ScheduleDAGRRList.cpp revision 16e8eda4b8b0825d38ba37d31c99edba0fb25482
1//===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms.  The basic approach uses a priority
12// queue of available nodes to schedule.  One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "pre-RA-sched"
19#include "ScheduleDAGSDNodes.h"
20#include "llvm/CodeGen/SchedulerRegistry.h"
21#include "llvm/CodeGen/SelectionDAGISel.h"
22#include "llvm/Target/TargetRegisterInfo.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetInstrInfo.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/ADT/PriorityQueue.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/ADT/STLExtras.h"
32#include <climits>
33using namespace llvm;
34
35STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
36STATISTIC(NumUnfolds,    "Number of nodes unfolded");
37STATISTIC(NumDups,       "Number of duplicated nodes");
38STATISTIC(NumPRCopies,   "Number of physical register copies");
39
40static RegisterScheduler
41  burrListDAGScheduler("list-burr",
42                       "Bottom-up register reduction list scheduling",
43                       createBURRListDAGScheduler);
44static RegisterScheduler
45  tdrListrDAGScheduler("list-tdrr",
46                       "Top-down register reduction list scheduling",
47                       createTDRRListDAGScheduler);
48
49namespace {
50//===----------------------------------------------------------------------===//
51/// ScheduleDAGRRList - The actual register reduction list scheduler
52/// implementation.  This supports both top-down and bottom-up scheduling.
53///
54class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAGSDNodes {
55private:
56  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
57  /// it is top-down.
58  bool isBottomUp;
59
60  /// AvailableQueue - The priority queue to use for the available SUnits.
61  SchedulingPriorityQueue *AvailableQueue;
62
63  /// LiveRegDefs - A set of physical registers and their definition
64  /// that are "live". These nodes must be scheduled before any other nodes that
65  /// modifies the registers can be scheduled.
66  unsigned NumLiveRegs;
67  std::vector<SUnit*> LiveRegDefs;
68  std::vector<unsigned> LiveRegCycles;
69
70  /// Topo - A topological ordering for SUnits which permits fast IsReachable
71  /// and similar queries.
72  ScheduleDAGTopologicalSort Topo;
73
74public:
75  ScheduleDAGRRList(MachineFunction &mf,
76                    bool isbottomup,
77                    SchedulingPriorityQueue *availqueue)
78    : ScheduleDAGSDNodes(mf), isBottomUp(isbottomup),
79      AvailableQueue(availqueue), Topo(SUnits) {
80    }
81
82  ~ScheduleDAGRRList() {
83    delete AvailableQueue;
84  }
85
86  void Schedule();
87
88  /// IsReachable - Checks if SU is reachable from TargetSU.
89  bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
90    return Topo.IsReachable(SU, TargetSU);
91  }
92
93  /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
94  /// create a cycle.
95  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
96    return Topo.WillCreateCycle(SU, TargetSU);
97  }
98
99  /// AddPred - adds a predecessor edge to SUnit SU.
100  /// This returns true if this is a new predecessor.
101  /// Updates the topological ordering if required.
102  void AddPred(SUnit *SU, const SDep &D) {
103    Topo.AddPred(SU, D.getSUnit());
104    SU->addPred(D);
105  }
106
107  /// RemovePred - removes a predecessor edge from SUnit SU.
108  /// This returns true if an edge was removed.
109  /// Updates the topological ordering if required.
110  void RemovePred(SUnit *SU, const SDep &D) {
111    Topo.RemovePred(SU, D.getSUnit());
112    SU->removePred(D);
113  }
114
115private:
116  void ReleasePred(SUnit *SU, const SDep *PredEdge);
117  void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
118  void ReleaseSucc(SUnit *SU, const SDep *SuccEdge);
119  void ReleaseSuccessors(SUnit *SU);
120  void CapturePred(SDep *PredEdge);
121  void ScheduleNodeBottomUp(SUnit*, unsigned);
122  void ScheduleNodeTopDown(SUnit*, unsigned);
123  void UnscheduleNodeBottomUp(SUnit*);
124  void BacktrackBottomUp(SUnit*, unsigned, unsigned&);
125  SUnit *CopyAndMoveSuccessors(SUnit*);
126  void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
127                                const TargetRegisterClass*,
128                                const TargetRegisterClass*,
129                                SmallVector<SUnit*, 2>&);
130  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
131  void ListScheduleTopDown();
132  void ListScheduleBottomUp();
133
134
135  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
136  /// Updates the topological ordering if required.
137  SUnit *CreateNewSUnit(SDNode *N) {
138    unsigned NumSUnits = SUnits.size();
139    SUnit *NewNode = NewSUnit(N);
140    // Update the topological ordering.
141    if (NewNode->NodeNum >= NumSUnits)
142      Topo.InitDAGTopologicalSorting();
143    return NewNode;
144  }
145
146  /// CreateClone - Creates a new SUnit from an existing one.
147  /// Updates the topological ordering if required.
148  SUnit *CreateClone(SUnit *N) {
149    unsigned NumSUnits = SUnits.size();
150    SUnit *NewNode = Clone(N);
151    // Update the topological ordering.
152    if (NewNode->NodeNum >= NumSUnits)
153      Topo.InitDAGTopologicalSorting();
154    return NewNode;
155  }
156
157  /// ForceUnitLatencies - Return true, since register-pressure-reducing
158  /// scheduling doesn't need actual latency information.
159  bool ForceUnitLatencies() const { return true; }
160};
161}  // end anonymous namespace
162
163
164/// Schedule - Schedule the DAG using list scheduling.
165void ScheduleDAGRRList::Schedule() {
166  DOUT << "********** List Scheduling **********\n";
167
168  NumLiveRegs = 0;
169  LiveRegDefs.resize(TRI->getNumRegs(), NULL);
170  LiveRegCycles.resize(TRI->getNumRegs(), 0);
171
172  // Build the scheduling graph.
173  BuildSchedGraph();
174
175  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
176          SUnits[su].dumpAll(this));
177  Topo.InitDAGTopologicalSorting();
178
179  AvailableQueue->initNodes(SUnits);
180
181  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
182  if (isBottomUp)
183    ListScheduleBottomUp();
184  else
185    ListScheduleTopDown();
186
187  AvailableQueue->releaseState();
188}
189
190//===----------------------------------------------------------------------===//
191//  Bottom-Up Scheduling
192//===----------------------------------------------------------------------===//
193
194/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
195/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
196void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
197  SUnit *PredSU = PredEdge->getSUnit();
198  --PredSU->NumSuccsLeft;
199
200#ifndef NDEBUG
201  if (PredSU->NumSuccsLeft < 0) {
202    cerr << "*** Scheduling failed! ***\n";
203    PredSU->dump(this);
204    cerr << " has been released too many times!\n";
205    assert(0);
206  }
207#endif
208
209  // If all the node's successors are scheduled, this node is ready
210  // to be scheduled. Ignore the special EntrySU node.
211  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
212    PredSU->isAvailable = true;
213    AvailableQueue->push(PredSU);
214  }
215}
216
217void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
218  // Bottom up: release predecessors
219  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
220       I != E; ++I) {
221    ReleasePred(SU, &*I);
222    if (I->isAssignedRegDep()) {
223      // This is a physical register dependency and it's impossible or
224      // expensive to copy the register. Make sure nothing that can
225      // clobber the register is scheduled between the predecessor and
226      // this node.
227      if (!LiveRegDefs[I->getReg()]) {
228        ++NumLiveRegs;
229        LiveRegDefs[I->getReg()] = I->getSUnit();
230        LiveRegCycles[I->getReg()] = CurCycle;
231      }
232    }
233  }
234}
235
236/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
237/// count of its predecessors. If a predecessor pending count is zero, add it to
238/// the Available queue.
239void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
240  DOUT << "*** Scheduling [" << CurCycle << "]: ";
241  DEBUG(SU->dump(this));
242
243  assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
244  SU->setHeightToAtLeast(CurCycle);
245  Sequence.push_back(SU);
246
247  ReleasePredecessors(SU, CurCycle);
248
249  // Release all the implicit physical register defs that are live.
250  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
251       I != E; ++I) {
252    if (I->isAssignedRegDep()) {
253      if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
254        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
255        assert(LiveRegDefs[I->getReg()] == SU &&
256               "Physical register dependency violated?");
257        --NumLiveRegs;
258        LiveRegDefs[I->getReg()] = NULL;
259        LiveRegCycles[I->getReg()] = 0;
260      }
261    }
262  }
263
264  SU->isScheduled = true;
265  AvailableQueue->ScheduledNode(SU);
266}
267
268/// CapturePred - This does the opposite of ReleasePred. Since SU is being
269/// unscheduled, incrcease the succ left count of its predecessors. Remove
270/// them from AvailableQueue if necessary.
271void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
272  SUnit *PredSU = PredEdge->getSUnit();
273  if (PredSU->isAvailable) {
274    PredSU->isAvailable = false;
275    if (!PredSU->isPending)
276      AvailableQueue->remove(PredSU);
277  }
278
279  ++PredSU->NumSuccsLeft;
280}
281
282/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
283/// its predecessor states to reflect the change.
284void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
285  DOUT << "*** Unscheduling [" << SU->getHeight() << "]: ";
286  DEBUG(SU->dump(this));
287
288  AvailableQueue->UnscheduledNode(SU);
289
290  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
291       I != E; ++I) {
292    CapturePred(&*I);
293    if (I->isAssignedRegDep() && SU->getHeight() == LiveRegCycles[I->getReg()]) {
294      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
295      assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
296             "Physical register dependency violated?");
297      --NumLiveRegs;
298      LiveRegDefs[I->getReg()] = NULL;
299      LiveRegCycles[I->getReg()] = 0;
300    }
301  }
302
303  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
304       I != E; ++I) {
305    if (I->isAssignedRegDep()) {
306      if (!LiveRegDefs[I->getReg()]) {
307        LiveRegDefs[I->getReg()] = SU;
308        ++NumLiveRegs;
309      }
310      if (I->getSUnit()->getHeight() < LiveRegCycles[I->getReg()])
311        LiveRegCycles[I->getReg()] = I->getSUnit()->getHeight();
312    }
313  }
314
315  SU->setHeightDirty();
316  SU->isScheduled = false;
317  SU->isAvailable = true;
318  AvailableQueue->push(SU);
319}
320
321/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
322/// BTCycle in order to schedule a specific node.
323void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle,
324                                          unsigned &CurCycle) {
325  SUnit *OldSU = NULL;
326  while (CurCycle > BtCycle) {
327    OldSU = Sequence.back();
328    Sequence.pop_back();
329    if (SU->isSucc(OldSU))
330      // Don't try to remove SU from AvailableQueue.
331      SU->isAvailable = false;
332    UnscheduleNodeBottomUp(OldSU);
333    --CurCycle;
334  }
335
336  assert(!SU->isSucc(OldSU) && "Something is wrong!");
337
338  ++NumBacktracks;
339}
340
341/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
342/// successors to the newly created node.
343SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
344  if (SU->getNode()->getFlaggedNode())
345    return NULL;
346
347  SDNode *N = SU->getNode();
348  if (!N)
349    return NULL;
350
351  SUnit *NewSU;
352  bool TryUnfold = false;
353  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
354    MVT VT = N->getValueType(i);
355    if (VT == MVT::Flag)
356      return NULL;
357    else if (VT == MVT::Other)
358      TryUnfold = true;
359  }
360  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
361    const SDValue &Op = N->getOperand(i);
362    MVT VT = Op.getNode()->getValueType(Op.getResNo());
363    if (VT == MVT::Flag)
364      return NULL;
365  }
366
367  if (TryUnfold) {
368    SmallVector<SDNode*, 2> NewNodes;
369    if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
370      return NULL;
371
372    DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
373    assert(NewNodes.size() == 2 && "Expected a load folding node!");
374
375    N = NewNodes[1];
376    SDNode *LoadNode = NewNodes[0];
377    unsigned NumVals = N->getNumValues();
378    unsigned OldNumVals = SU->getNode()->getNumValues();
379    for (unsigned i = 0; i != NumVals; ++i)
380      DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
381    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
382                                   SDValue(LoadNode, 1));
383
384    // LoadNode may already exist. This can happen when there is another
385    // load from the same location and producing the same type of value
386    // but it has different alignment or volatileness.
387    bool isNewLoad = true;
388    SUnit *LoadSU;
389    if (LoadNode->getNodeId() != -1) {
390      LoadSU = &SUnits[LoadNode->getNodeId()];
391      isNewLoad = false;
392    } else {
393      LoadSU = CreateNewSUnit(LoadNode);
394      LoadNode->setNodeId(LoadSU->NodeNum);
395      ComputeLatency(LoadSU);
396    }
397
398    SUnit *NewSU = CreateNewSUnit(N);
399    assert(N->getNodeId() == -1 && "Node already inserted!");
400    N->setNodeId(NewSU->NodeNum);
401
402    const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
403    for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
404      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
405        NewSU->isTwoAddress = true;
406        break;
407      }
408    }
409    if (TID.isCommutable())
410      NewSU->isCommutable = true;
411    ComputeLatency(NewSU);
412
413    SmallVector<SDep, 4> ChainPreds;
414    SmallVector<SDep, 4> ChainSuccs;
415    SmallVector<SDep, 4> LoadPreds;
416    SmallVector<SDep, 4> NodePreds;
417    SmallVector<SDep, 4> NodeSuccs;
418    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
419         I != E; ++I) {
420      if (I->isCtrl())
421        ChainPreds.push_back(*I);
422      else if (I->getSUnit()->getNode() &&
423               I->getSUnit()->getNode()->isOperandOf(LoadNode))
424        LoadPreds.push_back(*I);
425      else
426        NodePreds.push_back(*I);
427    }
428    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
429         I != E; ++I) {
430      if (I->isCtrl())
431        ChainSuccs.push_back(*I);
432      else
433        NodeSuccs.push_back(*I);
434    }
435
436    for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
437      const SDep &Pred = ChainPreds[i];
438      RemovePred(SU, Pred);
439      if (isNewLoad)
440        AddPred(LoadSU, Pred);
441    }
442    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
443      const SDep &Pred = LoadPreds[i];
444      RemovePred(SU, Pred);
445      if (isNewLoad)
446        AddPred(LoadSU, Pred);
447    }
448    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
449      const SDep &Pred = NodePreds[i];
450      RemovePred(SU, Pred);
451      AddPred(NewSU, Pred);
452    }
453    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
454      SDep D = NodeSuccs[i];
455      SUnit *SuccDep = D.getSUnit();
456      D.setSUnit(SU);
457      RemovePred(SuccDep, D);
458      D.setSUnit(NewSU);
459      AddPred(SuccDep, D);
460    }
461    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
462      SDep D = ChainSuccs[i];
463      SUnit *SuccDep = D.getSUnit();
464      D.setSUnit(SU);
465      RemovePred(SuccDep, D);
466      if (isNewLoad) {
467        D.setSUnit(LoadSU);
468        AddPred(SuccDep, D);
469      }
470    }
471    if (isNewLoad) {
472      AddPred(NewSU, SDep(LoadSU, SDep::Order, LoadSU->Latency));
473    }
474
475    if (isNewLoad)
476      AvailableQueue->addNode(LoadSU);
477    AvailableQueue->addNode(NewSU);
478
479    ++NumUnfolds;
480
481    if (NewSU->NumSuccsLeft == 0) {
482      NewSU->isAvailable = true;
483      return NewSU;
484    }
485    SU = NewSU;
486  }
487
488  DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
489  NewSU = CreateClone(SU);
490
491  // New SUnit has the exact same predecessors.
492  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
493       I != E; ++I)
494    if (!I->isArtificial())
495      AddPred(NewSU, *I);
496
497  // Only copy scheduled successors. Cut them from old node's successor
498  // list and move them over.
499  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
500  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
501       I != E; ++I) {
502    if (I->isArtificial())
503      continue;
504    SUnit *SuccSU = I->getSUnit();
505    if (SuccSU->isScheduled) {
506      SDep D = *I;
507      D.setSUnit(NewSU);
508      AddPred(SuccSU, D);
509      D.setSUnit(SU);
510      DelDeps.push_back(std::make_pair(SuccSU, D));
511    }
512  }
513  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
514    RemovePred(DelDeps[i].first, DelDeps[i].second);
515
516  AvailableQueue->updateNode(SU);
517  AvailableQueue->addNode(NewSU);
518
519  ++NumDups;
520  return NewSU;
521}
522
523/// InsertCopiesAndMoveSuccs - Insert register copies and move all
524/// scheduled successors of the given SUnit to the last copy.
525void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
526                                               const TargetRegisterClass *DestRC,
527                                               const TargetRegisterClass *SrcRC,
528                                               SmallVector<SUnit*, 2> &Copies) {
529  SUnit *CopyFromSU = CreateNewSUnit(NULL);
530  CopyFromSU->CopySrcRC = SrcRC;
531  CopyFromSU->CopyDstRC = DestRC;
532
533  SUnit *CopyToSU = CreateNewSUnit(NULL);
534  CopyToSU->CopySrcRC = DestRC;
535  CopyToSU->CopyDstRC = SrcRC;
536
537  // Only copy scheduled successors. Cut them from old node's successor
538  // list and move them over.
539  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
540  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
541       I != E; ++I) {
542    if (I->isArtificial())
543      continue;
544    SUnit *SuccSU = I->getSUnit();
545    if (SuccSU->isScheduled) {
546      SDep D = *I;
547      D.setSUnit(CopyToSU);
548      AddPred(SuccSU, D);
549      DelDeps.push_back(std::make_pair(SuccSU, *I));
550    }
551  }
552  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
553    RemovePred(DelDeps[i].first, DelDeps[i].second);
554
555  AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
556  AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
557
558  AvailableQueue->updateNode(SU);
559  AvailableQueue->addNode(CopyFromSU);
560  AvailableQueue->addNode(CopyToSU);
561  Copies.push_back(CopyFromSU);
562  Copies.push_back(CopyToSU);
563
564  ++NumPRCopies;
565}
566
567/// getPhysicalRegisterVT - Returns the ValueType of the physical register
568/// definition of the specified node.
569/// FIXME: Move to SelectionDAG?
570static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
571                                 const TargetInstrInfo *TII) {
572  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
573  assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
574  unsigned NumRes = TID.getNumDefs();
575  for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
576    if (Reg == *ImpDef)
577      break;
578    ++NumRes;
579  }
580  return N->getValueType(NumRes);
581}
582
583/// CheckForLiveRegDef - Return true and update live register vector if the
584/// specified register def of the specified SUnit clobbers any "live" registers.
585static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
586                               std::vector<SUnit*> &LiveRegDefs,
587                               SmallSet<unsigned, 4> &RegAdded,
588                               SmallVector<unsigned, 4> &LRegs,
589                               const TargetRegisterInfo *TRI) {
590  bool Added = false;
591  if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != SU) {
592    if (RegAdded.insert(Reg)) {
593      LRegs.push_back(Reg);
594      Added = true;
595    }
596  }
597  for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias)
598    if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) {
599      if (RegAdded.insert(*Alias)) {
600        LRegs.push_back(*Alias);
601        Added = true;
602      }
603    }
604  return Added;
605}
606
607/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
608/// scheduling of the given node to satisfy live physical register dependencies.
609/// If the specific node is the last one that's available to schedule, do
610/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
611bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
612                                                 SmallVector<unsigned, 4> &LRegs){
613  if (NumLiveRegs == 0)
614    return false;
615
616  SmallSet<unsigned, 4> RegAdded;
617  // If this node would clobber any "live" register, then it's not ready.
618  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
619       I != E; ++I) {
620    if (I->isAssignedRegDep())
621      CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
622                         RegAdded, LRegs, TRI);
623  }
624
625  for (SDNode *Node = SU->getNode(); Node; Node = Node->getFlaggedNode()) {
626    if (Node->getOpcode() == ISD::INLINEASM) {
627      // Inline asm can clobber physical defs.
628      unsigned NumOps = Node->getNumOperands();
629      if (Node->getOperand(NumOps-1).getValueType() == MVT::Flag)
630        --NumOps;  // Ignore the flag operand.
631
632      for (unsigned i = 2; i != NumOps;) {
633        unsigned Flags =
634          cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
635        unsigned NumVals = Flags >> 3;
636
637        ++i; // Skip the ID value.
638        if ((Flags & 7) == 2 || (Flags & 7) == 6) {
639          // Check for def of register or earlyclobber register.
640          for (; NumVals; --NumVals, ++i) {
641            unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
642            if (TargetRegisterInfo::isPhysicalRegister(Reg))
643              CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
644          }
645        } else
646          i += NumVals;
647      }
648      continue;
649    }
650
651    if (!Node->isMachineOpcode())
652      continue;
653    const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
654    if (!TID.ImplicitDefs)
655      continue;
656    for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg)
657      CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
658  }
659  return !LRegs.empty();
660}
661
662
663/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
664/// schedulers.
665void ScheduleDAGRRList::ListScheduleBottomUp() {
666  unsigned CurCycle = 0;
667
668  // Release any predecessors of the special Exit node.
669  ReleasePredecessors(&ExitSU, CurCycle);
670
671  // Add root to Available queue.
672  if (!SUnits.empty()) {
673    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
674    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
675    RootSU->isAvailable = true;
676    AvailableQueue->push(RootSU);
677  }
678
679  // While Available queue is not empty, grab the node with the highest
680  // priority. If it is not ready put it back.  Schedule the node.
681  SmallVector<SUnit*, 4> NotReady;
682  DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
683  Sequence.reserve(SUnits.size());
684  while (!AvailableQueue->empty()) {
685    bool Delayed = false;
686    LRegsMap.clear();
687    SUnit *CurSU = AvailableQueue->pop();
688    while (CurSU) {
689      SmallVector<unsigned, 4> LRegs;
690      if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
691        break;
692      Delayed = true;
693      LRegsMap.insert(std::make_pair(CurSU, LRegs));
694
695      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
696      NotReady.push_back(CurSU);
697      CurSU = AvailableQueue->pop();
698    }
699
700    // All candidates are delayed due to live physical reg dependencies.
701    // Try backtracking, code duplication, or inserting cross class copies
702    // to resolve it.
703    if (Delayed && !CurSU) {
704      for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
705        SUnit *TrySU = NotReady[i];
706        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
707
708        // Try unscheduling up to the point where it's safe to schedule
709        // this node.
710        unsigned LiveCycle = CurCycle;
711        for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
712          unsigned Reg = LRegs[j];
713          unsigned LCycle = LiveRegCycles[Reg];
714          LiveCycle = std::min(LiveCycle, LCycle);
715        }
716        SUnit *OldSU = Sequence[LiveCycle];
717        if (!WillCreateCycle(TrySU, OldSU))  {
718          BacktrackBottomUp(TrySU, LiveCycle, CurCycle);
719          // Force the current node to be scheduled before the node that
720          // requires the physical reg dep.
721          if (OldSU->isAvailable) {
722            OldSU->isAvailable = false;
723            AvailableQueue->remove(OldSU);
724          }
725          AddPred(TrySU, SDep(OldSU, SDep::Order, /*Latency=*/1,
726                              /*Reg=*/0, /*isNormalMemory=*/false,
727                              /*isMustAlias=*/false, /*isArtificial=*/true));
728          // If one or more successors has been unscheduled, then the current
729          // node is no longer avaialable. Schedule a successor that's now
730          // available instead.
731          if (!TrySU->isAvailable)
732            CurSU = AvailableQueue->pop();
733          else {
734            CurSU = TrySU;
735            TrySU->isPending = false;
736            NotReady.erase(NotReady.begin()+i);
737          }
738          break;
739        }
740      }
741
742      if (!CurSU) {
743        // Can't backtrack. If it's too expensive to copy the value, then try
744        // duplicate the nodes that produces these "too expensive to copy"
745        // values to break the dependency. In case even that doesn't work,
746        // insert cross class copies.
747        // If it's not too expensive, i.e. cost != -1, issue copies.
748        SUnit *TrySU = NotReady[0];
749        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
750        assert(LRegs.size() == 1 && "Can't handle this yet!");
751        unsigned Reg = LRegs[0];
752        SUnit *LRDef = LiveRegDefs[Reg];
753        MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
754        const TargetRegisterClass *RC =
755          TRI->getPhysicalRegisterRegClass(Reg, VT);
756        const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
757
758        // If cross copy register class is null, then it must be possible copy
759        // the value directly. Do not try duplicate the def.
760        SUnit *NewDef = 0;
761        if (DestRC)
762          NewDef = CopyAndMoveSuccessors(LRDef);
763        else
764          DestRC = RC;
765        if (!NewDef) {
766          // Issue copies, these can be expensive cross register class copies.
767          SmallVector<SUnit*, 2> Copies;
768          InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
769          DOUT << "Adding an edge from SU #" << TrySU->NodeNum
770               << " to SU #" << Copies.front()->NodeNum << "\n";
771          AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
772                              /*Reg=*/0, /*isNormalMemory=*/false,
773                              /*isMustAlias=*/false,
774                              /*isArtificial=*/true));
775          NewDef = Copies.back();
776        }
777
778        DOUT << "Adding an edge from SU #" << NewDef->NodeNum
779             << " to SU #" << TrySU->NodeNum << "\n";
780        LiveRegDefs[Reg] = NewDef;
781        AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
782                             /*Reg=*/0, /*isNormalMemory=*/false,
783                             /*isMustAlias=*/false,
784                             /*isArtificial=*/true));
785        TrySU->isAvailable = false;
786        CurSU = NewDef;
787      }
788
789      assert(CurSU && "Unable to resolve live physical register dependencies!");
790    }
791
792    // Add the nodes that aren't ready back onto the available list.
793    for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
794      NotReady[i]->isPending = false;
795      // May no longer be available due to backtracking.
796      if (NotReady[i]->isAvailable)
797        AvailableQueue->push(NotReady[i]);
798    }
799    NotReady.clear();
800
801    if (CurSU)
802      ScheduleNodeBottomUp(CurSU, CurCycle);
803    ++CurCycle;
804  }
805
806  // Reverse the order if it is bottom up.
807  std::reverse(Sequence.begin(), Sequence.end());
808
809#ifndef NDEBUG
810  VerifySchedule(isBottomUp);
811#endif
812}
813
814//===----------------------------------------------------------------------===//
815//  Top-Down Scheduling
816//===----------------------------------------------------------------------===//
817
818/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
819/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
820void ScheduleDAGRRList::ReleaseSucc(SUnit *SU, const SDep *SuccEdge) {
821  SUnit *SuccSU = SuccEdge->getSUnit();
822  --SuccSU->NumPredsLeft;
823
824#ifndef NDEBUG
825  if (SuccSU->NumPredsLeft < 0) {
826    cerr << "*** Scheduling failed! ***\n";
827    SuccSU->dump(this);
828    cerr << " has been released too many times!\n";
829    assert(0);
830  }
831#endif
832
833  // If all the node's predecessors are scheduled, this node is ready
834  // to be scheduled. Ignore the special ExitSU node.
835  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) {
836    SuccSU->isAvailable = true;
837    AvailableQueue->push(SuccSU);
838  }
839}
840
841void ScheduleDAGRRList::ReleaseSuccessors(SUnit *SU) {
842  // Top down: release successors
843  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
844       I != E; ++I) {
845    assert(!I->isAssignedRegDep() &&
846           "The list-tdrr scheduler doesn't yet support physreg dependencies!");
847
848    ReleaseSucc(SU, &*I);
849  }
850}
851
852/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
853/// count of its successors. If a successor pending count is zero, add it to
854/// the Available queue.
855void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
856  DOUT << "*** Scheduling [" << CurCycle << "]: ";
857  DEBUG(SU->dump(this));
858
859  assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
860  SU->setDepthToAtLeast(CurCycle);
861  Sequence.push_back(SU);
862
863  ReleaseSuccessors(SU);
864  SU->isScheduled = true;
865  AvailableQueue->ScheduledNode(SU);
866}
867
868/// ListScheduleTopDown - The main loop of list scheduling for top-down
869/// schedulers.
870void ScheduleDAGRRList::ListScheduleTopDown() {
871  unsigned CurCycle = 0;
872
873  // Release any successors of the special Entry node.
874  ReleaseSuccessors(&EntrySU);
875
876  // All leaves to Available queue.
877  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
878    // It is available if it has no predecessors.
879    if (SUnits[i].Preds.empty()) {
880      AvailableQueue->push(&SUnits[i]);
881      SUnits[i].isAvailable = true;
882    }
883  }
884
885  // While Available queue is not empty, grab the node with the highest
886  // priority. If it is not ready put it back.  Schedule the node.
887  Sequence.reserve(SUnits.size());
888  while (!AvailableQueue->empty()) {
889    SUnit *CurSU = AvailableQueue->pop();
890
891    if (CurSU)
892      ScheduleNodeTopDown(CurSU, CurCycle);
893    ++CurCycle;
894  }
895
896#ifndef NDEBUG
897  VerifySchedule(isBottomUp);
898#endif
899}
900
901
902//===----------------------------------------------------------------------===//
903//                RegReductionPriorityQueue Implementation
904//===----------------------------------------------------------------------===//
905//
906// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
907// to reduce register pressure.
908//
909namespace {
910  template<class SF>
911  class RegReductionPriorityQueue;
912
913  /// Sorting functions for the Available queue.
914  struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
915    RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
916    bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
917    bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
918
919    bool operator()(const SUnit* left, const SUnit* right) const;
920  };
921
922  struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
923    RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
924    td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
925    td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
926
927    bool operator()(const SUnit* left, const SUnit* right) const;
928  };
929}  // end anonymous namespace
930
931/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
932/// Smaller number is the higher priority.
933static unsigned
934CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
935  unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
936  if (SethiUllmanNumber != 0)
937    return SethiUllmanNumber;
938
939  unsigned Extra = 0;
940  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
941       I != E; ++I) {
942    if (I->isCtrl()) continue;  // ignore chain preds
943    SUnit *PredSU = I->getSUnit();
944    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
945    if (PredSethiUllman > SethiUllmanNumber) {
946      SethiUllmanNumber = PredSethiUllman;
947      Extra = 0;
948    } else if (PredSethiUllman == SethiUllmanNumber)
949      ++Extra;
950  }
951
952  SethiUllmanNumber += Extra;
953
954  if (SethiUllmanNumber == 0)
955    SethiUllmanNumber = 1;
956
957  return SethiUllmanNumber;
958}
959
960namespace {
961  template<class SF>
962  class VISIBILITY_HIDDEN RegReductionPriorityQueue
963   : public SchedulingPriorityQueue {
964    PriorityQueue<SUnit*, std::vector<SUnit*>, SF> Queue;
965    unsigned currentQueueId;
966
967  protected:
968    // SUnits - The SUnits for the current graph.
969    std::vector<SUnit> *SUnits;
970
971    const TargetInstrInfo *TII;
972    const TargetRegisterInfo *TRI;
973    ScheduleDAGRRList *scheduleDAG;
974
975    // SethiUllmanNumbers - The SethiUllman number for each node.
976    std::vector<unsigned> SethiUllmanNumbers;
977
978  public:
979    RegReductionPriorityQueue(const TargetInstrInfo *tii,
980                              const TargetRegisterInfo *tri) :
981    Queue(SF(this)), currentQueueId(0),
982    TII(tii), TRI(tri), scheduleDAG(NULL) {}
983
984    void initNodes(std::vector<SUnit> &sunits) {
985      SUnits = &sunits;
986      // Add pseudo dependency edges for two-address nodes.
987      AddPseudoTwoAddrDeps();
988      // Calculate node priorities.
989      CalculateSethiUllmanNumbers();
990    }
991
992    void addNode(const SUnit *SU) {
993      unsigned SUSize = SethiUllmanNumbers.size();
994      if (SUnits->size() > SUSize)
995        SethiUllmanNumbers.resize(SUSize*2, 0);
996      CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
997    }
998
999    void updateNode(const SUnit *SU) {
1000      SethiUllmanNumbers[SU->NodeNum] = 0;
1001      CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1002    }
1003
1004    void releaseState() {
1005      SUnits = 0;
1006      SethiUllmanNumbers.clear();
1007    }
1008
1009    unsigned getNodePriority(const SUnit *SU) const {
1010      assert(SU->NodeNum < SethiUllmanNumbers.size());
1011      unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
1012      if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1013        // CopyToReg should be close to its uses to facilitate coalescing and
1014        // avoid spilling.
1015        return 0;
1016      if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
1017          Opc == TargetInstrInfo::INSERT_SUBREG)
1018        // EXTRACT_SUBREG / INSERT_SUBREG should be close to its use to
1019        // facilitate coalescing.
1020        return 0;
1021      if (SU->NumSuccs == 0 && SU->NumPreds != 0)
1022        // If SU does not have a register use, i.e. it doesn't produce a value
1023        // that would be consumed (e.g. store), then it terminates a chain of
1024        // computation.  Give it a large SethiUllman number so it will be
1025        // scheduled right before its predecessors that it doesn't lengthen
1026        // their live ranges.
1027        return 0xffff;
1028      if (SU->NumPreds == 0 && SU->NumSuccs != 0)
1029        // If SU does not have a register def, schedule it close to its uses
1030        // because it does not lengthen any live ranges.
1031        return 0;
1032      return SethiUllmanNumbers[SU->NodeNum];
1033    }
1034
1035    unsigned size() const { return Queue.size(); }
1036
1037    bool empty() const { return Queue.empty(); }
1038
1039    void push(SUnit *U) {
1040      assert(!U->NodeQueueId && "Node in the queue already");
1041      U->NodeQueueId = ++currentQueueId;
1042      Queue.push(U);
1043    }
1044
1045    void push_all(const std::vector<SUnit *> &Nodes) {
1046      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
1047        push(Nodes[i]);
1048    }
1049
1050    SUnit *pop() {
1051      if (empty()) return NULL;
1052      SUnit *V = Queue.top();
1053      Queue.pop();
1054      V->NodeQueueId = 0;
1055      return V;
1056    }
1057
1058    void remove(SUnit *SU) {
1059      assert(!Queue.empty() && "Queue is empty!");
1060      assert(SU->NodeQueueId != 0 && "Not in queue!");
1061      Queue.erase_one(SU);
1062      SU->NodeQueueId = 0;
1063    }
1064
1065    void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1066      scheduleDAG = scheduleDag;
1067    }
1068
1069  protected:
1070    bool canClobber(const SUnit *SU, const SUnit *Op);
1071    void AddPseudoTwoAddrDeps();
1072    void CalculateSethiUllmanNumbers();
1073  };
1074
1075  typedef RegReductionPriorityQueue<bu_ls_rr_sort>
1076    BURegReductionPriorityQueue;
1077
1078  typedef RegReductionPriorityQueue<td_ls_rr_sort>
1079    TDRegReductionPriorityQueue;
1080}
1081
1082/// closestSucc - Returns the scheduled cycle of the successor which is
1083/// closet to the current cycle.
1084static unsigned closestSucc(const SUnit *SU) {
1085  unsigned MaxHeight = 0;
1086  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1087       I != E; ++I) {
1088    if (I->isCtrl()) continue;  // ignore chain succs
1089    unsigned Height = I->getSUnit()->getHeight();
1090    // If there are bunch of CopyToRegs stacked up, they should be considered
1091    // to be at the same position.
1092    if (I->getSUnit()->getNode() &&
1093        I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
1094      Height = closestSucc(I->getSUnit())+1;
1095    if (Height > MaxHeight)
1096      MaxHeight = Height;
1097  }
1098  return MaxHeight;
1099}
1100
1101/// calcMaxScratches - Returns an cost estimate of the worse case requirement
1102/// for scratch registers, i.e. number of data dependencies.
1103static unsigned calcMaxScratches(const SUnit *SU) {
1104  unsigned Scratches = 0;
1105  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1106       I != E; ++I) {
1107    if (I->isCtrl()) continue;  // ignore chain preds
1108    Scratches++;
1109  }
1110  return Scratches;
1111}
1112
1113// Bottom up
1114bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1115  unsigned LPriority = SPQ->getNodePriority(left);
1116  unsigned RPriority = SPQ->getNodePriority(right);
1117  if (LPriority != RPriority)
1118    return LPriority > RPriority;
1119
1120  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
1121  // e.g.
1122  // t1 = op t2, c1
1123  // t3 = op t4, c2
1124  //
1125  // and the following instructions are both ready.
1126  // t2 = op c3
1127  // t4 = op c4
1128  //
1129  // Then schedule t2 = op first.
1130  // i.e.
1131  // t4 = op c4
1132  // t2 = op c3
1133  // t1 = op t2, c1
1134  // t3 = op t4, c2
1135  //
1136  // This creates more short live intervals.
1137  unsigned LDist = closestSucc(left);
1138  unsigned RDist = closestSucc(right);
1139  if (LDist != RDist)
1140    return LDist < RDist;
1141
1142  // How many registers becomes live when the node is scheduled.
1143  unsigned LScratch = calcMaxScratches(left);
1144  unsigned RScratch = calcMaxScratches(right);
1145  if (LScratch != RScratch)
1146    return LScratch > RScratch;
1147
1148  if (left->getHeight() != right->getHeight())
1149    return left->getHeight() > right->getHeight();
1150
1151  if (left->getDepth() != right->getDepth())
1152    return left->getDepth() < right->getDepth();
1153
1154  assert(left->NodeQueueId && right->NodeQueueId &&
1155         "NodeQueueId cannot be zero");
1156  return (left->NodeQueueId > right->NodeQueueId);
1157}
1158
1159template<class SF>
1160bool
1161RegReductionPriorityQueue<SF>::canClobber(const SUnit *SU, const SUnit *Op) {
1162  if (SU->isTwoAddress) {
1163    unsigned Opc = SU->getNode()->getMachineOpcode();
1164    const TargetInstrDesc &TID = TII->get(Opc);
1165    unsigned NumRes = TID.getNumDefs();
1166    unsigned NumOps = TID.getNumOperands() - NumRes;
1167    for (unsigned i = 0; i != NumOps; ++i) {
1168      if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) {
1169        SDNode *DU = SU->getNode()->getOperand(i).getNode();
1170        if (DU->getNodeId() != -1 &&
1171            Op->OrigNode == &(*SUnits)[DU->getNodeId()])
1172          return true;
1173      }
1174    }
1175  }
1176  return false;
1177}
1178
1179
1180/// hasCopyToRegUse - Return true if SU has a value successor that is a
1181/// CopyToReg node.
1182static bool hasCopyToRegUse(const SUnit *SU) {
1183  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1184       I != E; ++I) {
1185    if (I->isCtrl()) continue;
1186    const SUnit *SuccSU = I->getSUnit();
1187    if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg)
1188      return true;
1189  }
1190  return false;
1191}
1192
1193/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
1194/// physical register defs.
1195static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
1196                                  const TargetInstrInfo *TII,
1197                                  const TargetRegisterInfo *TRI) {
1198  SDNode *N = SuccSU->getNode();
1199  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1200  const unsigned *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
1201  assert(ImpDefs && "Caller should check hasPhysRegDefs");
1202  const unsigned *SUImpDefs =
1203    TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
1204  if (!SUImpDefs)
1205    return false;
1206  for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
1207    MVT VT = N->getValueType(i);
1208    if (VT == MVT::Flag || VT == MVT::Other)
1209      continue;
1210    if (!N->hasAnyUseOfValue(i))
1211      continue;
1212    unsigned Reg = ImpDefs[i - NumDefs];
1213    for (;*SUImpDefs; ++SUImpDefs) {
1214      unsigned SUReg = *SUImpDefs;
1215      if (TRI->regsOverlap(Reg, SUReg))
1216        return true;
1217    }
1218  }
1219  return false;
1220}
1221
1222/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
1223/// it as a def&use operand. Add a pseudo control edge from it to the other
1224/// node (if it won't create a cycle) so the two-address one will be scheduled
1225/// first (lower in the schedule). If both nodes are two-address, favor the
1226/// one that has a CopyToReg use (more likely to be a loop induction update).
1227/// If both are two-address, but one is commutable while the other is not
1228/// commutable, favor the one that's not commutable.
1229template<class SF>
1230void RegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
1231  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
1232    SUnit *SU = &(*SUnits)[i];
1233    if (!SU->isTwoAddress)
1234      continue;
1235
1236    SDNode *Node = SU->getNode();
1237    if (!Node || !Node->isMachineOpcode() || SU->getNode()->getFlaggedNode())
1238      continue;
1239
1240    unsigned Opc = Node->getMachineOpcode();
1241    const TargetInstrDesc &TID = TII->get(Opc);
1242    unsigned NumRes = TID.getNumDefs();
1243    unsigned NumOps = TID.getNumOperands() - NumRes;
1244    for (unsigned j = 0; j != NumOps; ++j) {
1245      if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
1246        continue;
1247      SDNode *DU = SU->getNode()->getOperand(j).getNode();
1248      if (DU->getNodeId() == -1)
1249        continue;
1250      const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
1251      if (!DUSU) continue;
1252      for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
1253           E = DUSU->Succs.end(); I != E; ++I) {
1254        if (I->isCtrl()) continue;
1255        SUnit *SuccSU = I->getSUnit();
1256        if (SuccSU == SU)
1257          continue;
1258        // Be conservative. Ignore if nodes aren't at roughly the same
1259        // depth and height.
1260        if (SuccSU->getHeight() < SU->getHeight() &&
1261            (SU->getHeight() - SuccSU->getHeight()) > 1)
1262          continue;
1263        if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
1264          continue;
1265        // Don't constrain nodes with physical register defs if the
1266        // predecessor can clobber them.
1267        if (SuccSU->hasPhysRegDefs) {
1268          if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
1269            continue;
1270        }
1271        // Don't constrain extract_subreg / insert_subreg; these may be
1272        // coalesced away. We want them close to their uses.
1273        unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
1274        if (SuccOpc == TargetInstrInfo::EXTRACT_SUBREG ||
1275            SuccOpc == TargetInstrInfo::INSERT_SUBREG)
1276          continue;
1277        if ((!canClobber(SuccSU, DUSU) ||
1278             (hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
1279             (!SU->isCommutable && SuccSU->isCommutable)) &&
1280            !scheduleDAG->IsReachable(SuccSU, SU)) {
1281          DOUT << "Adding a pseudo-two-addr edge from SU # " << SU->NodeNum
1282               << " to SU #" << SuccSU->NodeNum << "\n";
1283          scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Order, /*Latency=*/0,
1284                                        /*Reg=*/0, /*isNormalMemory=*/false,
1285                                        /*isMustAlias=*/false,
1286                                        /*isArtificial=*/true));
1287        }
1288      }
1289    }
1290  }
1291}
1292
1293/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1294/// scheduling units.
1295template<class SF>
1296void RegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
1297  SethiUllmanNumbers.assign(SUnits->size(), 0);
1298
1299  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1300    CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1301}
1302
1303/// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled
1304/// predecessors of the successors of the SUnit SU. Stop when the provided
1305/// limit is exceeded.
1306static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU,
1307                                                    unsigned Limit) {
1308  unsigned Sum = 0;
1309  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1310       I != E; ++I) {
1311    const SUnit *SuccSU = I->getSUnit();
1312    for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
1313         EE = SuccSU->Preds.end(); II != EE; ++II) {
1314      SUnit *PredSU = II->getSUnit();
1315      if (!PredSU->isScheduled)
1316        if (++Sum > Limit)
1317          return Sum;
1318    }
1319  }
1320  return Sum;
1321}
1322
1323
1324// Top down
1325bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1326  unsigned LPriority = SPQ->getNodePriority(left);
1327  unsigned RPriority = SPQ->getNodePriority(right);
1328  bool LIsTarget = left->getNode() && left->getNode()->isMachineOpcode();
1329  bool RIsTarget = right->getNode() && right->getNode()->isMachineOpcode();
1330  bool LIsFloater = LIsTarget && left->NumPreds == 0;
1331  bool RIsFloater = RIsTarget && right->NumPreds == 0;
1332  unsigned LBonus = (LimitedSumOfUnscheduledPredsOfSuccs(left,1) == 1) ? 2 : 0;
1333  unsigned RBonus = (LimitedSumOfUnscheduledPredsOfSuccs(right,1) == 1) ? 2 : 0;
1334
1335  if (left->NumSuccs == 0 && right->NumSuccs != 0)
1336    return false;
1337  else if (left->NumSuccs != 0 && right->NumSuccs == 0)
1338    return true;
1339
1340  if (LIsFloater)
1341    LBonus -= 2;
1342  if (RIsFloater)
1343    RBonus -= 2;
1344  if (left->NumSuccs == 1)
1345    LBonus += 2;
1346  if (right->NumSuccs == 1)
1347    RBonus += 2;
1348
1349  if (LPriority+LBonus != RPriority+RBonus)
1350    return LPriority+LBonus < RPriority+RBonus;
1351
1352  if (left->getDepth() != right->getDepth())
1353    return left->getDepth() < right->getDepth();
1354
1355  if (left->NumSuccsLeft != right->NumSuccsLeft)
1356    return left->NumSuccsLeft > right->NumSuccsLeft;
1357
1358  assert(left->NodeQueueId && right->NodeQueueId &&
1359         "NodeQueueId cannot be zero");
1360  return (left->NodeQueueId > right->NodeQueueId);
1361}
1362
1363//===----------------------------------------------------------------------===//
1364//                         Public Constructor Functions
1365//===----------------------------------------------------------------------===//
1366
1367llvm::ScheduleDAGSDNodes *
1368llvm::createBURRListDAGScheduler(SelectionDAGISel *IS, bool) {
1369  const TargetMachine &TM = IS->TM;
1370  const TargetInstrInfo *TII = TM.getInstrInfo();
1371  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
1372
1373  BURegReductionPriorityQueue *PQ = new BURegReductionPriorityQueue(TII, TRI);
1374
1375  ScheduleDAGRRList *SD =
1376    new ScheduleDAGRRList(*IS->MF, true, PQ);
1377  PQ->setScheduleDAG(SD);
1378  return SD;
1379}
1380
1381llvm::ScheduleDAGSDNodes *
1382llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS, bool) {
1383  const TargetMachine &TM = IS->TM;
1384  const TargetInstrInfo *TII = TM.getInstrInfo();
1385  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
1386
1387  TDRegReductionPriorityQueue *PQ = new TDRegReductionPriorityQueue(TII, TRI);
1388
1389  ScheduleDAGRRList *SD =
1390    new ScheduleDAGRRList(*IS->MF, false, PQ);
1391  PQ->setScheduleDAG(SD);
1392  return SD;
1393}
1394