SU->NodeNum << "\n");
876  NewSU = CreateClone(SU);
877
878  // New SUnit has the exact same predecessors.
879  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
880       I != E; ++I)
881    if (!I->isArtificial())
882      AddPred(NewSU, *I);
883
884  // Only copy scheduled successors. Cut them from old node's successor
885  // list and move them over.
886  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
887  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
888       I != E; ++I) {
889    if (I->isArtificial())
890      continue;
891    SUnit *SuccSU = I->getSUnit();
892    if (SuccSU->isScheduled) {
893      SDep D = *I;
894      D.setSUnit(NewSU);
895      AddPred(SuccSU, D);
896      D.setSUnit(SU);
897      DelDeps.push_back(std::make_pair(SuccSU, D));
898    }
899  }
900  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
901    RemovePred(DelDeps[i].first, DelDeps[i].second);
902
903  AvailableQueue->updateNode(SU);
904  AvailableQueue->addNode(NewSU);
905
906  ++NumDups;
907  return NewSU;
908}
909
910/// InsertCopiesAndMoveSuccs - Insert register copies and move all
911/// scheduled successors of the given SUnit to the last copy.
912void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
913                                               const TargetRegisterClass *DestRC,
914                                               const TargetRegisterClass *SrcRC,
915                                               SmallVector<SUnit*, 2> &Copies) {
916  SUnit *CopyFromSU = CreateNewSUnit(NULL);
917  CopyFromSU->CopySrcRC = SrcRC;
918  CopyFromSU->CopyDstRC = DestRC;
919
920  SUnit *CopyToSU = CreateNewSUnit(NULL);
921  CopyToSU->CopySrcRC = DestRC;
922  CopyToSU->CopyDstRC = SrcRC;
923
924  // Only copy scheduled successors. Cut them from old node's successor
925  // list and move them over.
926  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
927  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
928       I != E; ++I) {
929    if (I->isArtificial())
930      continue;
931    SUnit *SuccSU = I->getSUnit();
932    if (SuccSU->isScheduled) {
933      SDep D = *I;
934      D.setSUnit(CopyToSU);
935      AddPred(SuccSU, D);
936      DelDeps.push_back(std::make_pair(SuccSU, *I));
937    }
938  }
939  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
940    RemovePred(DelDeps[i].first, DelDeps[i].second);
941
942  AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
943  AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
944
945  AvailableQueue->updateNode(SU);
946  AvailableQueue->addNode(CopyFromSU);
947  AvailableQueue->addNode(CopyToSU);
948  Copies.push_back(CopyFromSU);
949  Copies.push_back(CopyToSU);
950
951  ++NumPRCopies;
952}
953
954/// getPhysicalRegisterVT - Returns the ValueType of the physical register
955/// definition of the specified node.
956/// FIXME: Move to SelectionDAG?
957static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
958                                 const TargetInstrInfo *TII) {
959  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
960  assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
961  unsigned NumRes = TID.getNumDefs();
962  for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
963    if (Reg == *ImpDef)
964      break;
965    ++NumRes;
966  }
967  return N->getValueType(NumRes);
968}
969
970/// CheckForLiveRegDef - Return true and update live register vector if the
971/// specified register def of the specified SUnit clobbers any "live" registers.
972static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
973                               std::vector<SUnit*> &LiveRegDefs,
974                               SmallSet<unsigned, 4> &RegAdded,
975                               SmallVector<unsigned, 4> &LRegs,
976                               const TargetRegisterInfo *TRI) {
977  for (const unsigned *AliasI = TRI->getOverlaps(Reg); *AliasI; ++AliasI) {
978
979    // Check if Ref is live.
980    if (!LiveRegDefs[Reg]) continue;
981
982    // Allow multiple uses of the same def.
983    if (LiveRegDefs[Reg] == SU) continue;
984
985    // Add Reg to the set of interfering live regs.
986    if (RegAdded.insert(Reg))
987      LRegs.push_back(Reg);
988  }
989}
990
991/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
992/// scheduling of the given node to satisfy live physical register dependencies.
993/// If the specific node is the last one that's available to schedule, do
994/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
995bool ScheduleDAGRRList::
996DelayForLiveRegsBottomUp(SUnit *SU, SmallVector<unsigned, 4> &LRegs) {
997  if (NumLiveRegs == 0)
998    return false;
999
1000  SmallSet<unsigned, 4> RegAdded;
1001  // If this node would clobber any "live" register, then it's not ready.
1002  //
1003  // If SU is the currently live definition of the same register that it uses,
1004  // then we are free to schedule it.
1005  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1006       I != E; ++I) {
1007    if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] != SU)
1008      CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
1009                         RegAdded, LRegs, TRI);
1010  }
1011
1012  for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
1013    if (Node->getOpcode() == ISD::INLINEASM) {
1014      // Inline asm can clobber physical defs.
1015      unsigned NumOps = Node->getNumOperands();
1016      if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1017        --NumOps;  // Ignore the glue operand.
1018
1019      for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1020        unsigned Flags =
1021          cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1022        unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1023
1024        ++i; // Skip the ID value.
1025        if (InlineAsm::isRegDefKind(Flags) ||
1026            InlineAsm::isRegDefEarlyClobberKind(Flags)) {
1027          // Check for def of register or earlyclobber register.
1028          for (; NumVals; --NumVals, ++i) {
1029            unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1030            if (TargetRegisterInfo::isPhysicalRegister(Reg))
1031              CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
1032          }
1033        } else
1034          i += NumVals;
1035      }
1036      continue;
1037    }
1038
1039    if (!Node->isMachineOpcode())
1040      continue;
1041    const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
1042    if (!TID.ImplicitDefs)
1043      continue;
1044    for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg)
1045      CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
1046  }
1047
1048  return !LRegs.empty();
1049}
1050
1051/// Return a node that can be scheduled in this cycle. Requirements:
1052/// (1) Ready: latency has been satisfied
1053/// (2) No Hazards: resources are available
1054/// (3) No Interferences: may unschedule to break register interferences.
1055SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
1056  SmallVector<SUnit*, 4> Interferences;
1057  DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
1058
1059  SUnit *CurSU = AvailableQueue->pop();
1060  while (CurSU) {
1061    SmallVector<unsigned, 4> LRegs;
1062    if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
1063      break;
1064    LRegsMap.insert(std::make_pair(CurSU, LRegs));
1065
1066    CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
1067    Interferences.push_back(CurSU);
1068    CurSU = AvailableQueue->pop();
1069  }
1070  if (CurSU) {
1071    // Add the nodes that aren't ready back onto the available list.
1072    for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1073      Interferences[i]->isPending = false;
1074      assert(Interferences[i]->isAvailable && "must still be available");
1075      AvailableQueue->push(Interferences[i]);
1076    }
1077    return CurSU;
1078  }
1079
1080  // All candidates are delayed due to live physical reg dependencies.
1081  // Try backtracking, code duplication, or inserting cross class copies
1082  // to resolve it.
1083  for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1084    SUnit *TrySU = Interferences[i];
1085    SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
1086
1087    // Try unscheduling up to the point where it's safe to schedule
1088    // this node.
1089    SUnit *BtSU = NULL;
1090    unsigned LiveCycle = UINT_MAX;
1091    for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
1092      unsigned Reg = LRegs[j];
1093      if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
1094        BtSU = LiveRegGens[Reg];
1095        LiveCycle = BtSU->getHeight();
1096      }
1097    }
1098    if (!WillCreateCycle(TrySU, BtSU))  {
1099      BacktrackBottomUp(TrySU, BtSU);
1100
1101      // Force the current node to be scheduled before the node that
1102      // requires the physical reg dep.
1103      if (BtSU->isAvailable) {
1104        BtSU->isAvailable = false;
1105        if (!BtSU->isPending)
1106          AvailableQueue->remove(BtSU);
1107      }
1108      AddPred(TrySU, SDep(BtSU, SDep::Order, /*Latency=*/1,
1109                          /*Reg=*/0, /*isNormalMemory=*/false,
1110                          /*isMustAlias=*/false, /*isArtificial=*/true));
1111
1112      // If one or more successors has been unscheduled, then the current
1113      // node is no longer avaialable. Schedule a successor that's now
1114      // available instead.
1115      if (!TrySU->isAvailable) {
1116        CurSU = AvailableQueue->pop();
1117      }
1118      else {
1119        CurSU = TrySU;
1120        TrySU->isPending = false;
1121        Interferences.erase(Interferences.begin()+i);
1122      }
1123      break;
1124    }
1125  }
1126
1127  if (!CurSU) {
1128    // Can't backtrack. If it's too expensive to copy the value, then try
1129    // duplicate the nodes that produces these "too expensive to copy"
1130    // values to break the dependency. In case even that doesn't work,
1131    // insert cross class copies.
1132    // If it's not too expensive, i.e. cost != -1, issue copies.
1133    SUnit *TrySU = Interferences[0];
1134    SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
1135    assert(LRegs.size() == 1 && "Can't handle this yet!");
1136    unsigned Reg = LRegs[0];
1137    SUnit *LRDef = LiveRegDefs[Reg];
1138    EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
1139    const TargetRegisterClass *RC =
1140      TRI->getMinimalPhysRegClass(Reg, VT);
1141    const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1142
1143    // If cross copy register class is the same as RC, then it must be possible
1144    // copy the value directly. Do not try duplicate the def.
1145    // If cross copy register class is not the same as RC, then it's possible to
1146    // copy the value but it require cross register class copies and it is
1147    // expensive.
1148    // If cross copy register class is null, then it's not possible to copy
1149    // the value at all.
1150    SUnit *NewDef = 0;
1151    if (DestRC != RC) {
1152      NewDef = CopyAndMoveSuccessors(LRDef);
1153      if (!DestRC && !NewDef)
1154        report_fatal_error("Can't handle live physical register dependency!");
1155    }
1156    if (!NewDef) {
1157      // Issue copies, these can be expensive cross register class copies.
1158      SmallVector<SUnit*, 2> Copies;
1159      InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1160      DEBUG(dbgs() << "    Adding an edge from SU #" << TrySU->NodeNum
1161            << " to SU #" << Copies.front()->NodeNum << "\n");
1162      AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
1163                          /*Reg=*/0, /*isNormalMemory=*/false,
1164                          /*isMustAlias=*/false,
1165                          /*isArtificial=*/true));
1166      NewDef = Copies.back();
1167    }
1168
1169    DEBUG(dbgs() << "    Adding an edge from SU #" << NewDef->NodeNum
1170          << " to SU #" << TrySU->NodeNum << "\n");
1171    LiveRegDefs[Reg] = NewDef;
1172    AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
1173                         /*Reg=*/0, /*isNormalMemory=*/false,
1174                         /*isMustAlias=*/false,
1175                         /*isArtificial=*/true));
1176    TrySU->isAvailable = false;
1177    CurSU = NewDef;
1178  }
1179
1180  assert(CurSU && "Unable to resolve live physical register dependencies!");
1181
1182  // Add the nodes that aren't ready back onto the available list.
1183  for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1184    Interferences[i]->isPending = false;
1185    // May no longer be available due to backtracking.
1186    if (Interferences[i]->isAvailable) {
1187      AvailableQueue->push(Interferences[i]);
1188    }
1189  }
1190  return CurSU;
1191}
1192
1193/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
1194/// schedulers.
1195void ScheduleDAGRRList::ListScheduleBottomUp() {
1196  // Release any predecessors of the special Exit node.
1197  ReleasePredecessors(&ExitSU);
1198
1199  // Add root to Available queue.
1200  if (!SUnits.empty()) {
1201    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
1202    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
1203    RootSU->isAvailable = true;
1204    AvailableQueue->push(RootSU);
1205  }
1206
1207  // While Available queue is not empty, grab the node with the highest
1208  // priority. If it is not ready put it back.  Schedule the node.
1209  Sequence.reserve(SUnits.size());
1210  while (!AvailableQueue->empty()) {
1211    DEBUG(dbgs() << "\n*** Examining Available\n";
1212          AvailableQueue->dump(this));
1213
1214    // Pick the best node to schedule taking all constraints into
1215    // consideration.
1216    SUnit *SU = PickNodeToScheduleBottomUp();
1217
1218    AdvancePastStalls(SU);
1219
1220    ScheduleNodeBottomUp(SU);
1221
1222    while (AvailableQueue->empty() && !PendingQueue.empty()) {
1223      // Advance the cycle to free resources. Skip ahead to the next ready SU.
1224      assert(MinAvailableCycle < UINT_MAX && "MinAvailableCycle uninitialized");
1225      AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
1226    }
1227  }
1228
1229  // Reverse the order if it is bottom up.
1230  std::reverse(Sequence.begin(), Sequence.end());
1231
1232#ifndef NDEBUG
1233  VerifySchedule(isBottomUp);
1234#endif
1235}
1236
1237//===----------------------------------------------------------------------===//
1238//  Top-Down Scheduling
1239//===----------------------------------------------------------------------===//
1240
1241/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
1242/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
1243void ScheduleDAGRRList::ReleaseSucc(SUnit *SU, const SDep *SuccEdge) {
1244  SUnit *SuccSU = SuccEdge->getSUnit();
1245
1246#ifndef NDEBUG
1247  if (SuccSU->NumPredsLeft == 0) {
1248    dbgs() << "*** Scheduling failed! ***\n";
1249    SuccSU->dump(this);
1250    dbgs() << " has been released too many times!\n";
1251    llvm_unreachable(0);
1252  }
1253#endif
1254  --SuccSU->NumPredsLeft;
1255
1256  // If all the node's predecessors are scheduled, this node is ready
1257  // to be scheduled. Ignore the special ExitSU node.
1258  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) {
1259    SuccSU->isAvailable = true;
1260    AvailableQueue->push(SuccSU);
1261  }
1262}
1263
1264void ScheduleDAGRRList::ReleaseSuccessors(SUnit *SU) {
1265  // Top down: release successors
1266  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1267       I != E; ++I) {
1268    assert(!I->isAssignedRegDep() &&
1269           "The list-tdrr scheduler doesn't yet support physreg dependencies!");
1270
1271    ReleaseSucc(SU, &*I);
1272  }
1273}
1274
1275/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
1276/// count of its successors. If a successor pending count is zero, add it to
1277/// the Available queue.
1278void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU) {
1279  DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
1280  DEBUG(SU->dump(this));
1281
1282  assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
1283  SU->setDepthToAtLeast(CurCycle);
1284  Sequence.push_back(SU);
1285
1286  ReleaseSuccessors(SU);
1287  SU->isScheduled = true;
1288  AvailableQueue->ScheduledNode(SU);
1289}
1290
1291/// ListScheduleTopDown - The main loop of list scheduling for top-down
1292/// schedulers.
1293void ScheduleDAGRRList::ListScheduleTopDown() {
1294  AvailableQueue->setCurCycle(CurCycle);
1295
1296  // Release any successors of the special Entry node.
1297  ReleaseSuccessors(&EntrySU);
1298
1299  // All leaves to Available queue.
1300  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1301    // It is available if it has no predecessors.
1302    if (SUnits[i].Preds.empty()) {
1303      AvailableQueue->push(&SUnits[i]);
1304      SUnits[i].isAvailable = true;
1305    }
1306  }
1307
1308  // While Available queue is not empty, grab the node with the highest
1309  // priority. If it is not ready put it back.  Schedule the node.
1310  Sequence.reserve(SUnits.size());
1311  while (!AvailableQueue->empty()) {
1312    SUnit *CurSU = AvailableQueue->pop();
1313
1314    if (CurSU)
1315      ScheduleNodeTopDown(CurSU);
1316    ++CurCycle;
1317    AvailableQueue->setCurCycle(CurCycle);
1318  }
1319
1320#ifndef NDEBUG
1321  VerifySchedule(isBottomUp);
1322#endif
1323}
1324
1325
1326//===----------------------------------------------------------------------===//
1327//                RegReductionPriorityQueue Definition
1328//===----------------------------------------------------------------------===//
1329//
1330// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1331// to reduce register pressure.
1332//
1333namespace {
1334class RegReductionPQBase;
1335
1336struct queue_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1337  bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
1338};
1339
1340/// bu_ls_rr_sort - Priority function for bottom up register pressure
1341// reduction scheduler.
1342struct bu_ls_rr_sort : public queue_sort {
1343  enum {
1344    IsBottomUp = true,
1345    HasReadyFilter = false
1346  };
1347
1348  RegReductionPQBase *SPQ;
1349  bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1350  bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1351
1352  bool operator()(SUnit* left, SUnit* right) const;
1353};
1354
1355// td_ls_rr_sort - Priority function for top down register pressure reduction
1356// scheduler.
1357struct td_ls_rr_sort : public queue_sort {
1358  enum {
1359    IsBottomUp = false,
1360    HasReadyFilter = false
1361  };
1362
1363  RegReductionPQBase *SPQ;
1364  td_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1365  td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1366
1367  bool operator()(const SUnit* left, const SUnit* right) const;
1368};
1369
1370// src_ls_rr_sort - Priority function for source order scheduler.
1371struct src_ls_rr_sort : public queue_sort {
1372  enum {
1373    IsBottomUp = true,
1374    HasReadyFilter = false
1375  };
1376
1377  RegReductionPQBase *SPQ;
1378  src_ls_rr_sort(RegReductionPQBase *spq)
1379    : SPQ(spq) {}
1380  src_ls_rr_sort(const src_ls_rr_sort &RHS)
1381    : SPQ(RHS.SPQ) {}
1382
1383  bool operator()(SUnit* left, SUnit* right) const;
1384};
1385
1386// hybrid_ls_rr_sort - Priority function for hybrid scheduler.
1387struct hybrid_ls_rr_sort : public queue_sort {
1388  enum {
1389    IsBottomUp = true,
1390    HasReadyFilter = false
1391  };
1392
1393  RegReductionPQBase *SPQ;
1394  hybrid_ls_rr_sort(RegReductionPQBase *spq)
1395    : SPQ(spq) {}
1396  hybrid_ls_rr_sort(const hybrid_ls_rr_sort &RHS)
1397    : SPQ(RHS.SPQ) {}
1398
1399  bool isReady(SUnit *SU, unsigned CurCycle) const;
1400
1401  bool operator()(SUnit* left, SUnit* right) const;
1402};
1403
1404// ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
1405// scheduler.
1406struct ilp_ls_rr_sort : public queue_sort {
1407  enum {
1408    IsBottomUp = true,
1409    HasReadyFilter = false
1410  };
1411
1412  RegReductionPQBase *SPQ;
1413  ilp_ls_rr_sort(RegReductionPQBase *spq)
1414    : SPQ(spq) {}
1415  ilp_ls_rr_sort(const ilp_ls_rr_sort &RHS)
1416    : SPQ(RHS.SPQ) {}
1417
1418  bool isReady(SUnit *SU, unsigned CurCycle) const;
1419
1420  bool operator()(SUnit* left, SUnit* right) const;
1421};
1422
1423class RegReductionPQBase : public SchedulingPriorityQueue {
1424protected:
1425  std::vector<SUnit*> Queue;
1426  unsigned CurQueueId;
1427  bool TracksRegPressure;
1428
1429  // SUnits - The SUnits for the current graph.
1430  std::vector<SUnit> *SUnits;
1431
1432  MachineFunction &MF;
1433  const TargetInstrInfo *TII;
1434  const TargetRegisterInfo *TRI;
1435  const TargetLowering *TLI;
1436  ScheduleDAGRRList *scheduleDAG;
1437
1438  // SethiUllmanNumbers - The SethiUllman number for each node.
1439  std::vector<unsigned> SethiUllmanNumbers;
1440
1441  /// RegPressure - Tracking current reg pressure per register class.
1442  ///
1443  std::vector<unsigned> RegPressure;
1444
1445  /// RegLimit - Tracking the number of allocatable registers per register
1446  /// class.
1447  std::vector<unsigned> RegLimit;
1448
1449public:
1450  RegReductionPQBase(MachineFunction &mf,
1451                     bool hasReadyFilter,
1452                     bool tracksrp,
1453                     const TargetInstrInfo *tii,
1454                     const TargetRegisterInfo *tri,
1455                     const TargetLowering *tli)
1456    : SchedulingPriorityQueue(hasReadyFilter),
1457      CurQueueId(0), TracksRegPressure(tracksrp),
1458      MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(NULL) {
1459    if (TracksRegPressure) {
1460      unsigned NumRC = TRI->getNumRegClasses();
1461      RegLimit.resize(NumRC);
1462      RegPressure.resize(NumRC);
1463      std::fill(RegLimit.begin(), RegLimit.end(), 0);
1464      std::fill(RegPressure.begin(), RegPressure.end(), 0);
1465      for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1466             E = TRI->regclass_end(); I != E; ++I)
1467        RegLimit[(*I)->getID()] = tri->getRegPressureLimit(*I, MF);
1468    }
1469  }
1470
1471  void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1472    scheduleDAG = scheduleDag;
1473  }
1474
1475  ScheduleHazardRecognizer* getHazardRec() {
1476    return scheduleDAG->getHazardRec();
1477  }
1478
1479  void initNodes(std::vector<SUnit> &sunits);
1480
1481  void addNode(const SUnit *SU);
1482
1483  void updateNode(const SUnit *SU);
1484
1485  void releaseState() {
1486    SUnits = 0;
1487    SethiUllmanNumbers.clear();
1488    std::fill(RegPressure.begin(), RegPressure.end(), 0);
1489  }
1490
1491  unsigned getNodePriority(const SUnit *SU) const;
1492
1493  unsigned getNodeOrdering(const SUnit *SU) const {
1494    return scheduleDAG->DAG->GetOrdering(SU->getNode());
1495  }
1496
1497  bool empty() const { return Queue.empty(); }
1498
1499  void push(SUnit *U) {
1500    assert(!U->NodeQueueId && "Node in the queue already");
1501    U->NodeQueueId = ++CurQueueId;
1502    Queue.push_back(U);
1503  }
1504
1505  void remove(SUnit *SU) {
1506    assert(!Queue.empty() && "Queue is empty!");
1507    assert(SU->NodeQueueId != 0 && "Not in queue!");
1508    std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
1509                                                 SU);
1510    if (I != prior(Queue.end()))
1511      std::swap(*I, Queue.back());
1512    Queue.pop_back();
1513    SU->NodeQueueId = 0;
1514  }
1515
1516  bool tracksRegPressure() const { return TracksRegPressure; }
1517
1518  void dumpRegPressure() const;
1519
1520  bool HighRegPressure(const SUnit *SU) const;
1521
1522  bool MayReduceRegPressure(SUnit *SU) const;
1523
1524  int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
1525
1526  void ScheduledNode(SUnit *SU);
1527
1528  void UnscheduledNode(SUnit *SU);
1529
1530protected:
1531  bool canClobber(const SUnit *SU, const SUnit *Op);
1532  void AddPseudoTwoAddrDeps();
1533  void PrescheduleNodesWithMultipleUses();
1534  void CalculateSethiUllmanNumbers();
1535};
1536
1537template<class SF>
1538class RegReductionPriorityQueue : public RegReductionPQBase {
1539  static SUnit *popFromQueue(std::vector<SUnit*> &Q, SF &Picker) {
1540    std::vector<SUnit *>::iterator Best = Q.begin();
1541    for (std::vector<SUnit *>::iterator I = llvm::next(Q.begin()),
1542           E = Q.end(); I != E; ++I)
1543      if (Picker(*Best, *I))
1544        Best = I;
1545    SUnit *V = *Best;
1546    if (Best != prior(Q.end()))
1547      std::swap(*Best, Q.back());
1548    Q.pop_back();
1549    return V;
1550  }
1551
1552  SF Picker;
1553
1554public:
1555  RegReductionPriorityQueue(MachineFunction &mf,
1556                            bool tracksrp,
1557                            const TargetInstrInfo *tii,
1558                            const TargetRegisterInfo *tri,
1559                            const TargetLowering *tli)
1560    : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, tii, tri, tli),
1561      Picker(this) {}
1562
1563  bool isBottomUp() const { return SF::IsBottomUp; }
1564
1565  bool isReady(SUnit *U) const {
1566    return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
1567  }
1568
1569  SUnit *pop() {
1570    if (Queue.empty()) return NULL;
1571
1572    SUnit *V = popFromQueue(Queue, Picker);
1573    V->NodeQueueId = 0;
1574    return V;
1575  }
1576
1577  void dump(ScheduleDAG *DAG) const {
1578    // Emulate pop() without clobbering NodeQueueIds.
1579    std::vector<SUnit*> DumpQueue = Queue;
1580    SF DumpPicker = Picker;
1581    while (!DumpQueue.empty()) {
1582      SUnit *SU = popFromQueue(DumpQueue, DumpPicker);
1583      if (isBottomUp())
1584        dbgs() << "Height " << SU->getHeight() << ": ";
1585      else
1586        dbgs() << "Depth " << SU->getDepth() << ": ";
1587      SU->dump(DAG);
1588    }
1589  }
1590};
1591
1592typedef RegReductionPriorityQueue<bu_ls_rr_sort>
1593BURegReductionPriorityQueue;
1594
1595typedef RegReductionPriorityQueue<td_ls_rr_sort>
1596TDRegReductionPriorityQueue;
1597
1598typedef RegReductionPriorityQueue<src_ls_rr_sort>
1599SrcRegReductionPriorityQueue;
1600
1601typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
1602HybridBURRPriorityQueue;
1603
1604typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
1605ILPBURRPriorityQueue;
1606} // end anonymous namespace
1607
1608//===----------------------------------------------------------------------===//
1609//           Static Node Priority for Register Pressure Reduction
1610//===----------------------------------------------------------------------===//
1611
1612/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
1613/// Smaller number is the higher priority.
1614static unsigned
1615CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1616  unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
1617  if (SethiUllmanNumber != 0)
1618    return SethiUllmanNumber;
1619
1620  unsigned Extra = 0;
1621  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1622       I != E; ++I) {
1623    if (I->isCtrl()) continue;  // ignore chain preds
1624    SUnit *PredSU = I->getSUnit();
1625    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
1626    if (PredSethiUllman > SethiUllmanNumber) {
1627      SethiUllmanNumber = PredSethiUllman;
1628      Extra = 0;
1629    } else if (PredSethiUllman == SethiUllmanNumber)
1630      ++Extra;
1631  }
1632
1633  SethiUllmanNumber += Extra;
1634
1635  if (SethiUllmanNumber == 0)
1636    SethiUllmanNumber = 1;
1637
1638  return SethiUllmanNumber;
1639}
1640
1641/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1642/// scheduling units.
1643void RegReductionPQBase::CalculateSethiUllmanNumbers() {
1644  SethiUllmanNumbers.assign(SUnits->size(), 0);
1645
1646  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1647    CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1648}
1649
1650void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
1651  SUnits = &sunits;
1652  // Add pseudo dependency edges for two-address nodes.
1653  AddPseudoTwoAddrDeps();
1654  // Reroute edges to nodes with multiple uses.
1655  if (!TracksRegPressure)
1656    PrescheduleNodesWithMultipleUses();
1657  // Calculate node priorities.
1658  CalculateSethiUllmanNumbers();
1659}
1660
1661void RegReductionPQBase::addNode(const SUnit *SU) {
1662  unsigned SUSize = SethiUllmanNumbers.size();
1663  if (SUnits->size() > SUSize)
1664    SethiUllmanNumbers.resize(SUSize*2, 0);
1665  CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1666}
1667
1668void RegReductionPQBase::updateNode(const SUnit *SU) {
1669  SethiUllmanNumbers[SU->NodeNum] = 0;
1670  CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1671}
1672
1673// Lower priority means schedule further down. For bottom-up scheduling, lower
1674// priority SUs are scheduled before higher priority SUs.
1675unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
1676  assert(SU->NodeNum < SethiUllmanNumbers.size());
1677  unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
1678  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1679    // CopyToReg should be close to its uses to facilitate coalescing and
1680    // avoid spilling.
1681    return 0;
1682  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
1683      Opc == TargetOpcode::SUBREG_TO_REG ||
1684      Opc == TargetOpcode::INSERT_SUBREG)
1685    // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
1686    // close to their uses to facilitate coalescing.
1687    return 0;
1688  if (SU->NumSuccs == 0 && SU->NumPreds != 0)
1689    // If SU does not have a register use, i.e. it doesn't produce a value
1690    // that would be consumed (e.g. store), then it terminates a chain of
1691    // computation.  Give it a large SethiUllman number so it will be
1692    // scheduled right before its predecessors that it doesn't lengthen
1693    // their live ranges.
1694    return 0xffff;
1695  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
1696    // If SU does not have a register def, schedule it close to its uses
1697    // because it does not lengthen any live ranges.
1698    return 0;
1699  return SethiUllmanNumbers[SU->NodeNum];
1700}
1701
1702//===----------------------------------------------------------------------===//
1703//                     Register Pressure Tracking
1704//===----------------------------------------------------------------------===//
1705
1706void RegReductionPQBase::dumpRegPressure() const {
1707  for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1708         E = TRI->regclass_end(); I != E; ++I) {
1709    const TargetRegisterClass *RC = *I;
1710    unsigned Id = RC->getID();
1711    unsigned RP = RegPressure[Id];
1712    if (!RP) continue;
1713    DEBUG(dbgs() << RC->getName() << ": " << RP << " / " << RegLimit[Id]
1714          << '\n');
1715  }
1716}
1717
1718bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
1719  if (!TLI)
1720    return false;
1721
1722  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
1723       I != E; ++I) {
1724    if (I->isCtrl())
1725      continue;
1726    SUnit *PredSU = I->getSUnit();
1727    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1728    // to cover the number of registers defined (they are all live).
1729    if (PredSU->NumRegDefsLeft == 0) {
1730      continue;
1731    }
1732    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1733         RegDefPos.IsValid(); RegDefPos.Advance()) {
1734      EVT VT = RegDefPos.GetValue();
1735      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1736      unsigned Cost = TLI->getRepRegClassCostFor(VT);
1737      if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
1738        return true;
1739    }
1740  }
1741  return false;
1742}
1743
1744bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
1745  const SDNode *N = SU->getNode();
1746
1747  if (!N->isMachineOpcode() || !SU->NumSuccs)
1748    return false;
1749
1750  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1751  for (unsigned i = 0; i != NumDefs; ++i) {
1752    EVT VT = N->getValueType(i);
1753    if (!N->hasAnyUseOfValue(i))
1754      continue;
1755    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1756    if (RegPressure[RCId] >= RegLimit[RCId])
1757      return true;
1758  }
1759  return false;
1760}
1761
1762// Compute the register pressure contribution by this instruction by count up
1763// for uses that are not live and down for defs. Only count register classes
1764// that are already under high pressure. As a side effect, compute the number of
1765// uses of registers that are already live.
1766//
1767// FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
1768// so could probably be factored.
1769int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
1770  LiveUses = 0;
1771  int PDiff = 0;
1772  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
1773       I != E; ++I) {
1774    if (I->isCtrl())
1775      continue;
1776    SUnit *PredSU = I->getSUnit();
1777    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1778    // to cover the number of registers defined (they are all live).
1779    if (PredSU->NumRegDefsLeft == 0) {
1780      if (PredSU->getNode()->isMachineOpcode())
1781        ++LiveUses;
1782      continue;
1783    }
1784    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1785         RegDefPos.IsValid(); RegDefPos.Advance()) {
1786      EVT VT = RegDefPos.GetValue();
1787      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1788      if (RegPressure[RCId] >= RegLimit[RCId])
1789        ++PDiff;
1790    }
1791  }
1792  const SDNode *N = SU->getNode();
1793
1794  if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
1795    return PDiff;
1796
1797  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1798  for (unsigned i = 0; i != NumDefs; ++i) {
1799    EVT VT = N->getValueType(i);
1800    if (!N->hasAnyUseOfValue(i))
1801      continue;
1802    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1803    if (RegPressure[RCId] >= RegLimit[RCId])
1804      --PDiff;
1805  }
1806  return PDiff;
1807}
1808
1809void RegReductionPQBase::ScheduledNode(SUnit *SU) {
1810  if (!TracksRegPressure)
1811    return;
1812
1813  if (!SU->getNode())
1814    return;
1815
1816  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1817       I != E; ++I) {
1818    if (I->isCtrl())
1819      continue;
1820    SUnit *PredSU = I->getSUnit();
1821    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1822    // to cover the number of registers defined (they are all live).
1823    if (PredSU->NumRegDefsLeft == 0) {
1824      continue;
1825    }
1826    // FIXME: The ScheduleDAG currently loses information about which of a
1827    // node's values is consumed by each dependence. Consequently, if the node
1828    // defines multiple register classes, we don't know which to pressurize
1829    // here. Instead the following loop consumes the register defs in an
1830    // arbitrary order. At least it handles the common case of clustered loads
1831    // to the same class. For precise liveness, each SDep needs to indicate the
1832    // result number. But that tightly couples the ScheduleDAG with the
1833    // SelectionDAG making updates tricky. A simpler hack would be to attach a
1834    // value type or register class to SDep.
1835    //
1836    // The most important aspect of register tracking is balancing the increase
1837    // here with the reduction further below. Note that this SU may use multiple
1838    // defs in PredSU. The can't be determined here, but we've already
1839    // compensated by reducing NumRegDefsLeft in PredSU during
1840    // ScheduleDAGSDNodes::AddSchedEdges.
1841    --PredSU->NumRegDefsLeft;
1842    unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
1843    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1844         RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
1845      if (SkipRegDefs)
1846        continue;
1847      EVT VT = RegDefPos.GetValue();
1848      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1849      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
1850      break;
1851    }
1852  }
1853
1854  // We should have this assert, but there may be dead SDNodes that never
1855  // materialize as SUnits, so they don't appear to generate liveness.
1856  //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
1857  int SkipRegDefs = (int)SU->NumRegDefsLeft;
1858  for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
1859       RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
1860    if (SkipRegDefs > 0)
1861      continue;
1862    EVT VT = RegDefPos.GetValue();
1863    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1864    if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT)) {
1865      // Register pressure tracking is imprecise. This can happen. But we try
1866      // hard not to let it happen because it likely results in poor scheduling.
1867      DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") has too many regdefs\n");
1868      RegPressure[RCId] = 0;
1869    }
1870    else {
1871      RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
1872    }
1873  }
1874  dumpRegPressure();
1875}
1876
1877void RegReductionPQBase::UnscheduledNode(SUnit *SU) {
1878  if (!TracksRegPressure)
1879    return;
1880
1881  const SDNode *N = SU->getNode();
1882  if (!N) return;
1883
1884  if (!N->isMachineOpcode()) {
1885    if (N->getOpcode() != ISD::CopyToReg)
1886      return;
1887  } else {
1888    unsigned Opc = N->getMachineOpcode();
1889    if (Opc == TargetOpcode::EXTRACT_SUBREG ||
1890        Opc == TargetOpcode::INSERT_SUBREG ||
1891        Opc == TargetOpcode::SUBREG_TO_REG ||
1892        Opc == TargetOpcode::REG_SEQUENCE ||
1893        Opc == TargetOpcode::IMPLICIT_DEF)
1894      return;
1895  }
1896
1897  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1898       I != E; ++I) {
1899    if (I->isCtrl())
1900      continue;
1901    SUnit *PredSU = I->getSUnit();
1902    // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
1903    // counts data deps.
1904    if (PredSU->NumSuccsLeft != PredSU->Succs.size())
1905      continue;
1906    const SDNode *PN = PredSU->getNode();
1907    if (!PN->isMachineOpcode()) {
1908      if (PN->getOpcode() == ISD::CopyFromReg) {
1909        EVT VT = PN->getValueType(0);
1910        unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1911        RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
1912      }
1913      continue;
1914    }
1915    unsigned POpc = PN->getMachineOpcode();
1916    if (POpc == TargetOpcode::IMPLICIT_DEF)
1917      continue;
1918    if (POpc == TargetOpcode::EXTRACT_SUBREG) {
1919      EVT VT = PN->getOperand(0).getValueType();
1920      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1921      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
1922      continue;
1923    } else if (POpc == TargetOpcode::INSERT_SUBREG ||
1924               POpc == TargetOpcode::SUBREG_TO_REG) {
1925      EVT VT = PN->getValueType(0);
1926      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1927      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
1928      continue;
1929    }
1930    unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
1931    for (unsigned i = 0; i != NumDefs; ++i) {
1932      EVT VT = PN->getValueType(i);
1933      if (!PN->hasAnyUseOfValue(i))
1934        continue;
1935      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1936      if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
1937        // Register pressure tracking is imprecise. This can happen.
1938        RegPressure[RCId] = 0;
1939      else
1940        RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
1941    }
1942  }
1943
1944  // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
1945  // may transfer data dependencies to CopyToReg.
1946  if (SU->NumSuccs && N->isMachineOpcode()) {
1947    unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1948    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
1949      EVT VT = N->getValueType(i);
1950      if (VT == MVT::Glue || VT == MVT::Other)
1951        continue;
1952      if (!N->hasAnyUseOfValue(i))
1953        continue;
1954      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1955      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
1956    }
1957  }
1958
1959  dumpRegPressure();
1960}
1961
1962//===----------------------------------------------------------------------===//
1963//           Dynamic Node Priority for Register Pressure Reduction
1964//===----------------------------------------------------------------------===//
1965
1966/// closestSucc - Returns the scheduled cycle of the successor which is
1967/// closest to the current cycle.
1968static unsigned closestSucc(const SUnit *SU) {
1969  unsigned MaxHeight = 0;
1970  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1971       I != E; ++I) {
1972    if (I->isCtrl()) continue;  // ignore chain succs
1973    unsigned Height = I->getSUnit()->getHeight();
1974    // If there are bunch of CopyToRegs stacked up, they should be considered
1975    // to be at the same position.
1976    if (I->getSUnit()->getNode() &&
1977        I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
1978      Height = closestSucc(I->getSUnit())+1;
1979    if (Height > MaxHeight)
1980      MaxHeight = Height;
1981  }
1982  return MaxHeight;
1983}
1984
1985/// calcMaxScratches - Returns an cost estimate of the worse case requirement
1986/// for scratch registers, i.e. number of data dependencies.
1987static unsigned calcMaxScratches(const SUnit *SU) {
1988  unsigned Scratches = 0;
1989  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1990       I != E; ++I) {
1991    if (I->isCtrl()) continue;  // ignore chain preds
1992    Scratches++;
1993  }
1994  return Scratches;
1995}
1996
1997/// hasOnlyLiveOutUse - Return true if SU has a single value successor that is a
1998/// CopyToReg to a virtual register. This SU def is probably a liveout and
1999/// it has no other use. It should be scheduled closer to the terminator.
2000static bool hasOnlyLiveOutUses(const SUnit *SU) {
2001  bool RetVal = false;
2002  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2003       I != E; ++I) {
2004    if (I->isCtrl()) continue;
2005    const SUnit *SuccSU = I->getSUnit();
2006    if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
2007      unsigned Reg =
2008        cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
2009      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2010        RetVal = true;
2011        continue;
2012      }
2013    }
2014    return false;
2015  }
2016  return RetVal;
2017}
2018
2019/// UnitsSharePred - Return true if the two scheduling units share a common
2020/// data predecessor.
2021static bool UnitsSharePred(const SUnit *left, const SUnit *right) {
2022  SmallSet<const SUnit*, 4> Preds;
2023  for (SUnit::const_pred_iterator I = left->Preds.begin(),E = left->Preds.end();
2024       I != E; ++I) {
2025    if (I->isCtrl()) continue;  // ignore chain preds
2026    Preds.insert(I->getSUnit());
2027  }
2028  for (SUnit::const_pred_iterator I = right->Preds.begin(),E = right->Preds.end();
2029       I != E; ++I) {
2030    if (I->isCtrl()) continue;  // ignore chain preds
2031    if (Preds.count(I->getSUnit()))
2032      return true;
2033  }
2034  return false;
2035}
2036
2037// Check for either a dependence (latency) or resource (hazard) stall.
2038//
2039// Note: The ScheduleHazardRecognizer interface requires a non-const SU.
2040static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
2041  if ((int)SPQ->getCurCycle() < Height) return true;
2042  if (SPQ->getHazardRec()->getHazardType(SU, 0)
2043      != ScheduleHazardRecognizer::NoHazard)
2044    return true;
2045  return false;
2046}
2047
2048// Return -1 if left has higher priority, 1 if right has higher priority.
2049// Return 0 if latency-based priority is equivalent.
2050static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
2051                            RegReductionPQBase *SPQ) {
2052  // If the two nodes share an operand and one of them has a single
2053  // use that is a live out copy, favor the one that is live out. Otherwise
2054  // it will be difficult to eliminate the copy if the instruction is a
2055  // loop induction variable update. e.g.
2056  // BB:
2057  // sub r1, r3, #1
2058  // str r0, [r2, r3]
2059  // mov r3, r1
2060  // cmp
2061  // bne BB
2062  bool SharePred = UnitsSharePred(left, right);
2063  // FIXME: Only adjust if BB is a loop back edge.
2064  // FIXME: What's the cost of a copy?
2065  int LBonus = (SharePred && hasOnlyLiveOutUses(left)) ? 1 : 0;
2066  int RBonus = (SharePred && hasOnlyLiveOutUses(right)) ? 1 : 0;
2067  int LHeight = (int)left->getHeight() - LBonus;
2068  int RHeight = (int)right->getHeight() - RBonus;
2069
2070  bool LStall = (!checkPref || left->SchedulingPref == Sched::Latency) &&
2071    BUHasStall(left, LHeight, SPQ);
2072  bool RStall = (!checkPref || right->SchedulingPref == Sched::Latency) &&
2073    BUHasStall(right, RHeight, SPQ);
2074
2075  // If scheduling one of the node will cause a pipeline stall, delay it.
2076  // If scheduling either one of the node will cause a pipeline stall, sort
2077  // them according to their height.
2078  if (LStall) {
2079    if (!RStall)
2080      return 1;
2081    if (LHeight != RHeight)
2082      return LHeight > RHeight ? 1 : -1;
2083  } else if (RStall)
2084    return -1;
2085
2086  // If either node is scheduling for latency, sort them by height/depth
2087  // and latency.
2088  if (!checkPref || (left->SchedulingPref == Sched::Latency ||
2089                     right->SchedulingPref == Sched::Latency)) {
2090    if (DisableSchedCycles) {
2091      if (LHeight != RHeight)
2092        return LHeight > RHeight ? 1 : -1;
2093    }
2094    else {
2095      // If neither instruction stalls (!LStall && !RStall) then
2096      // its height is already covered so only its depth matters. We also reach
2097      // this if both stall but have the same height.
2098      unsigned LDepth = left->getDepth();
2099      unsigned RDepth = right->getDepth();
2100      if (LDepth != RDepth) {
2101        DEBUG(dbgs() << "  Comparing latency of SU (" << left->NodeNum
2102              << ") depth " << LDepth << " vs SU (" << right->NodeNum
2103              << ") depth " << RDepth << "\n");
2104        return LDepth < RDepth ? 1 : -1;
2105      }
2106    }
2107    if (left->Latency != right->Latency)
2108      return left->Latency > right->Latency ? 1 : -1;
2109  }
2110  return 0;
2111}
2112
2113static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
2114  unsigned LPriority = SPQ->getNodePriority(left);
2115  unsigned RPriority = SPQ->getNodePriority(right);
2116  if (LPriority != RPriority) {
2117    DEBUG(++FactorCount[FactStatic]);
2118    return LPriority > RPriority;
2119  }
2120  DEBUG(++FactorCount[FactOther]);
2121
2122  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
2123  // e.g.
2124  // t1 = op t2, c1
2125  // t3 = op t4, c2
2126  //
2127  // and the following instructions are both ready.
2128  // t2 = op c3
2129  // t4 = op c4
2130  //
2131  // Then schedule t2 = op first.
2132  // i.e.
2133  // t4 = op c4
2134  // t2 = op c3
2135  // t1 = op t2, c1
2136  // t3 = op t4, c2
2137  //
2138  // This creates more short live intervals.
2139  unsigned LDist = closestSucc(left);
2140  unsigned RDist = closestSucc(right);
2141  if (LDist != RDist)
2142    return LDist < RDist;
2143
2144  // How many registers becomes live when the node is scheduled.
2145  unsigned LScratch = calcMaxScratches(left);
2146  unsigned RScratch = calcMaxScratches(right);
2147  if (LScratch != RScratch)
2148    return LScratch > RScratch;
2149
2150  if (!DisableSchedCycles) {
2151    int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
2152    if (result != 0)
2153      return result > 0;
2154  }
2155  else {
2156    if (left->getHeight() != right->getHeight())
2157      return left->getHeight() > right->getHeight();
2158
2159    if (left->getDepth() != right->getDepth())
2160      return left->getDepth() < right->getDepth();
2161  }
2162
2163  assert(left->NodeQueueId && right->NodeQueueId &&
2164         "NodeQueueId cannot be zero");
2165  return (left->NodeQueueId > right->NodeQueueId);
2166}
2167
2168// Bottom up
2169bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2170  return BURRSort(left, right, SPQ);
2171}
2172
2173// Source order, otherwise bottom up.
2174bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2175  unsigned LOrder = SPQ->getNodeOrdering(left);
2176  unsigned ROrder = SPQ->getNodeOrdering(right);
2177
2178  // Prefer an ordering where the lower the non-zero order number, the higher
2179  // the preference.
2180  if ((LOrder || ROrder) && LOrder != ROrder)
2181    return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2182
2183  return BURRSort(left, right, SPQ);
2184}
2185
2186// If the time between now and when the instruction will be ready can cover
2187// the spill code, then avoid adding it to the ready queue. This gives long
2188// stalls highest priority and allows hoisting across calls. It should also
2189// speed up processing the available queue.
2190bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2191  static const unsigned ReadyDelay = 3;
2192
2193  if (SPQ->MayReduceRegPressure(SU)) return true;
2194
2195  if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
2196
2197  if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
2198      != ScheduleHazardRecognizer::NoHazard)
2199    return false;
2200
2201  return true;
2202}
2203
2204// Return true if right should be scheduled with higher priority than left.
2205bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2206  if (left->isCall || right->isCall)
2207    // No way to compute latency of calls.
2208    return BURRSort(left, right, SPQ);
2209
2210  bool LHigh = SPQ->HighRegPressure(left);
2211  bool RHigh = SPQ->HighRegPressure(right);
2212  // Avoid causing spills. If register pressure is high, schedule for
2213  // register pressure reduction.
2214  if (LHigh && !RHigh) {
2215    DEBUG(dbgs() << "  pressure SU(" << left->NodeNum << ") > SU("
2216          << right->NodeNum << ")\n");
2217    return true;
2218  }
2219  else if (!LHigh && RHigh) {
2220    DEBUG(dbgs() << "  pressure SU(" << right->NodeNum << ") > SU("
2221          << left->NodeNum << ")\n");
2222    return false;
2223  }
2224  else if (!LHigh && !RHigh) {
2225    int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
2226    if (result != 0)
2227      return result > 0;
2228  }
2229  return BURRSort(left, right, SPQ);
2230}
2231
2232// Schedule as many instructions in each cycle as possible. So don't make an
2233// instruction available unless it is ready in the current cycle.
2234bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2235  if (SU->getHeight() > CurCycle) return false;
2236
2237  if (SPQ->getHazardRec()->getHazardType(SU, 0)
2238      != ScheduleHazardRecognizer::NoHazard)
2239    return false;
2240
2241  return true;
2242}
2243
2244static bool canEnableCoalescing(SUnit *SU) {
2245  unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2246  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2247    // CopyToReg should be close to its uses to facilitate coalescing and
2248    // avoid spilling.
2249    return true;
2250
2251  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2252      Opc == TargetOpcode::SUBREG_TO_REG ||
2253      Opc == TargetOpcode::INSERT_SUBREG)
2254    // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2255    // close to their uses to facilitate coalescing.
2256    return true;
2257
2258  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2259    // If SU does not have a register def, schedule it close to its uses
2260    // because it does not lengthen any live ranges.
2261    return true;
2262
2263  return false;
2264}
2265
2266// list-ilp is currently an experimental scheduler that allows various
2267// heuristics to be enabled prior to the normal register reduction logic.
2268bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2269  if (left->isCall || right->isCall)
2270    // No way to compute latency of calls.
2271    return BURRSort(left, right, SPQ);
2272
2273  unsigned LLiveUses = 0, RLiveUses = 0;
2274  int LPDiff = 0, RPDiff = 0;
2275  if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
2276    LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
2277    RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
2278  }
2279  if (!DisableSchedRegPressure && LPDiff != RPDiff) {
2280    DEBUG(++FactorCount[FactPressureDiff]);
2281    DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum << "): " << LPDiff
2282          << " != SU(" << right->NodeNum << "): " << RPDiff << "\n");
2283    return LPDiff > RPDiff;
2284  }
2285
2286  if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
2287    bool LReduce = canEnableCoalescing(left);
2288    bool RReduce = canEnableCoalescing(right);
2289    DEBUG(if (LReduce != RReduce) ++FactorCount[FactPressureDiff]);
2290    if (LReduce && !RReduce) return false;
2291    if (RReduce && !LReduce) return true;
2292  }
2293
2294  if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
2295    DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
2296          << " != SU(" << right->NodeNum << "): " << RLiveUses << "\n");
2297    DEBUG(++FactorCount[FactRegUses]);
2298    return LLiveUses < RLiveUses;
2299  }
2300
2301  if (!DisableSchedStalls) {
2302    bool LStall = BUHasStall(left, left->getHeight(), SPQ);
2303    bool RStall = BUHasStall(right, right->getHeight(), SPQ);
2304    if (LStall != RStall) {
2305      DEBUG(++FactorCount[FactHeight]);
2306      return left->getHeight() > right->getHeight();
2307    }
2308  }
2309
2310  if (!DisableSchedCriticalPath) {
2311    int spread = (int)left->getDepth() - (int)right->getDepth();
2312    if (std::abs(spread) > MaxReorderWindow) {
2313      DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
2314            << left->getDepth() << " != SU(" << right->NodeNum << "): "
2315            << right->getDepth() << "\n");
2316      DEBUG(++FactorCount[FactDepth]);
2317      return left->getDepth() < right->getDepth();
2318    }
2319  }
2320
2321  if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
2322    int spread = (int)left->getHeight() - (int)right->getHeight();
2323    if (std::abs(spread) > MaxReorderWindow) {
2324      DEBUG(++FactorCount[FactHeight]);
2325      return left->getHeight() > right->getHeight();
2326    }
2327  }
2328
2329  return BURRSort(left, right, SPQ);
2330}
2331
2332//===----------------------------------------------------------------------===//
2333//                    Preschedule for Register Pressure
2334//===----------------------------------------------------------------------===//
2335
2336bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
2337  if (SU->isTwoAddress) {
2338    unsigned Opc = SU->getNode()->getMachineOpcode();
2339    const TargetInstrDesc &TID = TII->get(Opc);
2340    unsigned NumRes = TID.getNumDefs();
2341    unsigned NumOps = TID.getNumOperands() - NumRes;
2342    for (unsigned i = 0; i != NumOps; ++i) {
2343      if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) {
2344        SDNode *DU = SU->getNode()->getOperand(i).getNode();
2345        if (DU->getNodeId() != -1 &&
2346            Op->OrigNode == &(*SUnits)[DU->getNodeId()])
2347          return true;
2348      }
2349    }
2350  }
2351  return false;
2352}
2353
2354/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
2355/// physical register defs.
2356static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
2357                                  const TargetInstrInfo *TII,
2358                                  const TargetRegisterInfo *TRI) {
2359  SDNode *N = SuccSU->getNode();
2360  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2361  const unsigned *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
2362  assert(ImpDefs && "Caller should check hasPhysRegDefs");
2363  for (const SDNode *SUNode = SU->getNode(); SUNode;
2364       SUNode = SUNode->getGluedNode()) {
2365    if (!SUNode->isMachineOpcode())
2366      continue;
2367    const unsigned *SUImpDefs =
2368      TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
2369    if (!SUImpDefs)
2370      return false;
2371    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2372      EVT VT = N->getValueType(i);
2373      if (VT == MVT::Glue || VT == MVT::Other)
2374        continue;
2375      if (!N->hasAnyUseOfValue(i))
2376        continue;
2377      unsigned Reg = ImpDefs[i - NumDefs];
2378      for (;*SUImpDefs; ++SUImpDefs) {
2379        unsigned SUReg = *SUImpDefs;
2380        if (TRI->regsOverlap(Reg, SUReg))
2381          return true;
2382      }
2383    }
2384  }
2385  return false;
2386}
2387
2388/// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
2389/// are not handled well by the general register pressure reduction
2390/// heuristics. When presented with code like this:
2391///
2392///      N
2393///    / |
2394///   /  |
2395///  U  store
2396///  |
2397/// ...
2398///
2399/// the heuristics tend to push the store up, but since the
2400/// operand of the store has another use (U), this would increase
2401/// the length of that other use (the U->N edge).
2402///
2403/// This function transforms code like the above to route U's
2404/// dependence through the store when possible, like this:
2405///
2406///      N
2407///      ||
2408///      ||
2409///     store
2410///       |
2411///       U
2412///       |
2413///      ...
2414///
2415/// This results in the store being scheduled immediately
2416/// after N, which shortens the U->N live range, reducing
2417/// register pressure.
2418///
2419void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
2420  // Visit all the nodes in topological order, working top-down.
2421  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2422    SUnit *SU = &(*SUnits)[i];
2423    // For now, only look at nodes with no data successors, such as stores.
2424    // These are especially important, due to the heuristics in
2425    // getNodePriority for nodes with no data successors.
2426    if (SU->NumSuccs != 0)
2427      continue;
2428    // For now, only look at nodes with exactly one data predecessor.
2429    if (SU->NumPreds != 1)
2430      continue;
2431    // Avoid prescheduling copies to virtual registers, which don't behave
2432    // like other nodes from the perspective of scheduling heuristics.
2433    if (SDNode *N = SU->getNode())
2434      if (N->getOpcode() == ISD::CopyToReg &&
2435          TargetRegisterInfo::isVirtualRegister
2436            (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2437        continue;
2438
2439    // Locate the single data predecessor.
2440    SUnit *PredSU = 0;
2441    for (SUnit::const_pred_iterator II = SU->Preds.begin(),
2442         EE = SU->Preds.end(); II != EE; ++II)
2443      if (!II->isCtrl()) {
2444        PredSU = II->getSUnit();
2445        break;
2446      }
2447    assert(PredSU);
2448
2449    // Don't rewrite edges that carry physregs, because that requires additional
2450    // support infrastructure.
2451    if (PredSU->hasPhysRegDefs)
2452      continue;
2453    // Short-circuit the case where SU is PredSU's only data successor.
2454    if (PredSU->NumSuccs == 1)
2455      continue;
2456    // Avoid prescheduling to copies from virtual registers, which don't behave
2457    // like other nodes from the perspective of scheduling heuristics.
2458    if (SDNode *N = SU->getNode())
2459      if (N->getOpcode() == ISD::CopyFromReg &&
2460          TargetRegisterInfo::isVirtualRegister
2461            (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2462        continue;
2463
2464    // Perform checks on the successors of PredSU.
2465    for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
2466         EE = PredSU->Succs.end(); II != EE; ++II) {
2467      SUnit *PredSuccSU = II->getSUnit();
2468      if (PredSuccSU == SU) continue;
2469      // If PredSU has another successor with no data successors, for
2470      // now don't attempt to choose either over the other.
2471      if (PredSuccSU->NumSuccs == 0)
2472        goto outer_loop_continue;
2473      // Don't break physical register dependencies.
2474      if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
2475        if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
2476          goto outer_loop_continue;
2477      // Don't introduce graph cycles.
2478      if (scheduleDAG->IsReachable(SU, PredSuccSU))
2479        goto outer_loop_continue;
2480    }
2481
2482    // Ok, the transformation is safe and the heuristics suggest it is
2483    // profitable. Update the graph.
2484    DEBUG(dbgs() << "    Prescheduling SU #" << SU->NodeNum
2485                 << " next to PredSU #" << PredSU->NodeNum
2486                 << " to guide scheduling in the presence of multiple uses\n");
2487    for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
2488      SDep Edge = PredSU->Succs[i];
2489      assert(!Edge.isAssignedRegDep());
2490      SUnit *SuccSU = Edge.getSUnit();
2491      if (SuccSU != SU) {
2492        Edge.setSUnit(PredSU);
2493        scheduleDAG->RemovePred(SuccSU, Edge);
2494        scheduleDAG->AddPred(SU, Edge);
2495        Edge.setSUnit(SU);
2496        scheduleDAG->AddPred(SuccSU, Edge);
2497        --i;
2498      }
2499    }
2500  outer_loop_continue:;
2501  }
2502}
2503
2504/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
2505/// it as a def&use operand. Add a pseudo control edge from it to the other
2506/// node (if it won't create a cycle) so the two-address one will be scheduled
2507/// first (lower in the schedule). If both nodes are two-address, favor the
2508/// one that has a CopyToReg use (more likely to be a loop induction update).
2509/// If both are two-address, but one is commutable while the other is not
2510/// commutable, favor the one that's not commutable.
2511void RegReductionPQBase::AddPseudoTwoAddrDeps() {
2512  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2513    SUnit *SU = &(*SUnits)[i];
2514    if (!SU->isTwoAddress)
2515      continue;
2516
2517    SDNode *Node = SU->getNode();
2518    if (!Node || !Node->isMachineOpcode() || SU->getNode()->getGluedNode())
2519      continue;
2520
2521    bool isLiveOut = hasOnlyLiveOutUses(SU);
2522    unsigned Opc = Node->getMachineOpcode();
2523    const TargetInstrDesc &TID = TII->get(Opc);
2524    unsigned NumRes = TID.getNumDefs();
2525    unsigned NumOps = TID.getNumOperands() - NumRes;
2526    for (unsigned j = 0; j != NumOps; ++j) {
2527      if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
2528        continue;
2529      SDNode *DU = SU->getNode()->getOperand(j).getNode();
2530      if (DU->getNodeId() == -1)
2531        continue;
2532      const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
2533      if (!DUSU) continue;
2534      for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
2535           E = DUSU->Succs.end(); I != E; ++I) {
2536        if (I->isCtrl()) continue;
2537        SUnit *SuccSU = I->getSUnit();
2538        if (SuccSU == SU)
2539          continue;
2540        // Be conservative. Ignore if nodes aren't at roughly the same
2541        // depth and height.
2542        if (SuccSU->getHeight() < SU->getHeight() &&
2543            (SU->getHeight() - SuccSU->getHeight()) > 1)
2544          continue;
2545        // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
2546        // constrains whatever is using the copy, instead of the copy
2547        // itself. In the case that the copy is coalesced, this
2548        // preserves the intent of the pseudo two-address heurietics.
2549        while (SuccSU->Succs.size() == 1 &&
2550               SuccSU->getNode()->isMachineOpcode() &&
2551               SuccSU->getNode()->getMachineOpcode() ==
2552                 TargetOpcode::COPY_TO_REGCLASS)
2553          SuccSU = SuccSU->Succs.front().getSUnit();
2554        // Don't constrain non-instruction nodes.
2555        if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
2556          continue;
2557        // Don't constrain nodes with physical register defs if the
2558        // predecessor can clobber them.
2559        if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
2560          if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
2561            continue;
2562        }
2563        // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
2564        // these may be coalesced away. We want them close to their uses.
2565        unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
2566        if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
2567            SuccOpc == TargetOpcode::INSERT_SUBREG ||
2568            SuccOpc == TargetOpcode::SUBREG_TO_REG)
2569          continue;
2570        if ((!canClobber(SuccSU, DUSU) ||
2571             (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
2572             (!SU->isCommutable && SuccSU->isCommutable)) &&
2573            !scheduleDAG->IsReachable(SuccSU, SU)) {
2574          DEBUG(dbgs() << "    Adding a pseudo-two-addr edge from SU #"
2575                       << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
2576          scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Order, /*Latency=*/0,
2577                                        /*Reg=*/0, /*isNormalMemory=*/false,
2578                                        /*isMustAlias=*/false,
2579                                        /*isArtificial=*/true));
2580        }
2581      }
2582    }
2583  }
2584}
2585
2586/// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled
2587/// predecessors of the successors of the SUnit SU. Stop when the provided
2588/// limit is exceeded.
2589static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU,
2590                                                    unsigned Limit) {
2591  unsigned Sum = 0;
2592  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2593       I != E; ++I) {
2594    const SUnit *SuccSU = I->getSUnit();
2595    for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
2596         EE = SuccSU->Preds.end(); II != EE; ++II) {
2597      SUnit *PredSU = II->getSUnit();
2598      if (!PredSU->isScheduled)
2599        if (++Sum > Limit)
2600          return Sum;
2601    }
2602  }
2603  return Sum;
2604}
2605
2606
2607// Top down
2608bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
2609  unsigned LPriority = SPQ->getNodePriority(left);
2610  unsigned RPriority = SPQ->getNodePriority(right);
2611  bool LIsTarget = left->getNode() && left->getNode()->isMachineOpcode();
2612  bool RIsTarget = right->getNode() && right->getNode()->isMachineOpcode();
2613  bool LIsFloater = LIsTarget && left->NumPreds == 0;
2614  bool RIsFloater = RIsTarget && right->NumPreds == 0;
2615  unsigned LBonus = (LimitedSumOfUnscheduledPredsOfSuccs(left,1) == 1) ? 2 : 0;
2616  unsigned RBonus = (LimitedSumOfUnscheduledPredsOfSuccs(right,1) == 1) ? 2 : 0;
2617
2618  if (left->NumSuccs == 0 && right->NumSuccs != 0)
2619    return false;
2620  else if (left->NumSuccs != 0 && right->NumSuccs == 0)
2621    return true;
2622
2623  if (LIsFloater)
2624    LBonus -= 2;
2625  if (RIsFloater)
2626    RBonus -= 2;
2627  if (left->NumSuccs == 1)
2628    LBonus += 2;
2629  if (right->NumSuccs == 1)
2630    RBonus += 2;
2631
2632  if (LPriority+LBonus != RPriority+RBonus)
2633    return LPriority+LBonus < RPriority+RBonus;
2634
2635  if (left->getDepth() != right->getDepth())
2636    return left->getDepth() < right->getDepth();
2637
2638  if (left->NumSuccsLeft != right->NumSuccsLeft)
2639    return left->NumSuccsLeft > right->NumSuccsLeft;
2640
2641  assert(left->NodeQueueId && right->NodeQueueId &&
2642         "NodeQueueId cannot be zero");
2643  return (left->NodeQueueId > right->NodeQueueId);
2644}
2645
2646//===----------------------------------------------------------------------===//
2647//                         Public Constructor Functions
2648//===----------------------------------------------------------------------===//
2649
2650llvm::ScheduleDAGSDNodes *
2651llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
2652                                 CodeGenOpt::Level OptLevel) {
2653  const TargetMachine &TM = IS->TM;
2654  const TargetInstrInfo *TII = TM.getInstrInfo();
2655  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2656
2657  BURegReductionPriorityQueue *PQ =
2658    new BURegReductionPriorityQueue(*IS->MF, false, TII, TRI, 0);
2659  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2660  PQ->setScheduleDAG(SD);
2661  return SD;
2662}
2663
2664llvm::ScheduleDAGSDNodes *
2665llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
2666                                 CodeGenOpt::Level OptLevel) {
2667  const TargetMachine &TM = IS->TM;
2668  const TargetInstrInfo *TII = TM.getInstrInfo();
2669  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2670
2671  TDRegReductionPriorityQueue *PQ =
2672    new TDRegReductionPriorityQueue(*IS->MF, false, TII, TRI, 0);
2673  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2674  PQ->setScheduleDAG(SD);
2675  return SD;
2676}
2677
2678llvm::ScheduleDAGSDNodes *
2679llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
2680                                   CodeGenOpt::Level OptLevel) {
2681  const TargetMachine &TM = IS->TM;
2682  const TargetInstrInfo *TII = TM.getInstrInfo();
2683  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2684
2685  SrcRegReductionPriorityQueue *PQ =
2686    new SrcRegReductionPriorityQueue(*IS->MF, false, TII, TRI, 0);
2687  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2688  PQ->setScheduleDAG(SD);
2689  return SD;
2690}
2691
2692llvm::ScheduleDAGSDNodes *
2693llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
2694                                   CodeGenOpt::Level OptLevel) {
2695  const TargetMachine &TM = IS->TM;
2696  const TargetInstrInfo *TII = TM.getInstrInfo();
2697  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2698  const TargetLowering *TLI = &IS->getTargetLowering();
2699
2700  HybridBURRPriorityQueue *PQ =
2701    new HybridBURRPriorityQueue(*IS->MF, true, TII, TRI, TLI);
2702
2703  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
2704  PQ->setScheduleDAG(SD);
2705  return SD;
2706}
2707
2708llvm::ScheduleDAGSDNodes *
2709llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
2710                                CodeGenOpt::Level OptLevel) {
2711  const TargetMachine &TM = IS->TM;
2712  const TargetInstrInfo *TII = TM.getInstrInfo();
2713  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2714  const TargetLowering *TLI = &IS->getTargetLowering();
2715
2716  ILPBURRPriorityQueue *PQ =
2717    new ILPBURRPriorityQueue(*IS->MF, true, TII, TRI, TLI);
2718  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
2719  PQ->setScheduleDAG(SD);
2720  return SD;
2721}
2722