ScheduleDAGRRList.cpp revision 30c44e18bf28c3f5feda56e97695e2b72de7fedb
1//===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms.  The basic approach uses a priority
12// queue of available nodes to schedule.  One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "pre-RA-sched"
19#include "ScheduleDAGSDNodes.h"
20#include "llvm/InlineAsm.h"
21#include "llvm/CodeGen/SchedulerRegistry.h"
22#include "llvm/CodeGen/SelectionDAGISel.h"
23#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
24#include "llvm/Target/TargetRegisterInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include <climits>
36using namespace llvm;
37
38STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
39STATISTIC(NumUnfolds,    "Number of nodes unfolded");
40STATISTIC(NumDups,       "Number of duplicated nodes");
41STATISTIC(NumPRCopies,   "Number of physical register copies");
42
43static RegisterScheduler
44  burrListDAGScheduler("list-burr",
45                       "Bottom-up register reduction list scheduling",
46                       createBURRListDAGScheduler);
47static RegisterScheduler
48  sourceListDAGScheduler("source",
49                         "Similar to list-burr but schedules in source "
50                         "order when possible",
51                         createSourceListDAGScheduler);
52
53static RegisterScheduler
54  hybridListDAGScheduler("list-hybrid",
55                         "Bottom-up register pressure aware list scheduling "
56                         "which tries to balance latency and register pressure",
57                         createHybridListDAGScheduler);
58
59static RegisterScheduler
60  ILPListDAGScheduler("list-ilp",
61                      "Bottom-up register pressure aware list scheduling "
62                      "which tries to balance ILP and register pressure",
63                      createILPListDAGScheduler);
64
65static cl::opt<bool> DisableSchedCycles(
66  "disable-sched-cycles", cl::Hidden, cl::init(false),
67  cl::desc("Disable cycle-level precision during preRA scheduling"));
68
69// Temporary sched=list-ilp flags until the heuristics are robust.
70// Some options are also available under sched=list-hybrid.
71static cl::opt<bool> DisableSchedRegPressure(
72  "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
73  cl::desc("Disable regpressure priority in sched=list-ilp"));
74static cl::opt<bool> DisableSchedLiveUses(
75  "disable-sched-live-uses", cl::Hidden, cl::init(true),
76  cl::desc("Disable live use priority in sched=list-ilp"));
77static cl::opt<bool> DisableSchedVRegCycle(
78  "disable-sched-vrcycle", cl::Hidden, cl::init(false),
79  cl::desc("Disable virtual register cycle interference checks"));
80static cl::opt<bool> DisableSchedPhysRegJoin(
81  "disable-sched-physreg-join", cl::Hidden, cl::init(false),
82  cl::desc("Disable physreg def-use affinity"));
83static cl::opt<bool> DisableSchedStalls(
84  "disable-sched-stalls", cl::Hidden, cl::init(true),
85  cl::desc("Disable no-stall priority in sched=list-ilp"));
86static cl::opt<bool> DisableSchedCriticalPath(
87  "disable-sched-critical-path", cl::Hidden, cl::init(false),
88  cl::desc("Disable critical path priority in sched=list-ilp"));
89static cl::opt<bool> DisableSchedHeight(
90  "disable-sched-height", cl::Hidden, cl::init(false),
91  cl::desc("Disable scheduled-height priority in sched=list-ilp"));
92static cl::opt<bool> Disable2AddrHack(
93  "disable-2addr-hack", cl::Hidden, cl::init(true),
94  cl::desc("Disable scheduler's two-address hack"));
95
96static cl::opt<int> MaxReorderWindow(
97  "max-sched-reorder", cl::Hidden, cl::init(6),
98  cl::desc("Number of instructions to allow ahead of the critical path "
99           "in sched=list-ilp"));
100
101static cl::opt<unsigned> AvgIPC(
102  "sched-avg-ipc", cl::Hidden, cl::init(1),
103  cl::desc("Average inst/cycle whan no target itinerary exists."));
104
105namespace {
106//===----------------------------------------------------------------------===//
107/// ScheduleDAGRRList - The actual register reduction list scheduler
108/// implementation.  This supports both top-down and bottom-up scheduling.
109///
110class ScheduleDAGRRList : public ScheduleDAGSDNodes {
111private:
112  /// NeedLatency - True if the scheduler will make use of latency information.
113  ///
114  bool NeedLatency;
115
116  /// AvailableQueue - The priority queue to use for the available SUnits.
117  SchedulingPriorityQueue *AvailableQueue;
118
119  /// PendingQueue - This contains all of the instructions whose operands have
120  /// been issued, but their results are not ready yet (due to the latency of
121  /// the operation).  Once the operands becomes available, the instruction is
122  /// added to the AvailableQueue.
123  std::vector<SUnit*> PendingQueue;
124
125  /// HazardRec - The hazard recognizer to use.
126  ScheduleHazardRecognizer *HazardRec;
127
128  /// CurCycle - The current scheduler state corresponds to this cycle.
129  unsigned CurCycle;
130
131  /// MinAvailableCycle - Cycle of the soonest available instruction.
132  unsigned MinAvailableCycle;
133
134  /// IssueCount - Count instructions issued in this cycle
135  /// Currently valid only for bottom-up scheduling.
136  unsigned IssueCount;
137
138  /// LiveRegDefs - A set of physical registers and their definition
139  /// that are "live". These nodes must be scheduled before any other nodes that
140  /// modifies the registers can be scheduled.
141  unsigned NumLiveRegs;
142  std::vector<SUnit*> LiveRegDefs;
143  std::vector<SUnit*> LiveRegGens;
144
145  /// Topo - A topological ordering for SUnits which permits fast IsReachable
146  /// and similar queries.
147  ScheduleDAGTopologicalSort Topo;
148
149public:
150  ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
151                    SchedulingPriorityQueue *availqueue,
152                    CodeGenOpt::Level OptLevel)
153    : ScheduleDAGSDNodes(mf),
154      NeedLatency(needlatency), AvailableQueue(availqueue), CurCycle(0),
155      Topo(SUnits) {
156
157    const TargetMachine &tm = mf.getTarget();
158    if (DisableSchedCycles || !NeedLatency)
159      HazardRec = new ScheduleHazardRecognizer();
160    else
161      HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(&tm, this);
162  }
163
164  ~ScheduleDAGRRList() {
165    delete HazardRec;
166    delete AvailableQueue;
167  }
168
169  void Schedule();
170
171  ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
172
173  /// IsReachable - Checks if SU is reachable from TargetSU.
174  bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
175    return Topo.IsReachable(SU, TargetSU);
176  }
177
178  /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
179  /// create a cycle.
180  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
181    return Topo.WillCreateCycle(SU, TargetSU);
182  }
183
184  /// AddPred - adds a predecessor edge to SUnit SU.
185  /// This returns true if this is a new predecessor.
186  /// Updates the topological ordering if required.
187  void AddPred(SUnit *SU, const SDep &D) {
188    Topo.AddPred(SU, D.getSUnit());
189    SU->addPred(D);
190  }
191
192  /// RemovePred - removes a predecessor edge from SUnit SU.
193  /// This returns true if an edge was removed.
194  /// Updates the topological ordering if required.
195  void RemovePred(SUnit *SU, const SDep &D) {
196    Topo.RemovePred(SU, D.getSUnit());
197    SU->removePred(D);
198  }
199
200private:
201  bool isReady(SUnit *SU) {
202    return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
203      AvailableQueue->isReady(SU);
204  }
205
206  void ReleasePred(SUnit *SU, const SDep *PredEdge);
207  void ReleasePredecessors(SUnit *SU);
208  void ReleasePending();
209  void AdvanceToCycle(unsigned NextCycle);
210  void AdvancePastStalls(SUnit *SU);
211  void EmitNode(SUnit *SU);
212  void ScheduleNodeBottomUp(SUnit*);
213  void CapturePred(SDep *PredEdge);
214  void UnscheduleNodeBottomUp(SUnit*);
215  void RestoreHazardCheckerBottomUp();
216  void BacktrackBottomUp(SUnit*, SUnit*);
217  SUnit *CopyAndMoveSuccessors(SUnit*);
218  void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
219                                const TargetRegisterClass*,
220                                const TargetRegisterClass*,
221                                SmallVector<SUnit*, 2>&);
222  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
223
224  SUnit *PickNodeToScheduleBottomUp();
225  void ListScheduleBottomUp();
226
227  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
228  /// Updates the topological ordering if required.
229  SUnit *CreateNewSUnit(SDNode *N) {
230    unsigned NumSUnits = SUnits.size();
231    SUnit *NewNode = NewSUnit(N);
232    // Update the topological ordering.
233    if (NewNode->NodeNum >= NumSUnits)
234      Topo.InitDAGTopologicalSorting();
235    return NewNode;
236  }
237
238  /// CreateClone - Creates a new SUnit from an existing one.
239  /// Updates the topological ordering if required.
240  SUnit *CreateClone(SUnit *N) {
241    unsigned NumSUnits = SUnits.size();
242    SUnit *NewNode = Clone(N);
243    // Update the topological ordering.
244    if (NewNode->NodeNum >= NumSUnits)
245      Topo.InitDAGTopologicalSorting();
246    return NewNode;
247  }
248
249  /// ForceUnitLatencies - Register-pressure-reducing scheduling doesn't
250  /// need actual latency information but the hybrid scheduler does.
251  bool ForceUnitLatencies() const {
252    return !NeedLatency;
253  }
254};
255}  // end anonymous namespace
256
257/// GetCostForDef - Looks up the register class and cost for a given definition.
258/// Typically this just means looking up the representative register class,
259/// but for untyped values (MVT::Untyped) it means inspecting the node's
260/// opcode to determine what register class is being generated.
261static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
262                          const TargetLowering *TLI,
263                          const TargetInstrInfo *TII,
264                          const TargetRegisterInfo *TRI,
265                          unsigned &RegClass, unsigned &Cost) {
266  EVT VT = RegDefPos.GetValue();
267
268  // Special handling for untyped values.  These values can only come from
269  // the expansion of custom DAG-to-DAG patterns.
270  if (VT == MVT::Untyped) {
271    const SDNode *Node = RegDefPos.GetNode();
272    unsigned Opcode = Node->getMachineOpcode();
273
274    if (Opcode == TargetOpcode::REG_SEQUENCE) {
275      unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
276      const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
277      RegClass = RC->getID();
278      Cost = 1;
279      return;
280    }
281
282    unsigned Idx = RegDefPos.GetIdx();
283    const MCInstrDesc Desc = TII->get(Opcode);
284    const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI);
285    RegClass = RC->getID();
286    // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
287    // better way to determine it.
288    Cost = 1;
289  } else {
290    RegClass = TLI->getRepRegClassFor(VT)->getID();
291    Cost = TLI->getRepRegClassCostFor(VT);
292  }
293}
294
295/// Schedule - Schedule the DAG using list scheduling.
296void ScheduleDAGRRList::Schedule() {
297  DEBUG(dbgs()
298        << "********** List Scheduling BB#" << BB->getNumber()
299        << " '" << BB->getName() << "' **********\n");
300
301  CurCycle = 0;
302  IssueCount = 0;
303  MinAvailableCycle = DisableSchedCycles ? 0 : UINT_MAX;
304  NumLiveRegs = 0;
305  // Allocate slots for each physical register, plus one for a special register
306  // to track the virtual resource of a calling sequence.
307  LiveRegDefs.resize(TRI->getNumRegs() + 1, NULL);
308  LiveRegGens.resize(TRI->getNumRegs() + 1, NULL);
309
310  // Build the scheduling graph.
311  BuildSchedGraph(NULL);
312
313  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
314          SUnits[su].dumpAll(this));
315  Topo.InitDAGTopologicalSorting();
316
317  AvailableQueue->initNodes(SUnits);
318
319  HazardRec->Reset();
320
321  // Execute the actual scheduling loop.
322  ListScheduleBottomUp();
323
324  AvailableQueue->releaseState();
325}
326
327//===----------------------------------------------------------------------===//
328//  Bottom-Up Scheduling
329//===----------------------------------------------------------------------===//
330
331/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
332/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
333void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
334  SUnit *PredSU = PredEdge->getSUnit();
335
336#ifndef NDEBUG
337  if (PredSU->NumSuccsLeft == 0) {
338    dbgs() << "*** Scheduling failed! ***\n";
339    PredSU->dump(this);
340    dbgs() << " has been released too many times!\n";
341    llvm_unreachable(0);
342  }
343#endif
344  --PredSU->NumSuccsLeft;
345
346  if (!ForceUnitLatencies()) {
347    // Updating predecessor's height. This is now the cycle when the
348    // predecessor can be scheduled without causing a pipeline stall.
349    PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
350  }
351
352  // If all the node's successors are scheduled, this node is ready
353  // to be scheduled. Ignore the special EntrySU node.
354  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
355    PredSU->isAvailable = true;
356
357    unsigned Height = PredSU->getHeight();
358    if (Height < MinAvailableCycle)
359      MinAvailableCycle = Height;
360
361    if (isReady(PredSU)) {
362      AvailableQueue->push(PredSU);
363    }
364    // CapturePred and others may have left the node in the pending queue, avoid
365    // adding it twice.
366    else if (!PredSU->isPending) {
367      PredSU->isPending = true;
368      PendingQueue.push_back(PredSU);
369    }
370  }
371}
372
373/// IsChainDependent - Test if Outer is reachable from Inner through
374/// chain dependencies.
375static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
376                             unsigned NestLevel,
377                             const TargetInstrInfo *TII) {
378  SDNode *N = Outer;
379  for (;;) {
380    if (N == Inner)
381      return true;
382    // For a TokenFactor, examine each operand. There may be multiple ways
383    // to get to the CALLSEQ_BEGIN, but we need to find the path with the
384    // most nesting in order to ensure that we find the corresponding match.
385    if (N->getOpcode() == ISD::TokenFactor) {
386      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
387        if (IsChainDependent(N->getOperand(i).getNode(), Inner, NestLevel, TII))
388          return true;
389      return false;
390    }
391    // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
392    if (N->isMachineOpcode()) {
393      if (N->getMachineOpcode() ==
394          (unsigned)TII->getCallFrameDestroyOpcode()) {
395        ++NestLevel;
396      } else if (N->getMachineOpcode() ==
397                 (unsigned)TII->getCallFrameSetupOpcode()) {
398        if (NestLevel == 0)
399          return false;
400        --NestLevel;
401      }
402    }
403    // Otherwise, find the chain and continue climbing.
404    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
405      if (N->getOperand(i).getValueType() == MVT::Other) {
406        N = N->getOperand(i).getNode();
407        goto found_chain_operand;
408      }
409    return false;
410  found_chain_operand:;
411    if (N->getOpcode() == ISD::EntryToken)
412      return false;
413  }
414}
415
416/// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
417/// the corresponding (lowered) CALLSEQ_BEGIN node.
418///
419/// NestLevel and MaxNested are used in recursion to indcate the current level
420/// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
421/// level seen so far.
422///
423/// TODO: It would be better to give CALLSEQ_END an explicit operand to point
424/// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
425static SDNode *
426FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
427                 const TargetInstrInfo *TII) {
428  for (;;) {
429    // For a TokenFactor, examine each operand. There may be multiple ways
430    // to get to the CALLSEQ_BEGIN, but we need to find the path with the
431    // most nesting in order to ensure that we find the corresponding match.
432    if (N->getOpcode() == ISD::TokenFactor) {
433      SDNode *Best = 0;
434      unsigned BestMaxNest = MaxNest;
435      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
436        unsigned MyNestLevel = NestLevel;
437        unsigned MyMaxNest = MaxNest;
438        if (SDNode *New = FindCallSeqStart(N->getOperand(i).getNode(),
439                                           MyNestLevel, MyMaxNest, TII))
440          if (!Best || (MyMaxNest > BestMaxNest)) {
441            Best = New;
442            BestMaxNest = MyMaxNest;
443          }
444      }
445      assert(Best);
446      MaxNest = BestMaxNest;
447      return Best;
448    }
449    // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
450    if (N->isMachineOpcode()) {
451      if (N->getMachineOpcode() ==
452          (unsigned)TII->getCallFrameDestroyOpcode()) {
453        ++NestLevel;
454        MaxNest = std::max(MaxNest, NestLevel);
455      } else if (N->getMachineOpcode() ==
456                 (unsigned)TII->getCallFrameSetupOpcode()) {
457        assert(NestLevel != 0);
458        --NestLevel;
459        if (NestLevel == 0)
460          return N;
461      }
462    }
463    // Otherwise, find the chain and continue climbing.
464    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
465      if (N->getOperand(i).getValueType() == MVT::Other) {
466        N = N->getOperand(i).getNode();
467        goto found_chain_operand;
468      }
469    return 0;
470  found_chain_operand:;
471    if (N->getOpcode() == ISD::EntryToken)
472      return 0;
473  }
474}
475
476/// Call ReleasePred for each predecessor, then update register live def/gen.
477/// Always update LiveRegDefs for a register dependence even if the current SU
478/// also defines the register. This effectively create one large live range
479/// across a sequence of two-address node. This is important because the
480/// entire chain must be scheduled together. Example:
481///
482/// flags = (3) add
483/// flags = (2) addc flags
484/// flags = (1) addc flags
485///
486/// results in
487///
488/// LiveRegDefs[flags] = 3
489/// LiveRegGens[flags] = 1
490///
491/// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
492/// interference on flags.
493void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
494  // Bottom up: release predecessors
495  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
496       I != E; ++I) {
497    ReleasePred(SU, &*I);
498    if (I->isAssignedRegDep()) {
499      // This is a physical register dependency and it's impossible or
500      // expensive to copy the register. Make sure nothing that can
501      // clobber the register is scheduled between the predecessor and
502      // this node.
503      SUnit *RegDef = LiveRegDefs[I->getReg()]; (void)RegDef;
504      assert((!RegDef || RegDef == SU || RegDef == I->getSUnit()) &&
505             "interference on register dependence");
506      LiveRegDefs[I->getReg()] = I->getSUnit();
507      if (!LiveRegGens[I->getReg()]) {
508        ++NumLiveRegs;
509        LiveRegGens[I->getReg()] = SU;
510      }
511    }
512  }
513
514  // If we're scheduling a lowered CALLSEQ_END, find the corresponding
515  // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
516  // these nodes, to prevent other calls from being interscheduled with them.
517  unsigned CallResource = TRI->getNumRegs();
518  if (!LiveRegDefs[CallResource])
519    for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
520      if (Node->isMachineOpcode() &&
521          Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
522        unsigned NestLevel = 0;
523        unsigned MaxNest = 0;
524        SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
525
526        SUnit *Def = &SUnits[N->getNodeId()];
527        ++NumLiveRegs;
528        LiveRegDefs[CallResource] = Def;
529        LiveRegGens[CallResource] = SU;
530        break;
531      }
532}
533
534/// Check to see if any of the pending instructions are ready to issue.  If
535/// so, add them to the available queue.
536void ScheduleDAGRRList::ReleasePending() {
537  if (DisableSchedCycles) {
538    assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
539    return;
540  }
541
542  // If the available queue is empty, it is safe to reset MinAvailableCycle.
543  if (AvailableQueue->empty())
544    MinAvailableCycle = UINT_MAX;
545
546  // Check to see if any of the pending instructions are ready to issue.  If
547  // so, add them to the available queue.
548  for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
549    unsigned ReadyCycle = PendingQueue[i]->getHeight();
550    if (ReadyCycle < MinAvailableCycle)
551      MinAvailableCycle = ReadyCycle;
552
553    if (PendingQueue[i]->isAvailable) {
554      if (!isReady(PendingQueue[i]))
555          continue;
556      AvailableQueue->push(PendingQueue[i]);
557    }
558    PendingQueue[i]->isPending = false;
559    PendingQueue[i] = PendingQueue.back();
560    PendingQueue.pop_back();
561    --i; --e;
562  }
563}
564
565/// Move the scheduler state forward by the specified number of Cycles.
566void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
567  if (NextCycle <= CurCycle)
568    return;
569
570  IssueCount = 0;
571  AvailableQueue->setCurCycle(NextCycle);
572  if (!HazardRec->isEnabled()) {
573    // Bypass lots of virtual calls in case of long latency.
574    CurCycle = NextCycle;
575  }
576  else {
577    for (; CurCycle != NextCycle; ++CurCycle) {
578      HazardRec->RecedeCycle();
579    }
580  }
581  // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
582  // available Q to release pending nodes at least once before popping.
583  ReleasePending();
584}
585
586/// Move the scheduler state forward until the specified node's dependents are
587/// ready and can be scheduled with no resource conflicts.
588void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
589  if (DisableSchedCycles)
590    return;
591
592  // FIXME: Nodes such as CopyFromReg probably should not advance the current
593  // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
594  // has predecessors the cycle will be advanced when they are scheduled.
595  // But given the crude nature of modeling latency though such nodes, we
596  // currently need to treat these nodes like real instructions.
597  // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
598
599  unsigned ReadyCycle = SU->getHeight();
600
601  // Bump CurCycle to account for latency. We assume the latency of other
602  // available instructions may be hidden by the stall (not a full pipe stall).
603  // This updates the hazard recognizer's cycle before reserving resources for
604  // this instruction.
605  AdvanceToCycle(ReadyCycle);
606
607  // Calls are scheduled in their preceding cycle, so don't conflict with
608  // hazards from instructions after the call. EmitNode will reset the
609  // scoreboard state before emitting the call.
610  if (SU->isCall)
611    return;
612
613  // FIXME: For resource conflicts in very long non-pipelined stages, we
614  // should probably skip ahead here to avoid useless scoreboard checks.
615  int Stalls = 0;
616  while (true) {
617    ScheduleHazardRecognizer::HazardType HT =
618      HazardRec->getHazardType(SU, -Stalls);
619
620    if (HT == ScheduleHazardRecognizer::NoHazard)
621      break;
622
623    ++Stalls;
624  }
625  AdvanceToCycle(CurCycle + Stalls);
626}
627
628/// Record this SUnit in the HazardRecognizer.
629/// Does not update CurCycle.
630void ScheduleDAGRRList::EmitNode(SUnit *SU) {
631  if (!HazardRec->isEnabled())
632    return;
633
634  // Check for phys reg copy.
635  if (!SU->getNode())
636    return;
637
638  switch (SU->getNode()->getOpcode()) {
639  default:
640    assert(SU->getNode()->isMachineOpcode() &&
641           "This target-independent node should not be scheduled.");
642    break;
643  case ISD::MERGE_VALUES:
644  case ISD::TokenFactor:
645  case ISD::CopyToReg:
646  case ISD::CopyFromReg:
647  case ISD::EH_LABEL:
648    // Noops don't affect the scoreboard state. Copies are likely to be
649    // removed.
650    return;
651  case ISD::INLINEASM:
652    // For inline asm, clear the pipeline state.
653    HazardRec->Reset();
654    return;
655  }
656  if (SU->isCall) {
657    // Calls are scheduled with their preceding instructions. For bottom-up
658    // scheduling, clear the pipeline state before emitting.
659    HazardRec->Reset();
660  }
661
662  HazardRec->EmitInstruction(SU);
663}
664
665static void resetVRegCycle(SUnit *SU);
666
667/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
668/// count of its predecessors. If a predecessor pending count is zero, add it to
669/// the Available queue.
670void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
671  DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
672  DEBUG(SU->dump(this));
673
674#ifndef NDEBUG
675  if (CurCycle < SU->getHeight())
676    DEBUG(dbgs() << "   Height [" << SU->getHeight()
677          << "] pipeline stall!\n");
678#endif
679
680  // FIXME: Do not modify node height. It may interfere with
681  // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
682  // node its ready cycle can aid heuristics, and after scheduling it can
683  // indicate the scheduled cycle.
684  SU->setHeightToAtLeast(CurCycle);
685
686  // Reserve resources for the scheduled intruction.
687  EmitNode(SU);
688
689  Sequence.push_back(SU);
690
691  AvailableQueue->ScheduledNode(SU);
692
693  // If HazardRec is disabled, and each inst counts as one cycle, then
694  // advance CurCycle before ReleasePredecessors to avoid useless pushes to
695  // PendingQueue for schedulers that implement HasReadyFilter.
696  if (!HazardRec->isEnabled() && AvgIPC < 2)
697    AdvanceToCycle(CurCycle + 1);
698
699  // Update liveness of predecessors before successors to avoid treating a
700  // two-address node as a live range def.
701  ReleasePredecessors(SU);
702
703  // Release all the implicit physical register defs that are live.
704  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
705       I != E; ++I) {
706    // LiveRegDegs[I->getReg()] != SU when SU is a two-address node.
707    if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] == SU) {
708      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
709      --NumLiveRegs;
710      LiveRegDefs[I->getReg()] = NULL;
711      LiveRegGens[I->getReg()] = NULL;
712    }
713  }
714  // Release the special call resource dependence, if this is the beginning
715  // of a call.
716  unsigned CallResource = TRI->getNumRegs();
717  if (LiveRegDefs[CallResource] == SU)
718    for (const SDNode *SUNode = SU->getNode(); SUNode;
719         SUNode = SUNode->getGluedNode()) {
720      if (SUNode->isMachineOpcode() &&
721          SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
722        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
723        --NumLiveRegs;
724        LiveRegDefs[CallResource] = NULL;
725        LiveRegGens[CallResource] = NULL;
726      }
727    }
728
729  resetVRegCycle(SU);
730
731  SU->isScheduled = true;
732
733  // Conditions under which the scheduler should eagerly advance the cycle:
734  // (1) No available instructions
735  // (2) All pipelines full, so available instructions must have hazards.
736  //
737  // If HazardRec is disabled, the cycle was pre-advanced before calling
738  // ReleasePredecessors. In that case, IssueCount should remain 0.
739  //
740  // Check AvailableQueue after ReleasePredecessors in case of zero latency.
741  if (HazardRec->isEnabled() || AvgIPC > 1) {
742    if (SU->getNode() && SU->getNode()->isMachineOpcode())
743      ++IssueCount;
744    if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
745        || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
746      AdvanceToCycle(CurCycle + 1);
747  }
748}
749
750/// CapturePred - This does the opposite of ReleasePred. Since SU is being
751/// unscheduled, incrcease the succ left count of its predecessors. Remove
752/// them from AvailableQueue if necessary.
753void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
754  SUnit *PredSU = PredEdge->getSUnit();
755  if (PredSU->isAvailable) {
756    PredSU->isAvailable = false;
757    if (!PredSU->isPending)
758      AvailableQueue->remove(PredSU);
759  }
760
761  assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
762  ++PredSU->NumSuccsLeft;
763}
764
765/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
766/// its predecessor states to reflect the change.
767void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
768  DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
769  DEBUG(SU->dump(this));
770
771  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
772       I != E; ++I) {
773    CapturePred(&*I);
774    if (I->isAssignedRegDep() && SU == LiveRegGens[I->getReg()]){
775      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
776      assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
777             "Physical register dependency violated?");
778      --NumLiveRegs;
779      LiveRegDefs[I->getReg()] = NULL;
780      LiveRegGens[I->getReg()] = NULL;
781    }
782  }
783
784  // Reclaim the special call resource dependence, if this is the beginning
785  // of a call.
786  unsigned CallResource = TRI->getNumRegs();
787  for (const SDNode *SUNode = SU->getNode(); SUNode;
788       SUNode = SUNode->getGluedNode()) {
789    if (SUNode->isMachineOpcode() &&
790        SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
791      ++NumLiveRegs;
792      LiveRegDefs[CallResource] = SU;
793      LiveRegGens[CallResource] = NULL;
794    }
795  }
796
797  // Release the special call resource dependence, if this is the end
798  // of a call.
799  if (LiveRegGens[CallResource] == SU)
800    for (const SDNode *SUNode = SU->getNode(); SUNode;
801         SUNode = SUNode->getGluedNode()) {
802      if (SUNode->isMachineOpcode() &&
803          SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
804        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
805        --NumLiveRegs;
806        LiveRegDefs[CallResource] = NULL;
807        LiveRegGens[CallResource] = NULL;
808      }
809    }
810
811  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
812       I != E; ++I) {
813    if (I->isAssignedRegDep()) {
814      if (!LiveRegDefs[I->getReg()])
815        ++NumLiveRegs;
816      // This becomes the nearest def. Note that an earlier def may still be
817      // pending if this is a two-address node.
818      LiveRegDefs[I->getReg()] = SU;
819      if (LiveRegGens[I->getReg()] == NULL ||
820          I->getSUnit()->getHeight() < LiveRegGens[I->getReg()]->getHeight())
821        LiveRegGens[I->getReg()] = I->getSUnit();
822    }
823  }
824  if (SU->getHeight() < MinAvailableCycle)
825    MinAvailableCycle = SU->getHeight();
826
827  SU->setHeightDirty();
828  SU->isScheduled = false;
829  SU->isAvailable = true;
830  if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
831    // Don't make available until backtracking is complete.
832    SU->isPending = true;
833    PendingQueue.push_back(SU);
834  }
835  else {
836    AvailableQueue->push(SU);
837  }
838  AvailableQueue->UnscheduledNode(SU);
839}
840
841/// After backtracking, the hazard checker needs to be restored to a state
842/// corresponding the the current cycle.
843void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
844  HazardRec->Reset();
845
846  unsigned LookAhead = std::min((unsigned)Sequence.size(),
847                                HazardRec->getMaxLookAhead());
848  if (LookAhead == 0)
849    return;
850
851  std::vector<SUnit*>::const_iterator I = (Sequence.end() - LookAhead);
852  unsigned HazardCycle = (*I)->getHeight();
853  for (std::vector<SUnit*>::const_iterator E = Sequence.end(); I != E; ++I) {
854    SUnit *SU = *I;
855    for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
856      HazardRec->RecedeCycle();
857    }
858    EmitNode(SU);
859  }
860}
861
862/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
863/// BTCycle in order to schedule a specific node.
864void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
865  SUnit *OldSU = Sequence.back();
866  while (true) {
867    Sequence.pop_back();
868    if (SU->isSucc(OldSU))
869      // Don't try to remove SU from AvailableQueue.
870      SU->isAvailable = false;
871    // FIXME: use ready cycle instead of height
872    CurCycle = OldSU->getHeight();
873    UnscheduleNodeBottomUp(OldSU);
874    AvailableQueue->setCurCycle(CurCycle);
875    if (OldSU == BtSU)
876      break;
877    OldSU = Sequence.back();
878  }
879
880  assert(!SU->isSucc(OldSU) && "Something is wrong!");
881
882  RestoreHazardCheckerBottomUp();
883
884  ReleasePending();
885
886  ++NumBacktracks;
887}
888
889static bool isOperandOf(const SUnit *SU, SDNode *N) {
890  for (const SDNode *SUNode = SU->getNode(); SUNode;
891       SUNode = SUNode->getGluedNode()) {
892    if (SUNode->isOperandOf(N))
893      return true;
894  }
895  return false;
896}
897
898/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
899/// successors to the newly created node.
900SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
901  SDNode *N = SU->getNode();
902  if (!N)
903    return NULL;
904
905  if (SU->getNode()->getGluedNode())
906    return NULL;
907
908  SUnit *NewSU;
909  bool TryUnfold = false;
910  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
911    EVT VT = N->getValueType(i);
912    if (VT == MVT::Glue)
913      return NULL;
914    else if (VT == MVT::Other)
915      TryUnfold = true;
916  }
917  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
918    const SDValue &Op = N->getOperand(i);
919    EVT VT = Op.getNode()->getValueType(Op.getResNo());
920    if (VT == MVT::Glue)
921      return NULL;
922  }
923
924  if (TryUnfold) {
925    SmallVector<SDNode*, 2> NewNodes;
926    if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
927      return NULL;
928
929    // unfolding an x86 DEC64m operation results in store, dec, load which
930    // can't be handled here so quit
931    if (NewNodes.size() == 3)
932      return NULL;
933
934    DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
935    assert(NewNodes.size() == 2 && "Expected a load folding node!");
936
937    N = NewNodes[1];
938    SDNode *LoadNode = NewNodes[0];
939    unsigned NumVals = N->getNumValues();
940    unsigned OldNumVals = SU->getNode()->getNumValues();
941    for (unsigned i = 0; i != NumVals; ++i)
942      DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
943    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
944                                   SDValue(LoadNode, 1));
945
946    // LoadNode may already exist. This can happen when there is another
947    // load from the same location and producing the same type of value
948    // but it has different alignment or volatileness.
949    bool isNewLoad = true;
950    SUnit *LoadSU;
951    if (LoadNode->getNodeId() != -1) {
952      LoadSU = &SUnits[LoadNode->getNodeId()];
953      isNewLoad = false;
954    } else {
955      LoadSU = CreateNewSUnit(LoadNode);
956      LoadNode->setNodeId(LoadSU->NodeNum);
957
958      InitNumRegDefsLeft(LoadSU);
959      ComputeLatency(LoadSU);
960    }
961
962    SUnit *NewSU = CreateNewSUnit(N);
963    assert(N->getNodeId() == -1 && "Node already inserted!");
964    N->setNodeId(NewSU->NodeNum);
965
966    const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
967    for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
968      if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
969        NewSU->isTwoAddress = true;
970        break;
971      }
972    }
973    if (MCID.isCommutable())
974      NewSU->isCommutable = true;
975
976    InitNumRegDefsLeft(NewSU);
977    ComputeLatency(NewSU);
978
979    // Record all the edges to and from the old SU, by category.
980    SmallVector<SDep, 4> ChainPreds;
981    SmallVector<SDep, 4> ChainSuccs;
982    SmallVector<SDep, 4> LoadPreds;
983    SmallVector<SDep, 4> NodePreds;
984    SmallVector<SDep, 4> NodeSuccs;
985    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
986         I != E; ++I) {
987      if (I->isCtrl())
988        ChainPreds.push_back(*I);
989      else if (isOperandOf(I->getSUnit(), LoadNode))
990        LoadPreds.push_back(*I);
991      else
992        NodePreds.push_back(*I);
993    }
994    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
995         I != E; ++I) {
996      if (I->isCtrl())
997        ChainSuccs.push_back(*I);
998      else
999        NodeSuccs.push_back(*I);
1000    }
1001
1002    // Now assign edges to the newly-created nodes.
1003    for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
1004      const SDep &Pred = ChainPreds[i];
1005      RemovePred(SU, Pred);
1006      if (isNewLoad)
1007        AddPred(LoadSU, Pred);
1008    }
1009    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
1010      const SDep &Pred = LoadPreds[i];
1011      RemovePred(SU, Pred);
1012      if (isNewLoad)
1013        AddPred(LoadSU, Pred);
1014    }
1015    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
1016      const SDep &Pred = NodePreds[i];
1017      RemovePred(SU, Pred);
1018      AddPred(NewSU, Pred);
1019    }
1020    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
1021      SDep D = NodeSuccs[i];
1022      SUnit *SuccDep = D.getSUnit();
1023      D.setSUnit(SU);
1024      RemovePred(SuccDep, D);
1025      D.setSUnit(NewSU);
1026      AddPred(SuccDep, D);
1027      // Balance register pressure.
1028      if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled
1029          && !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
1030        --NewSU->NumRegDefsLeft;
1031    }
1032    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
1033      SDep D = ChainSuccs[i];
1034      SUnit *SuccDep = D.getSUnit();
1035      D.setSUnit(SU);
1036      RemovePred(SuccDep, D);
1037      if (isNewLoad) {
1038        D.setSUnit(LoadSU);
1039        AddPred(SuccDep, D);
1040      }
1041    }
1042
1043    // Add a data dependency to reflect that NewSU reads the value defined
1044    // by LoadSU.
1045    AddPred(NewSU, SDep(LoadSU, SDep::Data, LoadSU->Latency));
1046
1047    if (isNewLoad)
1048      AvailableQueue->addNode(LoadSU);
1049    AvailableQueue->addNode(NewSU);
1050
1051    ++NumUnfolds;
1052
1053    if (NewSU->NumSuccsLeft == 0) {
1054      NewSU->isAvailable = true;
1055      return NewSU;
1056    }
1057    SU = NewSU;
1058  }
1059
1060  DEBUG(dbgs() << "    Duplicating SU #" << SU->NodeNum << "\n");
1061  NewSU = CreateClone(SU);
1062
1063  // New SUnit has the exact same predecessors.
1064  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1065       I != E; ++I)
1066    if (!I->isArtificial())
1067      AddPred(NewSU, *I);
1068
1069  // Only copy scheduled successors. Cut them from old node's successor
1070  // list and move them over.
1071  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1072  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1073       I != E; ++I) {
1074    if (I->isArtificial())
1075      continue;
1076    SUnit *SuccSU = I->getSUnit();
1077    if (SuccSU->isScheduled) {
1078      SDep D = *I;
1079      D.setSUnit(NewSU);
1080      AddPred(SuccSU, D);
1081      D.setSUnit(SU);
1082      DelDeps.push_back(std::make_pair(SuccSU, D));
1083    }
1084  }
1085  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
1086    RemovePred(DelDeps[i].first, DelDeps[i].second);
1087
1088  AvailableQueue->updateNode(SU);
1089  AvailableQueue->addNode(NewSU);
1090
1091  ++NumDups;
1092  return NewSU;
1093}
1094
1095/// InsertCopiesAndMoveSuccs - Insert register copies and move all
1096/// scheduled successors of the given SUnit to the last copy.
1097void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
1098                                               const TargetRegisterClass *DestRC,
1099                                               const TargetRegisterClass *SrcRC,
1100                                               SmallVector<SUnit*, 2> &Copies) {
1101  SUnit *CopyFromSU = CreateNewSUnit(NULL);
1102  CopyFromSU->CopySrcRC = SrcRC;
1103  CopyFromSU->CopyDstRC = DestRC;
1104
1105  SUnit *CopyToSU = CreateNewSUnit(NULL);
1106  CopyToSU->CopySrcRC = DestRC;
1107  CopyToSU->CopyDstRC = SrcRC;
1108
1109  // Only copy scheduled successors. Cut them from old node's successor
1110  // list and move them over.
1111  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1112  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1113       I != E; ++I) {
1114    if (I->isArtificial())
1115      continue;
1116    SUnit *SuccSU = I->getSUnit();
1117    if (SuccSU->isScheduled) {
1118      SDep D = *I;
1119      D.setSUnit(CopyToSU);
1120      AddPred(SuccSU, D);
1121      DelDeps.push_back(std::make_pair(SuccSU, *I));
1122    }
1123    else {
1124      // Avoid scheduling the def-side copy before other successors. Otherwise
1125      // we could introduce another physreg interference on the copy and
1126      // continue inserting copies indefinitely.
1127      SDep D(CopyFromSU, SDep::Order, /*Latency=*/0,
1128             /*Reg=*/0, /*isNormalMemory=*/false,
1129             /*isMustAlias=*/false, /*isArtificial=*/true);
1130      AddPred(SuccSU, D);
1131    }
1132  }
1133  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
1134    RemovePred(DelDeps[i].first, DelDeps[i].second);
1135
1136  AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
1137  AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
1138
1139  AvailableQueue->updateNode(SU);
1140  AvailableQueue->addNode(CopyFromSU);
1141  AvailableQueue->addNode(CopyToSU);
1142  Copies.push_back(CopyFromSU);
1143  Copies.push_back(CopyToSU);
1144
1145  ++NumPRCopies;
1146}
1147
1148/// getPhysicalRegisterVT - Returns the ValueType of the physical register
1149/// definition of the specified node.
1150/// FIXME: Move to SelectionDAG?
1151static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
1152                                 const TargetInstrInfo *TII) {
1153  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1154  assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
1155  unsigned NumRes = MCID.getNumDefs();
1156  for (const unsigned *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
1157    if (Reg == *ImpDef)
1158      break;
1159    ++NumRes;
1160  }
1161  return N->getValueType(NumRes);
1162}
1163
1164/// CheckForLiveRegDef - Return true and update live register vector if the
1165/// specified register def of the specified SUnit clobbers any "live" registers.
1166static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
1167                               std::vector<SUnit*> &LiveRegDefs,
1168                               SmallSet<unsigned, 4> &RegAdded,
1169                               SmallVector<unsigned, 4> &LRegs,
1170                               const TargetRegisterInfo *TRI) {
1171  for (const unsigned *AliasI = TRI->getOverlaps(Reg); *AliasI; ++AliasI) {
1172
1173    // Check if Ref is live.
1174    if (!LiveRegDefs[*AliasI]) continue;
1175
1176    // Allow multiple uses of the same def.
1177    if (LiveRegDefs[*AliasI] == SU) continue;
1178
1179    // Add Reg to the set of interfering live regs.
1180    if (RegAdded.insert(*AliasI)) {
1181      LRegs.push_back(*AliasI);
1182    }
1183  }
1184}
1185
1186/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
1187/// scheduling of the given node to satisfy live physical register dependencies.
1188/// If the specific node is the last one that's available to schedule, do
1189/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
1190bool ScheduleDAGRRList::
1191DelayForLiveRegsBottomUp(SUnit *SU, SmallVector<unsigned, 4> &LRegs) {
1192  if (NumLiveRegs == 0)
1193    return false;
1194
1195  SmallSet<unsigned, 4> RegAdded;
1196  // If this node would clobber any "live" register, then it's not ready.
1197  //
1198  // If SU is the currently live definition of the same register that it uses,
1199  // then we are free to schedule it.
1200  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1201       I != E; ++I) {
1202    if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] != SU)
1203      CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
1204                         RegAdded, LRegs, TRI);
1205  }
1206
1207  for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
1208    if (Node->getOpcode() == ISD::INLINEASM) {
1209      // Inline asm can clobber physical defs.
1210      unsigned NumOps = Node->getNumOperands();
1211      if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1212        --NumOps;  // Ignore the glue operand.
1213
1214      for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1215        unsigned Flags =
1216          cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1217        unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1218
1219        ++i; // Skip the ID value.
1220        if (InlineAsm::isRegDefKind(Flags) ||
1221            InlineAsm::isRegDefEarlyClobberKind(Flags) ||
1222            InlineAsm::isClobberKind(Flags)) {
1223          // Check for def of register or earlyclobber register.
1224          for (; NumVals; --NumVals, ++i) {
1225            unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1226            if (TargetRegisterInfo::isPhysicalRegister(Reg))
1227              CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
1228          }
1229        } else
1230          i += NumVals;
1231      }
1232      continue;
1233    }
1234
1235    if (!Node->isMachineOpcode())
1236      continue;
1237    // If we're in the middle of scheduling a call, don't begin scheduling
1238    // another call. Also, don't allow any physical registers to be live across
1239    // the call.
1240    if (Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
1241      // Check the special calling-sequence resource.
1242      unsigned CallResource = TRI->getNumRegs();
1243      if (LiveRegDefs[CallResource]) {
1244        SDNode *Gen = LiveRegGens[CallResource]->getNode();
1245        while (SDNode *Glued = Gen->getGluedNode())
1246          Gen = Glued;
1247        if (!IsChainDependent(Gen, Node, 0, TII) && RegAdded.insert(CallResource))
1248          LRegs.push_back(CallResource);
1249      }
1250    }
1251    const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
1252    if (!MCID.ImplicitDefs)
1253      continue;
1254    for (const unsigned *Reg = MCID.ImplicitDefs; *Reg; ++Reg)
1255      CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
1256  }
1257
1258  return !LRegs.empty();
1259}
1260
1261/// Return a node that can be scheduled in this cycle. Requirements:
1262/// (1) Ready: latency has been satisfied
1263/// (2) No Hazards: resources are available
1264/// (3) No Interferences: may unschedule to break register interferences.
1265SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
1266  SmallVector<SUnit*, 4> Interferences;
1267  DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
1268
1269  SUnit *CurSU = AvailableQueue->pop();
1270  while (CurSU) {
1271    SmallVector<unsigned, 4> LRegs;
1272    if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
1273      break;
1274    LRegsMap.insert(std::make_pair(CurSU, LRegs));
1275
1276    CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
1277    Interferences.push_back(CurSU);
1278    CurSU = AvailableQueue->pop();
1279  }
1280  if (CurSU) {
1281    // Add the nodes that aren't ready back onto the available list.
1282    for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1283      Interferences[i]->isPending = false;
1284      assert(Interferences[i]->isAvailable && "must still be available");
1285      AvailableQueue->push(Interferences[i]);
1286    }
1287    return CurSU;
1288  }
1289
1290  // All candidates are delayed due to live physical reg dependencies.
1291  // Try backtracking, code duplication, or inserting cross class copies
1292  // to resolve it.
1293  for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1294    SUnit *TrySU = Interferences[i];
1295    SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
1296
1297    // Try unscheduling up to the point where it's safe to schedule
1298    // this node.
1299    SUnit *BtSU = NULL;
1300    unsigned LiveCycle = UINT_MAX;
1301    for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
1302      unsigned Reg = LRegs[j];
1303      if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
1304        BtSU = LiveRegGens[Reg];
1305        LiveCycle = BtSU->getHeight();
1306      }
1307    }
1308    if (!WillCreateCycle(TrySU, BtSU))  {
1309      BacktrackBottomUp(TrySU, BtSU);
1310
1311      // Force the current node to be scheduled before the node that
1312      // requires the physical reg dep.
1313      if (BtSU->isAvailable) {
1314        BtSU->isAvailable = false;
1315        if (!BtSU->isPending)
1316          AvailableQueue->remove(BtSU);
1317      }
1318      AddPred(TrySU, SDep(BtSU, SDep::Order, /*Latency=*/1,
1319                          /*Reg=*/0, /*isNormalMemory=*/false,
1320                          /*isMustAlias=*/false, /*isArtificial=*/true));
1321
1322      // If one or more successors has been unscheduled, then the current
1323      // node is no longer avaialable. Schedule a successor that's now
1324      // available instead.
1325      if (!TrySU->isAvailable) {
1326        CurSU = AvailableQueue->pop();
1327      }
1328      else {
1329        CurSU = TrySU;
1330        TrySU->isPending = false;
1331        Interferences.erase(Interferences.begin()+i);
1332      }
1333      break;
1334    }
1335  }
1336
1337  if (!CurSU) {
1338    // Can't backtrack. If it's too expensive to copy the value, then try
1339    // duplicate the nodes that produces these "too expensive to copy"
1340    // values to break the dependency. In case even that doesn't work,
1341    // insert cross class copies.
1342    // If it's not too expensive, i.e. cost != -1, issue copies.
1343    SUnit *TrySU = Interferences[0];
1344    SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
1345    assert(LRegs.size() == 1 && "Can't handle this yet!");
1346    unsigned Reg = LRegs[0];
1347    SUnit *LRDef = LiveRegDefs[Reg];
1348    EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
1349    const TargetRegisterClass *RC =
1350      TRI->getMinimalPhysRegClass(Reg, VT);
1351    const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1352
1353    // If cross copy register class is the same as RC, then it must be possible
1354    // copy the value directly. Do not try duplicate the def.
1355    // If cross copy register class is not the same as RC, then it's possible to
1356    // copy the value but it require cross register class copies and it is
1357    // expensive.
1358    // If cross copy register class is null, then it's not possible to copy
1359    // the value at all.
1360    SUnit *NewDef = 0;
1361    if (DestRC != RC) {
1362      NewDef = CopyAndMoveSuccessors(LRDef);
1363      if (!DestRC && !NewDef)
1364        report_fatal_error("Can't handle live physical register dependency!");
1365    }
1366    if (!NewDef) {
1367      // Issue copies, these can be expensive cross register class copies.
1368      SmallVector<SUnit*, 2> Copies;
1369      InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1370      DEBUG(dbgs() << "    Adding an edge from SU #" << TrySU->NodeNum
1371            << " to SU #" << Copies.front()->NodeNum << "\n");
1372      AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
1373                          /*Reg=*/0, /*isNormalMemory=*/false,
1374                          /*isMustAlias=*/false,
1375                          /*isArtificial=*/true));
1376      NewDef = Copies.back();
1377    }
1378
1379    DEBUG(dbgs() << "    Adding an edge from SU #" << NewDef->NodeNum
1380          << " to SU #" << TrySU->NodeNum << "\n");
1381    LiveRegDefs[Reg] = NewDef;
1382    AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
1383                         /*Reg=*/0, /*isNormalMemory=*/false,
1384                         /*isMustAlias=*/false,
1385                         /*isArtificial=*/true));
1386    TrySU->isAvailable = false;
1387    CurSU = NewDef;
1388  }
1389
1390  assert(CurSU && "Unable to resolve live physical register dependencies!");
1391
1392  // Add the nodes that aren't ready back onto the available list.
1393  for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1394    Interferences[i]->isPending = false;
1395    // May no longer be available due to backtracking.
1396    if (Interferences[i]->isAvailable) {
1397      AvailableQueue->push(Interferences[i]);
1398    }
1399  }
1400  return CurSU;
1401}
1402
1403/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
1404/// schedulers.
1405void ScheduleDAGRRList::ListScheduleBottomUp() {
1406  // Release any predecessors of the special Exit node.
1407  ReleasePredecessors(&ExitSU);
1408
1409  // Add root to Available queue.
1410  if (!SUnits.empty()) {
1411    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
1412    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
1413    RootSU->isAvailable = true;
1414    AvailableQueue->push(RootSU);
1415  }
1416
1417  // While Available queue is not empty, grab the node with the highest
1418  // priority. If it is not ready put it back.  Schedule the node.
1419  Sequence.reserve(SUnits.size());
1420  while (!AvailableQueue->empty()) {
1421    DEBUG(dbgs() << "\nExamining Available:\n";
1422          AvailableQueue->dump(this));
1423
1424    // Pick the best node to schedule taking all constraints into
1425    // consideration.
1426    SUnit *SU = PickNodeToScheduleBottomUp();
1427
1428    AdvancePastStalls(SU);
1429
1430    ScheduleNodeBottomUp(SU);
1431
1432    while (AvailableQueue->empty() && !PendingQueue.empty()) {
1433      // Advance the cycle to free resources. Skip ahead to the next ready SU.
1434      assert(MinAvailableCycle < UINT_MAX && "MinAvailableCycle uninitialized");
1435      AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
1436    }
1437  }
1438
1439  // Reverse the order if it is bottom up.
1440  std::reverse(Sequence.begin(), Sequence.end());
1441
1442#ifndef NDEBUG
1443  VerifySchedule(/*isBottomUp=*/true);
1444#endif
1445}
1446
1447//===----------------------------------------------------------------------===//
1448//                RegReductionPriorityQueue Definition
1449//===----------------------------------------------------------------------===//
1450//
1451// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1452// to reduce register pressure.
1453//
1454namespace {
1455class RegReductionPQBase;
1456
1457struct queue_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1458  bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
1459};
1460
1461#ifndef NDEBUG
1462template<class SF>
1463struct reverse_sort : public queue_sort {
1464  SF &SortFunc;
1465  reverse_sort(SF &sf) : SortFunc(sf) {}
1466  reverse_sort(const reverse_sort &RHS) : SortFunc(RHS.SortFunc) {}
1467
1468  bool operator()(SUnit* left, SUnit* right) const {
1469    // reverse left/right rather than simply !SortFunc(left, right)
1470    // to expose different paths in the comparison logic.
1471    return SortFunc(right, left);
1472  }
1473};
1474#endif // NDEBUG
1475
1476/// bu_ls_rr_sort - Priority function for bottom up register pressure
1477// reduction scheduler.
1478struct bu_ls_rr_sort : public queue_sort {
1479  enum {
1480    IsBottomUp = true,
1481    HasReadyFilter = false
1482  };
1483
1484  RegReductionPQBase *SPQ;
1485  bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1486  bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1487
1488  bool operator()(SUnit* left, SUnit* right) const;
1489};
1490
1491// src_ls_rr_sort - Priority function for source order scheduler.
1492struct src_ls_rr_sort : public queue_sort {
1493  enum {
1494    IsBottomUp = true,
1495    HasReadyFilter = false
1496  };
1497
1498  RegReductionPQBase *SPQ;
1499  src_ls_rr_sort(RegReductionPQBase *spq)
1500    : SPQ(spq) {}
1501  src_ls_rr_sort(const src_ls_rr_sort &RHS)
1502    : SPQ(RHS.SPQ) {}
1503
1504  bool operator()(SUnit* left, SUnit* right) const;
1505};
1506
1507// hybrid_ls_rr_sort - Priority function for hybrid scheduler.
1508struct hybrid_ls_rr_sort : public queue_sort {
1509  enum {
1510    IsBottomUp = true,
1511    HasReadyFilter = false
1512  };
1513
1514  RegReductionPQBase *SPQ;
1515  hybrid_ls_rr_sort(RegReductionPQBase *spq)
1516    : SPQ(spq) {}
1517  hybrid_ls_rr_sort(const hybrid_ls_rr_sort &RHS)
1518    : SPQ(RHS.SPQ) {}
1519
1520  bool isReady(SUnit *SU, unsigned CurCycle) const;
1521
1522  bool operator()(SUnit* left, SUnit* right) const;
1523};
1524
1525// ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
1526// scheduler.
1527struct ilp_ls_rr_sort : public queue_sort {
1528  enum {
1529    IsBottomUp = true,
1530    HasReadyFilter = false
1531  };
1532
1533  RegReductionPQBase *SPQ;
1534  ilp_ls_rr_sort(RegReductionPQBase *spq)
1535    : SPQ(spq) {}
1536  ilp_ls_rr_sort(const ilp_ls_rr_sort &RHS)
1537    : SPQ(RHS.SPQ) {}
1538
1539  bool isReady(SUnit *SU, unsigned CurCycle) const;
1540
1541  bool operator()(SUnit* left, SUnit* right) const;
1542};
1543
1544class RegReductionPQBase : public SchedulingPriorityQueue {
1545protected:
1546  std::vector<SUnit*> Queue;
1547  unsigned CurQueueId;
1548  bool TracksRegPressure;
1549
1550  // SUnits - The SUnits for the current graph.
1551  std::vector<SUnit> *SUnits;
1552
1553  MachineFunction &MF;
1554  const TargetInstrInfo *TII;
1555  const TargetRegisterInfo *TRI;
1556  const TargetLowering *TLI;
1557  ScheduleDAGRRList *scheduleDAG;
1558
1559  // SethiUllmanNumbers - The SethiUllman number for each node.
1560  std::vector<unsigned> SethiUllmanNumbers;
1561
1562  /// RegPressure - Tracking current reg pressure per register class.
1563  ///
1564  std::vector<unsigned> RegPressure;
1565
1566  /// RegLimit - Tracking the number of allocatable registers per register
1567  /// class.
1568  std::vector<unsigned> RegLimit;
1569
1570public:
1571  RegReductionPQBase(MachineFunction &mf,
1572                     bool hasReadyFilter,
1573                     bool tracksrp,
1574                     const TargetInstrInfo *tii,
1575                     const TargetRegisterInfo *tri,
1576                     const TargetLowering *tli)
1577    : SchedulingPriorityQueue(hasReadyFilter),
1578      CurQueueId(0), TracksRegPressure(tracksrp),
1579      MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(NULL) {
1580    if (TracksRegPressure) {
1581      unsigned NumRC = TRI->getNumRegClasses();
1582      RegLimit.resize(NumRC);
1583      RegPressure.resize(NumRC);
1584      std::fill(RegLimit.begin(), RegLimit.end(), 0);
1585      std::fill(RegPressure.begin(), RegPressure.end(), 0);
1586      for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1587             E = TRI->regclass_end(); I != E; ++I)
1588        RegLimit[(*I)->getID()] = tri->getRegPressureLimit(*I, MF);
1589    }
1590  }
1591
1592  void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1593    scheduleDAG = scheduleDag;
1594  }
1595
1596  ScheduleHazardRecognizer* getHazardRec() {
1597    return scheduleDAG->getHazardRec();
1598  }
1599
1600  void initNodes(std::vector<SUnit> &sunits);
1601
1602  void addNode(const SUnit *SU);
1603
1604  void updateNode(const SUnit *SU);
1605
1606  void releaseState() {
1607    SUnits = 0;
1608    SethiUllmanNumbers.clear();
1609    std::fill(RegPressure.begin(), RegPressure.end(), 0);
1610  }
1611
1612  unsigned getNodePriority(const SUnit *SU) const;
1613
1614  unsigned getNodeOrdering(const SUnit *SU) const {
1615    if (!SU->getNode()) return 0;
1616
1617    return scheduleDAG->DAG->GetOrdering(SU->getNode());
1618  }
1619
1620  bool empty() const { return Queue.empty(); }
1621
1622  void push(SUnit *U) {
1623    assert(!U->NodeQueueId && "Node in the queue already");
1624    U->NodeQueueId = ++CurQueueId;
1625    Queue.push_back(U);
1626  }
1627
1628  void remove(SUnit *SU) {
1629    assert(!Queue.empty() && "Queue is empty!");
1630    assert(SU->NodeQueueId != 0 && "Not in queue!");
1631    std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
1632                                                 SU);
1633    if (I != prior(Queue.end()))
1634      std::swap(*I, Queue.back());
1635    Queue.pop_back();
1636    SU->NodeQueueId = 0;
1637  }
1638
1639  bool tracksRegPressure() const { return TracksRegPressure; }
1640
1641  void dumpRegPressure() const;
1642
1643  bool HighRegPressure(const SUnit *SU) const;
1644
1645  bool MayReduceRegPressure(SUnit *SU) const;
1646
1647  int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
1648
1649  void ScheduledNode(SUnit *SU);
1650
1651  void UnscheduledNode(SUnit *SU);
1652
1653protected:
1654  bool canClobber(const SUnit *SU, const SUnit *Op);
1655  void AddPseudoTwoAddrDeps();
1656  void PrescheduleNodesWithMultipleUses();
1657  void CalculateSethiUllmanNumbers();
1658};
1659
1660template<class SF>
1661static SUnit *popFromQueueImpl(std::vector<SUnit*> &Q, SF &Picker) {
1662  std::vector<SUnit *>::iterator Best = Q.begin();
1663  for (std::vector<SUnit *>::iterator I = llvm::next(Q.begin()),
1664         E = Q.end(); I != E; ++I)
1665    if (Picker(*Best, *I))
1666      Best = I;
1667  SUnit *V = *Best;
1668  if (Best != prior(Q.end()))
1669    std::swap(*Best, Q.back());
1670  Q.pop_back();
1671  return V;
1672}
1673
1674template<class SF>
1675SUnit *popFromQueue(std::vector<SUnit*> &Q, SF &Picker, ScheduleDAG *DAG) {
1676#ifndef NDEBUG
1677  if (DAG->StressSched) {
1678    reverse_sort<SF> RPicker(Picker);
1679    return popFromQueueImpl(Q, RPicker);
1680  }
1681#endif
1682  (void)DAG;
1683  return popFromQueueImpl(Q, Picker);
1684}
1685
1686template<class SF>
1687class RegReductionPriorityQueue : public RegReductionPQBase {
1688  SF Picker;
1689
1690public:
1691  RegReductionPriorityQueue(MachineFunction &mf,
1692                            bool tracksrp,
1693                            const TargetInstrInfo *tii,
1694                            const TargetRegisterInfo *tri,
1695                            const TargetLowering *tli)
1696    : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, tii, tri, tli),
1697      Picker(this) {}
1698
1699  bool isBottomUp() const { return SF::IsBottomUp; }
1700
1701  bool isReady(SUnit *U) const {
1702    return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
1703  }
1704
1705  SUnit *pop() {
1706    if (Queue.empty()) return NULL;
1707
1708    SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
1709    V->NodeQueueId = 0;
1710    return V;
1711  }
1712
1713  void dump(ScheduleDAG *DAG) const {
1714    // Emulate pop() without clobbering NodeQueueIds.
1715    std::vector<SUnit*> DumpQueue = Queue;
1716    SF DumpPicker = Picker;
1717    while (!DumpQueue.empty()) {
1718      SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
1719      dbgs() << "Height " << SU->getHeight() << ": ";
1720      SU->dump(DAG);
1721    }
1722  }
1723};
1724
1725typedef RegReductionPriorityQueue<bu_ls_rr_sort>
1726BURegReductionPriorityQueue;
1727
1728typedef RegReductionPriorityQueue<src_ls_rr_sort>
1729SrcRegReductionPriorityQueue;
1730
1731typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
1732HybridBURRPriorityQueue;
1733
1734typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
1735ILPBURRPriorityQueue;
1736} // end anonymous namespace
1737
1738//===----------------------------------------------------------------------===//
1739//           Static Node Priority for Register Pressure Reduction
1740//===----------------------------------------------------------------------===//
1741
1742// Check for special nodes that bypass scheduling heuristics.
1743// Currently this pushes TokenFactor nodes down, but may be used for other
1744// pseudo-ops as well.
1745//
1746// Return -1 to schedule right above left, 1 for left above right.
1747// Return 0 if no bias exists.
1748static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
1749  bool LSchedLow = left->isScheduleLow;
1750  bool RSchedLow = right->isScheduleLow;
1751  if (LSchedLow != RSchedLow)
1752    return LSchedLow < RSchedLow ? 1 : -1;
1753  return 0;
1754}
1755
1756/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
1757/// Smaller number is the higher priority.
1758static unsigned
1759CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1760  unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
1761  if (SethiUllmanNumber != 0)
1762    return SethiUllmanNumber;
1763
1764  unsigned Extra = 0;
1765  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1766       I != E; ++I) {
1767    if (I->isCtrl()) continue;  // ignore chain preds
1768    SUnit *PredSU = I->getSUnit();
1769    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
1770    if (PredSethiUllman > SethiUllmanNumber) {
1771      SethiUllmanNumber = PredSethiUllman;
1772      Extra = 0;
1773    } else if (PredSethiUllman == SethiUllmanNumber)
1774      ++Extra;
1775  }
1776
1777  SethiUllmanNumber += Extra;
1778
1779  if (SethiUllmanNumber == 0)
1780    SethiUllmanNumber = 1;
1781
1782  return SethiUllmanNumber;
1783}
1784
1785/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1786/// scheduling units.
1787void RegReductionPQBase::CalculateSethiUllmanNumbers() {
1788  SethiUllmanNumbers.assign(SUnits->size(), 0);
1789
1790  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1791    CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1792}
1793
1794void RegReductionPQBase::addNode(const SUnit *SU) {
1795  unsigned SUSize = SethiUllmanNumbers.size();
1796  if (SUnits->size() > SUSize)
1797    SethiUllmanNumbers.resize(SUSize*2, 0);
1798  CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1799}
1800
1801void RegReductionPQBase::updateNode(const SUnit *SU) {
1802  SethiUllmanNumbers[SU->NodeNum] = 0;
1803  CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1804}
1805
1806// Lower priority means schedule further down. For bottom-up scheduling, lower
1807// priority SUs are scheduled before higher priority SUs.
1808unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
1809  assert(SU->NodeNum < SethiUllmanNumbers.size());
1810  unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
1811  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1812    // CopyToReg should be close to its uses to facilitate coalescing and
1813    // avoid spilling.
1814    return 0;
1815  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
1816      Opc == TargetOpcode::SUBREG_TO_REG ||
1817      Opc == TargetOpcode::INSERT_SUBREG)
1818    // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
1819    // close to their uses to facilitate coalescing.
1820    return 0;
1821  if (SU->NumSuccs == 0 && SU->NumPreds != 0)
1822    // If SU does not have a register use, i.e. it doesn't produce a value
1823    // that would be consumed (e.g. store), then it terminates a chain of
1824    // computation.  Give it a large SethiUllman number so it will be
1825    // scheduled right before its predecessors that it doesn't lengthen
1826    // their live ranges.
1827    return 0xffff;
1828  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
1829    // If SU does not have a register def, schedule it close to its uses
1830    // because it does not lengthen any live ranges.
1831    return 0;
1832#if 1
1833  return SethiUllmanNumbers[SU->NodeNum];
1834#else
1835  unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
1836  if (SU->isCallOp) {
1837    // FIXME: This assumes all of the defs are used as call operands.
1838    int NP = (int)Priority - SU->getNode()->getNumValues();
1839    return (NP > 0) ? NP : 0;
1840  }
1841  return Priority;
1842#endif
1843}
1844
1845//===----------------------------------------------------------------------===//
1846//                     Register Pressure Tracking
1847//===----------------------------------------------------------------------===//
1848
1849void RegReductionPQBase::dumpRegPressure() const {
1850  for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1851         E = TRI->regclass_end(); I != E; ++I) {
1852    const TargetRegisterClass *RC = *I;
1853    unsigned Id = RC->getID();
1854    unsigned RP = RegPressure[Id];
1855    if (!RP) continue;
1856    DEBUG(dbgs() << RC->getName() << ": " << RP << " / " << RegLimit[Id]
1857          << '\n');
1858  }
1859}
1860
1861bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
1862  if (!TLI)
1863    return false;
1864
1865  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
1866       I != E; ++I) {
1867    if (I->isCtrl())
1868      continue;
1869    SUnit *PredSU = I->getSUnit();
1870    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1871    // to cover the number of registers defined (they are all live).
1872    if (PredSU->NumRegDefsLeft == 0) {
1873      continue;
1874    }
1875    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1876         RegDefPos.IsValid(); RegDefPos.Advance()) {
1877      unsigned RCId, Cost;
1878      GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost);
1879
1880      if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
1881        return true;
1882    }
1883  }
1884  return false;
1885}
1886
1887bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
1888  const SDNode *N = SU->getNode();
1889
1890  if (!N->isMachineOpcode() || !SU->NumSuccs)
1891    return false;
1892
1893  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1894  for (unsigned i = 0; i != NumDefs; ++i) {
1895    EVT VT = N->getValueType(i);
1896    if (!N->hasAnyUseOfValue(i))
1897      continue;
1898    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1899    if (RegPressure[RCId] >= RegLimit[RCId])
1900      return true;
1901  }
1902  return false;
1903}
1904
1905// Compute the register pressure contribution by this instruction by count up
1906// for uses that are not live and down for defs. Only count register classes
1907// that are already under high pressure. As a side effect, compute the number of
1908// uses of registers that are already live.
1909//
1910// FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
1911// so could probably be factored.
1912int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
1913  LiveUses = 0;
1914  int PDiff = 0;
1915  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
1916       I != E; ++I) {
1917    if (I->isCtrl())
1918      continue;
1919    SUnit *PredSU = I->getSUnit();
1920    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1921    // to cover the number of registers defined (they are all live).
1922    if (PredSU->NumRegDefsLeft == 0) {
1923      if (PredSU->getNode()->isMachineOpcode())
1924        ++LiveUses;
1925      continue;
1926    }
1927    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1928         RegDefPos.IsValid(); RegDefPos.Advance()) {
1929      EVT VT = RegDefPos.GetValue();
1930      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1931      if (RegPressure[RCId] >= RegLimit[RCId])
1932        ++PDiff;
1933    }
1934  }
1935  const SDNode *N = SU->getNode();
1936
1937  if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
1938    return PDiff;
1939
1940  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1941  for (unsigned i = 0; i != NumDefs; ++i) {
1942    EVT VT = N->getValueType(i);
1943    if (!N->hasAnyUseOfValue(i))
1944      continue;
1945    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1946    if (RegPressure[RCId] >= RegLimit[RCId])
1947      --PDiff;
1948  }
1949  return PDiff;
1950}
1951
1952void RegReductionPQBase::ScheduledNode(SUnit *SU) {
1953  if (!TracksRegPressure)
1954    return;
1955
1956  if (!SU->getNode())
1957    return;
1958
1959  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1960       I != E; ++I) {
1961    if (I->isCtrl())
1962      continue;
1963    SUnit *PredSU = I->getSUnit();
1964    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1965    // to cover the number of registers defined (they are all live).
1966    if (PredSU->NumRegDefsLeft == 0) {
1967      continue;
1968    }
1969    // FIXME: The ScheduleDAG currently loses information about which of a
1970    // node's values is consumed by each dependence. Consequently, if the node
1971    // defines multiple register classes, we don't know which to pressurize
1972    // here. Instead the following loop consumes the register defs in an
1973    // arbitrary order. At least it handles the common case of clustered loads
1974    // to the same class. For precise liveness, each SDep needs to indicate the
1975    // result number. But that tightly couples the ScheduleDAG with the
1976    // SelectionDAG making updates tricky. A simpler hack would be to attach a
1977    // value type or register class to SDep.
1978    //
1979    // The most important aspect of register tracking is balancing the increase
1980    // here with the reduction further below. Note that this SU may use multiple
1981    // defs in PredSU. The can't be determined here, but we've already
1982    // compensated by reducing NumRegDefsLeft in PredSU during
1983    // ScheduleDAGSDNodes::AddSchedEdges.
1984    --PredSU->NumRegDefsLeft;
1985    unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
1986    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1987         RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
1988      if (SkipRegDefs)
1989        continue;
1990
1991      unsigned RCId, Cost;
1992      GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost);
1993      RegPressure[RCId] += Cost;
1994      break;
1995    }
1996  }
1997
1998  // We should have this assert, but there may be dead SDNodes that never
1999  // materialize as SUnits, so they don't appear to generate liveness.
2000  //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
2001  int SkipRegDefs = (int)SU->NumRegDefsLeft;
2002  for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
2003       RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2004    if (SkipRegDefs > 0)
2005      continue;
2006    unsigned RCId, Cost;
2007    GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost);
2008    if (RegPressure[RCId] < Cost) {
2009      // Register pressure tracking is imprecise. This can happen. But we try
2010      // hard not to let it happen because it likely results in poor scheduling.
2011      DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") has too many regdefs\n");
2012      RegPressure[RCId] = 0;
2013    }
2014    else {
2015      RegPressure[RCId] -= Cost;
2016    }
2017  }
2018  dumpRegPressure();
2019}
2020
2021void RegReductionPQBase::UnscheduledNode(SUnit *SU) {
2022  if (!TracksRegPressure)
2023    return;
2024
2025  const SDNode *N = SU->getNode();
2026  if (!N) return;
2027
2028  if (!N->isMachineOpcode()) {
2029    if (N->getOpcode() != ISD::CopyToReg)
2030      return;
2031  } else {
2032    unsigned Opc = N->getMachineOpcode();
2033    if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2034        Opc == TargetOpcode::INSERT_SUBREG ||
2035        Opc == TargetOpcode::SUBREG_TO_REG ||
2036        Opc == TargetOpcode::REG_SEQUENCE ||
2037        Opc == TargetOpcode::IMPLICIT_DEF)
2038      return;
2039  }
2040
2041  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2042       I != E; ++I) {
2043    if (I->isCtrl())
2044      continue;
2045    SUnit *PredSU = I->getSUnit();
2046    // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
2047    // counts data deps.
2048    if (PredSU->NumSuccsLeft != PredSU->Succs.size())
2049      continue;
2050    const SDNode *PN = PredSU->getNode();
2051    if (!PN->isMachineOpcode()) {
2052      if (PN->getOpcode() == ISD::CopyFromReg) {
2053        EVT VT = PN->getValueType(0);
2054        unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2055        RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2056      }
2057      continue;
2058    }
2059    unsigned POpc = PN->getMachineOpcode();
2060    if (POpc == TargetOpcode::IMPLICIT_DEF)
2061      continue;
2062    if (POpc == TargetOpcode::EXTRACT_SUBREG ||
2063        POpc == TargetOpcode::INSERT_SUBREG ||
2064        POpc == TargetOpcode::SUBREG_TO_REG) {
2065      EVT VT = PN->getValueType(0);
2066      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2067      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2068      continue;
2069    }
2070    unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
2071    for (unsigned i = 0; i != NumDefs; ++i) {
2072      EVT VT = PN->getValueType(i);
2073      if (!PN->hasAnyUseOfValue(i))
2074        continue;
2075      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2076      if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
2077        // Register pressure tracking is imprecise. This can happen.
2078        RegPressure[RCId] = 0;
2079      else
2080        RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
2081    }
2082  }
2083
2084  // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
2085  // may transfer data dependencies to CopyToReg.
2086  if (SU->NumSuccs && N->isMachineOpcode()) {
2087    unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2088    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2089      EVT VT = N->getValueType(i);
2090      if (VT == MVT::Glue || VT == MVT::Other)
2091        continue;
2092      if (!N->hasAnyUseOfValue(i))
2093        continue;
2094      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2095      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2096    }
2097  }
2098
2099  dumpRegPressure();
2100}
2101
2102//===----------------------------------------------------------------------===//
2103//           Dynamic Node Priority for Register Pressure Reduction
2104//===----------------------------------------------------------------------===//
2105
2106/// closestSucc - Returns the scheduled cycle of the successor which is
2107/// closest to the current cycle.
2108static unsigned closestSucc(const SUnit *SU) {
2109  unsigned MaxHeight = 0;
2110  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2111       I != E; ++I) {
2112    if (I->isCtrl()) continue;  // ignore chain succs
2113    unsigned Height = I->getSUnit()->getHeight();
2114    // If there are bunch of CopyToRegs stacked up, they should be considered
2115    // to be at the same position.
2116    if (I->getSUnit()->getNode() &&
2117        I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
2118      Height = closestSucc(I->getSUnit())+1;
2119    if (Height > MaxHeight)
2120      MaxHeight = Height;
2121  }
2122  return MaxHeight;
2123}
2124
2125/// calcMaxScratches - Returns an cost estimate of the worse case requirement
2126/// for scratch registers, i.e. number of data dependencies.
2127static unsigned calcMaxScratches(const SUnit *SU) {
2128  unsigned Scratches = 0;
2129  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2130       I != E; ++I) {
2131    if (I->isCtrl()) continue;  // ignore chain preds
2132    Scratches++;
2133  }
2134  return Scratches;
2135}
2136
2137/// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
2138/// CopyFromReg from a virtual register.
2139static bool hasOnlyLiveInOpers(const SUnit *SU) {
2140  bool RetVal = false;
2141  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2142       I != E; ++I) {
2143    if (I->isCtrl()) continue;
2144    const SUnit *PredSU = I->getSUnit();
2145    if (PredSU->getNode() &&
2146        PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
2147      unsigned Reg =
2148        cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
2149      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2150        RetVal = true;
2151        continue;
2152      }
2153    }
2154    return false;
2155  }
2156  return RetVal;
2157}
2158
2159/// hasOnlyLiveOutUses - Return true if SU has only value successors that are
2160/// CopyToReg to a virtual register. This SU def is probably a liveout and
2161/// it has no other use. It should be scheduled closer to the terminator.
2162static bool hasOnlyLiveOutUses(const SUnit *SU) {
2163  bool RetVal = false;
2164  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2165       I != E; ++I) {
2166    if (I->isCtrl()) continue;
2167    const SUnit *SuccSU = I->getSUnit();
2168    if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
2169      unsigned Reg =
2170        cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
2171      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2172        RetVal = true;
2173        continue;
2174      }
2175    }
2176    return false;
2177  }
2178  return RetVal;
2179}
2180
2181// Set isVRegCycle for a node with only live in opers and live out uses. Also
2182// set isVRegCycle for its CopyFromReg operands.
2183//
2184// This is only relevant for single-block loops, in which case the VRegCycle
2185// node is likely an induction variable in which the operand and target virtual
2186// registers should be coalesced (e.g. pre/post increment values). Setting the
2187// isVRegCycle flag helps the scheduler prioritize other uses of the same
2188// CopyFromReg so that this node becomes the virtual register "kill". This
2189// avoids interference between the values live in and out of the block and
2190// eliminates a copy inside the loop.
2191static void initVRegCycle(SUnit *SU) {
2192  if (DisableSchedVRegCycle)
2193    return;
2194
2195  if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
2196    return;
2197
2198  DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
2199
2200  SU->isVRegCycle = true;
2201
2202  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2203       I != E; ++I) {
2204    if (I->isCtrl()) continue;
2205    I->getSUnit()->isVRegCycle = true;
2206  }
2207}
2208
2209// After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
2210// CopyFromReg operands. We should no longer penalize other uses of this VReg.
2211static void resetVRegCycle(SUnit *SU) {
2212  if (!SU->isVRegCycle)
2213    return;
2214
2215  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
2216       I != E; ++I) {
2217    if (I->isCtrl()) continue;  // ignore chain preds
2218    SUnit *PredSU = I->getSUnit();
2219    if (PredSU->isVRegCycle) {
2220      assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
2221             "VRegCycle def must be CopyFromReg");
2222      I->getSUnit()->isVRegCycle = 0;
2223    }
2224  }
2225}
2226
2227// Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
2228// means a node that defines the VRegCycle has not been scheduled yet.
2229static bool hasVRegCycleUse(const SUnit *SU) {
2230  // If this SU also defines the VReg, don't hoist it as a "use".
2231  if (SU->isVRegCycle)
2232    return false;
2233
2234  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
2235       I != E; ++I) {
2236    if (I->isCtrl()) continue;  // ignore chain preds
2237    if (I->getSUnit()->isVRegCycle &&
2238        I->getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
2239      DEBUG(dbgs() << "  VReg cycle use: SU (" << SU->NodeNum << ")\n");
2240      return true;
2241    }
2242  }
2243  return false;
2244}
2245
2246// Check for either a dependence (latency) or resource (hazard) stall.
2247//
2248// Note: The ScheduleHazardRecognizer interface requires a non-const SU.
2249static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
2250  if ((int)SPQ->getCurCycle() < Height) return true;
2251  if (SPQ->getHazardRec()->getHazardType(SU, 0)
2252      != ScheduleHazardRecognizer::NoHazard)
2253    return true;
2254  return false;
2255}
2256
2257// Return -1 if left has higher priority, 1 if right has higher priority.
2258// Return 0 if latency-based priority is equivalent.
2259static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
2260                            RegReductionPQBase *SPQ) {
2261  // Scheduling an instruction that uses a VReg whose postincrement has not yet
2262  // been scheduled will induce a copy. Model this as an extra cycle of latency.
2263  int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
2264  int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
2265  int LHeight = (int)left->getHeight() + LPenalty;
2266  int RHeight = (int)right->getHeight() + RPenalty;
2267
2268  bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
2269    BUHasStall(left, LHeight, SPQ);
2270  bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
2271    BUHasStall(right, RHeight, SPQ);
2272
2273  // If scheduling one of the node will cause a pipeline stall, delay it.
2274  // If scheduling either one of the node will cause a pipeline stall, sort
2275  // them according to their height.
2276  if (LStall) {
2277    if (!RStall)
2278      return 1;
2279    if (LHeight != RHeight)
2280      return LHeight > RHeight ? 1 : -1;
2281  } else if (RStall)
2282    return -1;
2283
2284  // If either node is scheduling for latency, sort them by height/depth
2285  // and latency.
2286  if (!checkPref || (left->SchedulingPref == Sched::ILP ||
2287                     right->SchedulingPref == Sched::ILP)) {
2288    if (DisableSchedCycles) {
2289      if (LHeight != RHeight)
2290        return LHeight > RHeight ? 1 : -1;
2291    }
2292    else {
2293      // If neither instruction stalls (!LStall && !RStall) then
2294      // its height is already covered so only its depth matters. We also reach
2295      // this if both stall but have the same height.
2296      int LDepth = left->getDepth() - LPenalty;
2297      int RDepth = right->getDepth() - RPenalty;
2298      if (LDepth != RDepth) {
2299        DEBUG(dbgs() << "  Comparing latency of SU (" << left->NodeNum
2300              << ") depth " << LDepth << " vs SU (" << right->NodeNum
2301              << ") depth " << RDepth << "\n");
2302        return LDepth < RDepth ? 1 : -1;
2303      }
2304    }
2305    if (left->Latency != right->Latency)
2306      return left->Latency > right->Latency ? 1 : -1;
2307  }
2308  return 0;
2309}
2310
2311static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
2312  // Schedule physical register definitions close to their use. This is
2313  // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
2314  // long as shortening physreg live ranges is generally good, we can defer
2315  // creating a subtarget hook.
2316  if (!DisableSchedPhysRegJoin) {
2317    bool LHasPhysReg = left->hasPhysRegDefs;
2318    bool RHasPhysReg = right->hasPhysRegDefs;
2319    if (LHasPhysReg != RHasPhysReg) {
2320      #ifndef NDEBUG
2321      const char *PhysRegMsg[] = {" has no physreg", " defines a physreg"};
2322      #endif
2323      DEBUG(dbgs() << "  SU (" << left->NodeNum << ") "
2324            << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum << ") "
2325            << PhysRegMsg[RHasPhysReg] << "\n");
2326      return LHasPhysReg < RHasPhysReg;
2327    }
2328  }
2329
2330  // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
2331  unsigned LPriority = SPQ->getNodePriority(left);
2332  unsigned RPriority = SPQ->getNodePriority(right);
2333
2334  // Be really careful about hoisting call operands above previous calls.
2335  // Only allows it if it would reduce register pressure.
2336  if (left->isCall && right->isCallOp) {
2337    unsigned RNumVals = right->getNode()->getNumValues();
2338    RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
2339  }
2340  if (right->isCall && left->isCallOp) {
2341    unsigned LNumVals = left->getNode()->getNumValues();
2342    LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
2343  }
2344
2345  if (LPriority != RPriority)
2346    return LPriority > RPriority;
2347
2348  // One or both of the nodes are calls and their sethi-ullman numbers are the
2349  // same, then keep source order.
2350  if (left->isCall || right->isCall) {
2351    unsigned LOrder = SPQ->getNodeOrdering(left);
2352    unsigned ROrder = SPQ->getNodeOrdering(right);
2353
2354    // Prefer an ordering where the lower the non-zero order number, the higher
2355    // the preference.
2356    if ((LOrder || ROrder) && LOrder != ROrder)
2357      return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2358  }
2359
2360  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
2361  // e.g.
2362  // t1 = op t2, c1
2363  // t3 = op t4, c2
2364  //
2365  // and the following instructions are both ready.
2366  // t2 = op c3
2367  // t4 = op c4
2368  //
2369  // Then schedule t2 = op first.
2370  // i.e.
2371  // t4 = op c4
2372  // t2 = op c3
2373  // t1 = op t2, c1
2374  // t3 = op t4, c2
2375  //
2376  // This creates more short live intervals.
2377  unsigned LDist = closestSucc(left);
2378  unsigned RDist = closestSucc(right);
2379  if (LDist != RDist)
2380    return LDist < RDist;
2381
2382  // How many registers becomes live when the node is scheduled.
2383  unsigned LScratch = calcMaxScratches(left);
2384  unsigned RScratch = calcMaxScratches(right);
2385  if (LScratch != RScratch)
2386    return LScratch > RScratch;
2387
2388  // Comparing latency against a call makes little sense unless the node
2389  // is register pressure-neutral.
2390  if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
2391    return (left->NodeQueueId > right->NodeQueueId);
2392
2393  // Do not compare latencies when one or both of the nodes are calls.
2394  if (!DisableSchedCycles &&
2395      !(left->isCall || right->isCall)) {
2396    int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
2397    if (result != 0)
2398      return result > 0;
2399  }
2400  else {
2401    if (left->getHeight() != right->getHeight())
2402      return left->getHeight() > right->getHeight();
2403
2404    if (left->getDepth() != right->getDepth())
2405      return left->getDepth() < right->getDepth();
2406  }
2407
2408  assert(left->NodeQueueId && right->NodeQueueId &&
2409         "NodeQueueId cannot be zero");
2410  return (left->NodeQueueId > right->NodeQueueId);
2411}
2412
2413// Bottom up
2414bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2415  if (int res = checkSpecialNodes(left, right))
2416    return res > 0;
2417
2418  return BURRSort(left, right, SPQ);
2419}
2420
2421// Source order, otherwise bottom up.
2422bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2423  if (int res = checkSpecialNodes(left, right))
2424    return res > 0;
2425
2426  unsigned LOrder = SPQ->getNodeOrdering(left);
2427  unsigned ROrder = SPQ->getNodeOrdering(right);
2428
2429  // Prefer an ordering where the lower the non-zero order number, the higher
2430  // the preference.
2431  if ((LOrder || ROrder) && LOrder != ROrder)
2432    return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2433
2434  return BURRSort(left, right, SPQ);
2435}
2436
2437// If the time between now and when the instruction will be ready can cover
2438// the spill code, then avoid adding it to the ready queue. This gives long
2439// stalls highest priority and allows hoisting across calls. It should also
2440// speed up processing the available queue.
2441bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2442  static const unsigned ReadyDelay = 3;
2443
2444  if (SPQ->MayReduceRegPressure(SU)) return true;
2445
2446  if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
2447
2448  if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
2449      != ScheduleHazardRecognizer::NoHazard)
2450    return false;
2451
2452  return true;
2453}
2454
2455// Return true if right should be scheduled with higher priority than left.
2456bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2457  if (int res = checkSpecialNodes(left, right))
2458    return res > 0;
2459
2460  if (left->isCall || right->isCall)
2461    // No way to compute latency of calls.
2462    return BURRSort(left, right, SPQ);
2463
2464  bool LHigh = SPQ->HighRegPressure(left);
2465  bool RHigh = SPQ->HighRegPressure(right);
2466  // Avoid causing spills. If register pressure is high, schedule for
2467  // register pressure reduction.
2468  if (LHigh && !RHigh) {
2469    DEBUG(dbgs() << "  pressure SU(" << left->NodeNum << ") > SU("
2470          << right->NodeNum << ")\n");
2471    return true;
2472  }
2473  else if (!LHigh && RHigh) {
2474    DEBUG(dbgs() << "  pressure SU(" << right->NodeNum << ") > SU("
2475          << left->NodeNum << ")\n");
2476    return false;
2477  }
2478  if (!LHigh && !RHigh) {
2479    int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
2480    if (result != 0)
2481      return result > 0;
2482  }
2483  return BURRSort(left, right, SPQ);
2484}
2485
2486// Schedule as many instructions in each cycle as possible. So don't make an
2487// instruction available unless it is ready in the current cycle.
2488bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2489  if (SU->getHeight() > CurCycle) return false;
2490
2491  if (SPQ->getHazardRec()->getHazardType(SU, 0)
2492      != ScheduleHazardRecognizer::NoHazard)
2493    return false;
2494
2495  return true;
2496}
2497
2498static bool canEnableCoalescing(SUnit *SU) {
2499  unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2500  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2501    // CopyToReg should be close to its uses to facilitate coalescing and
2502    // avoid spilling.
2503    return true;
2504
2505  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2506      Opc == TargetOpcode::SUBREG_TO_REG ||
2507      Opc == TargetOpcode::INSERT_SUBREG)
2508    // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2509    // close to their uses to facilitate coalescing.
2510    return true;
2511
2512  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2513    // If SU does not have a register def, schedule it close to its uses
2514    // because it does not lengthen any live ranges.
2515    return true;
2516
2517  return false;
2518}
2519
2520// list-ilp is currently an experimental scheduler that allows various
2521// heuristics to be enabled prior to the normal register reduction logic.
2522bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2523  if (int res = checkSpecialNodes(left, right))
2524    return res > 0;
2525
2526  if (left->isCall || right->isCall)
2527    // No way to compute latency of calls.
2528    return BURRSort(left, right, SPQ);
2529
2530  unsigned LLiveUses = 0, RLiveUses = 0;
2531  int LPDiff = 0, RPDiff = 0;
2532  if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
2533    LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
2534    RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
2535  }
2536  if (!DisableSchedRegPressure && LPDiff != RPDiff) {
2537    DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum << "): " << LPDiff
2538          << " != SU(" << right->NodeNum << "): " << RPDiff << "\n");
2539    return LPDiff > RPDiff;
2540  }
2541
2542  if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
2543    bool LReduce = canEnableCoalescing(left);
2544    bool RReduce = canEnableCoalescing(right);
2545    if (LReduce && !RReduce) return false;
2546    if (RReduce && !LReduce) return true;
2547  }
2548
2549  if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
2550    DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
2551          << " != SU(" << right->NodeNum << "): " << RLiveUses << "\n");
2552    return LLiveUses < RLiveUses;
2553  }
2554
2555  if (!DisableSchedStalls) {
2556    bool LStall = BUHasStall(left, left->getHeight(), SPQ);
2557    bool RStall = BUHasStall(right, right->getHeight(), SPQ);
2558    if (LStall != RStall)
2559      return left->getHeight() > right->getHeight();
2560  }
2561
2562  if (!DisableSchedCriticalPath) {
2563    int spread = (int)left->getDepth() - (int)right->getDepth();
2564    if (std::abs(spread) > MaxReorderWindow) {
2565      DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
2566            << left->getDepth() << " != SU(" << right->NodeNum << "): "
2567            << right->getDepth() << "\n");
2568      return left->getDepth() < right->getDepth();
2569    }
2570  }
2571
2572  if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
2573    int spread = (int)left->getHeight() - (int)right->getHeight();
2574    if (std::abs(spread) > MaxReorderWindow)
2575      return left->getHeight() > right->getHeight();
2576  }
2577
2578  return BURRSort(left, right, SPQ);
2579}
2580
2581void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
2582  SUnits = &sunits;
2583  // Add pseudo dependency edges for two-address nodes.
2584  if (!Disable2AddrHack)
2585    AddPseudoTwoAddrDeps();
2586  // Reroute edges to nodes with multiple uses.
2587  if (!TracksRegPressure)
2588    PrescheduleNodesWithMultipleUses();
2589  // Calculate node priorities.
2590  CalculateSethiUllmanNumbers();
2591
2592  // For single block loops, mark nodes that look like canonical IV increments.
2593  if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB)) {
2594    for (unsigned i = 0, e = sunits.size(); i != e; ++i) {
2595      initVRegCycle(&sunits[i]);
2596    }
2597  }
2598}
2599
2600//===----------------------------------------------------------------------===//
2601//                    Preschedule for Register Pressure
2602//===----------------------------------------------------------------------===//
2603
2604bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
2605  if (SU->isTwoAddress) {
2606    unsigned Opc = SU->getNode()->getMachineOpcode();
2607    const MCInstrDesc &MCID = TII->get(Opc);
2608    unsigned NumRes = MCID.getNumDefs();
2609    unsigned NumOps = MCID.getNumOperands() - NumRes;
2610    for (unsigned i = 0; i != NumOps; ++i) {
2611      if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
2612        SDNode *DU = SU->getNode()->getOperand(i).getNode();
2613        if (DU->getNodeId() != -1 &&
2614            Op->OrigNode == &(*SUnits)[DU->getNodeId()])
2615          return true;
2616      }
2617    }
2618  }
2619  return false;
2620}
2621
2622/// canClobberReachingPhysRegUse - True if SU would clobber one of it's
2623/// successor's explicit physregs whose definition can reach DepSU.
2624/// i.e. DepSU should not be scheduled above SU.
2625static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
2626                                         ScheduleDAGRRList *scheduleDAG,
2627                                         const TargetInstrInfo *TII,
2628                                         const TargetRegisterInfo *TRI) {
2629  const unsigned *ImpDefs
2630    = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
2631  if(!ImpDefs)
2632    return false;
2633
2634  for (SUnit::const_succ_iterator SI = SU->Succs.begin(), SE = SU->Succs.end();
2635       SI != SE; ++SI) {
2636    SUnit *SuccSU = SI->getSUnit();
2637    for (SUnit::const_pred_iterator PI = SuccSU->Preds.begin(),
2638           PE = SuccSU->Preds.end(); PI != PE; ++PI) {
2639      if (!PI->isAssignedRegDep())
2640        continue;
2641
2642      for (const unsigned *ImpDef = ImpDefs; *ImpDef; ++ImpDef) {
2643        // Return true if SU clobbers this physical register use and the
2644        // definition of the register reaches from DepSU. IsReachable queries a
2645        // topological forward sort of the DAG (following the successors).
2646        if (TRI->regsOverlap(*ImpDef, PI->getReg()) &&
2647            scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
2648          return true;
2649      }
2650    }
2651  }
2652  return false;
2653}
2654
2655/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
2656/// physical register defs.
2657static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
2658                                  const TargetInstrInfo *TII,
2659                                  const TargetRegisterInfo *TRI) {
2660  SDNode *N = SuccSU->getNode();
2661  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2662  const unsigned *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
2663  assert(ImpDefs && "Caller should check hasPhysRegDefs");
2664  for (const SDNode *SUNode = SU->getNode(); SUNode;
2665       SUNode = SUNode->getGluedNode()) {
2666    if (!SUNode->isMachineOpcode())
2667      continue;
2668    const unsigned *SUImpDefs =
2669      TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
2670    if (!SUImpDefs)
2671      return false;
2672    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2673      EVT VT = N->getValueType(i);
2674      if (VT == MVT::Glue || VT == MVT::Other)
2675        continue;
2676      if (!N->hasAnyUseOfValue(i))
2677        continue;
2678      unsigned Reg = ImpDefs[i - NumDefs];
2679      for (;*SUImpDefs; ++SUImpDefs) {
2680        unsigned SUReg = *SUImpDefs;
2681        if (TRI->regsOverlap(Reg, SUReg))
2682          return true;
2683      }
2684    }
2685  }
2686  return false;
2687}
2688
2689/// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
2690/// are not handled well by the general register pressure reduction
2691/// heuristics. When presented with code like this:
2692///
2693///      N
2694///    / |
2695///   /  |
2696///  U  store
2697///  |
2698/// ...
2699///
2700/// the heuristics tend to push the store up, but since the
2701/// operand of the store has another use (U), this would increase
2702/// the length of that other use (the U->N edge).
2703///
2704/// This function transforms code like the above to route U's
2705/// dependence through the store when possible, like this:
2706///
2707///      N
2708///      ||
2709///      ||
2710///     store
2711///       |
2712///       U
2713///       |
2714///      ...
2715///
2716/// This results in the store being scheduled immediately
2717/// after N, which shortens the U->N live range, reducing
2718/// register pressure.
2719///
2720void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
2721  // Visit all the nodes in topological order, working top-down.
2722  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2723    SUnit *SU = &(*SUnits)[i];
2724    // For now, only look at nodes with no data successors, such as stores.
2725    // These are especially important, due to the heuristics in
2726    // getNodePriority for nodes with no data successors.
2727    if (SU->NumSuccs != 0)
2728      continue;
2729    // For now, only look at nodes with exactly one data predecessor.
2730    if (SU->NumPreds != 1)
2731      continue;
2732    // Avoid prescheduling copies to virtual registers, which don't behave
2733    // like other nodes from the perspective of scheduling heuristics.
2734    if (SDNode *N = SU->getNode())
2735      if (N->getOpcode() == ISD::CopyToReg &&
2736          TargetRegisterInfo::isVirtualRegister
2737            (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2738        continue;
2739
2740    // Locate the single data predecessor.
2741    SUnit *PredSU = 0;
2742    for (SUnit::const_pred_iterator II = SU->Preds.begin(),
2743         EE = SU->Preds.end(); II != EE; ++II)
2744      if (!II->isCtrl()) {
2745        PredSU = II->getSUnit();
2746        break;
2747      }
2748    assert(PredSU);
2749
2750    // Don't rewrite edges that carry physregs, because that requires additional
2751    // support infrastructure.
2752    if (PredSU->hasPhysRegDefs)
2753      continue;
2754    // Short-circuit the case where SU is PredSU's only data successor.
2755    if (PredSU->NumSuccs == 1)
2756      continue;
2757    // Avoid prescheduling to copies from virtual registers, which don't behave
2758    // like other nodes from the perspective of scheduling heuristics.
2759    if (SDNode *N = SU->getNode())
2760      if (N->getOpcode() == ISD::CopyFromReg &&
2761          TargetRegisterInfo::isVirtualRegister
2762            (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2763        continue;
2764
2765    // Perform checks on the successors of PredSU.
2766    for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
2767         EE = PredSU->Succs.end(); II != EE; ++II) {
2768      SUnit *PredSuccSU = II->getSUnit();
2769      if (PredSuccSU == SU) continue;
2770      // If PredSU has another successor with no data successors, for
2771      // now don't attempt to choose either over the other.
2772      if (PredSuccSU->NumSuccs == 0)
2773        goto outer_loop_continue;
2774      // Don't break physical register dependencies.
2775      if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
2776        if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
2777          goto outer_loop_continue;
2778      // Don't introduce graph cycles.
2779      if (scheduleDAG->IsReachable(SU, PredSuccSU))
2780        goto outer_loop_continue;
2781    }
2782
2783    // Ok, the transformation is safe and the heuristics suggest it is
2784    // profitable. Update the graph.
2785    DEBUG(dbgs() << "    Prescheduling SU #" << SU->NodeNum
2786                 << " next to PredSU #" << PredSU->NodeNum
2787                 << " to guide scheduling in the presence of multiple uses\n");
2788    for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
2789      SDep Edge = PredSU->Succs[i];
2790      assert(!Edge.isAssignedRegDep());
2791      SUnit *SuccSU = Edge.getSUnit();
2792      if (SuccSU != SU) {
2793        Edge.setSUnit(PredSU);
2794        scheduleDAG->RemovePred(SuccSU, Edge);
2795        scheduleDAG->AddPred(SU, Edge);
2796        Edge.setSUnit(SU);
2797        scheduleDAG->AddPred(SuccSU, Edge);
2798        --i;
2799      }
2800    }
2801  outer_loop_continue:;
2802  }
2803}
2804
2805/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
2806/// it as a def&use operand. Add a pseudo control edge from it to the other
2807/// node (if it won't create a cycle) so the two-address one will be scheduled
2808/// first (lower in the schedule). If both nodes are two-address, favor the
2809/// one that has a CopyToReg use (more likely to be a loop induction update).
2810/// If both are two-address, but one is commutable while the other is not
2811/// commutable, favor the one that's not commutable.
2812void RegReductionPQBase::AddPseudoTwoAddrDeps() {
2813  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2814    SUnit *SU = &(*SUnits)[i];
2815    if (!SU->isTwoAddress)
2816      continue;
2817
2818    SDNode *Node = SU->getNode();
2819    if (!Node || !Node->isMachineOpcode() || SU->getNode()->getGluedNode())
2820      continue;
2821
2822    bool isLiveOut = hasOnlyLiveOutUses(SU);
2823    unsigned Opc = Node->getMachineOpcode();
2824    const MCInstrDesc &MCID = TII->get(Opc);
2825    unsigned NumRes = MCID.getNumDefs();
2826    unsigned NumOps = MCID.getNumOperands() - NumRes;
2827    for (unsigned j = 0; j != NumOps; ++j) {
2828      if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
2829        continue;
2830      SDNode *DU = SU->getNode()->getOperand(j).getNode();
2831      if (DU->getNodeId() == -1)
2832        continue;
2833      const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
2834      if (!DUSU) continue;
2835      for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
2836           E = DUSU->Succs.end(); I != E; ++I) {
2837        if (I->isCtrl()) continue;
2838        SUnit *SuccSU = I->getSUnit();
2839        if (SuccSU == SU)
2840          continue;
2841        // Be conservative. Ignore if nodes aren't at roughly the same
2842        // depth and height.
2843        if (SuccSU->getHeight() < SU->getHeight() &&
2844            (SU->getHeight() - SuccSU->getHeight()) > 1)
2845          continue;
2846        // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
2847        // constrains whatever is using the copy, instead of the copy
2848        // itself. In the case that the copy is coalesced, this
2849        // preserves the intent of the pseudo two-address heurietics.
2850        while (SuccSU->Succs.size() == 1 &&
2851               SuccSU->getNode()->isMachineOpcode() &&
2852               SuccSU->getNode()->getMachineOpcode() ==
2853                 TargetOpcode::COPY_TO_REGCLASS)
2854          SuccSU = SuccSU->Succs.front().getSUnit();
2855        // Don't constrain non-instruction nodes.
2856        if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
2857          continue;
2858        // Don't constrain nodes with physical register defs if the
2859        // predecessor can clobber them.
2860        if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
2861          if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
2862            continue;
2863        }
2864        // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
2865        // these may be coalesced away. We want them close to their uses.
2866        unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
2867        if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
2868            SuccOpc == TargetOpcode::INSERT_SUBREG ||
2869            SuccOpc == TargetOpcode::SUBREG_TO_REG)
2870          continue;
2871        if (!canClobberReachingPhysRegUse(SuccSU, SU, scheduleDAG, TII, TRI) &&
2872            (!canClobber(SuccSU, DUSU) ||
2873             (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
2874             (!SU->isCommutable && SuccSU->isCommutable)) &&
2875            !scheduleDAG->IsReachable(SuccSU, SU)) {
2876          DEBUG(dbgs() << "    Adding a pseudo-two-addr edge from SU #"
2877                       << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
2878          scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Order, /*Latency=*/0,
2879                                        /*Reg=*/0, /*isNormalMemory=*/false,
2880                                        /*isMustAlias=*/false,
2881                                        /*isArtificial=*/true));
2882        }
2883      }
2884    }
2885  }
2886}
2887
2888//===----------------------------------------------------------------------===//
2889//                         Public Constructor Functions
2890//===----------------------------------------------------------------------===//
2891
2892llvm::ScheduleDAGSDNodes *
2893llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
2894                                 CodeGenOpt::Level OptLevel) {
2895  const TargetMachine &TM = IS->TM;
2896  const TargetInstrInfo *TII = TM.getInstrInfo();
2897  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2898
2899  BURegReductionPriorityQueue *PQ =
2900    new BURegReductionPriorityQueue(*IS->MF, false, TII, TRI, 0);
2901  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2902  PQ->setScheduleDAG(SD);
2903  return SD;
2904}
2905
2906llvm::ScheduleDAGSDNodes *
2907llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
2908                                   CodeGenOpt::Level OptLevel) {
2909  const TargetMachine &TM = IS->TM;
2910  const TargetInstrInfo *TII = TM.getInstrInfo();
2911  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2912
2913  SrcRegReductionPriorityQueue *PQ =
2914    new SrcRegReductionPriorityQueue(*IS->MF, false, TII, TRI, 0);
2915  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2916  PQ->setScheduleDAG(SD);
2917  return SD;
2918}
2919
2920llvm::ScheduleDAGSDNodes *
2921llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
2922                                   CodeGenOpt::Level OptLevel) {
2923  const TargetMachine &TM = IS->TM;
2924  const TargetInstrInfo *TII = TM.getInstrInfo();
2925  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2926  const TargetLowering *TLI = &IS->getTargetLowering();
2927
2928  HybridBURRPriorityQueue *PQ =
2929    new HybridBURRPriorityQueue(*IS->MF, true, TII, TRI, TLI);
2930
2931  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
2932  PQ->setScheduleDAG(SD);
2933  return SD;
2934}
2935
2936llvm::ScheduleDAGSDNodes *
2937llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
2938                                CodeGenOpt::Level OptLevel) {
2939  const TargetMachine &TM = IS->TM;
2940  const TargetInstrInfo *TII = TM.getInstrInfo();
2941  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2942  const TargetLowering *TLI = &IS->getTargetLowering();
2943
2944  ILPBURRPriorityQueue *PQ =
2945    new ILPBURRPriorityQueue(*IS->MF, true, TII, TRI, TLI);
2946  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
2947  PQ->setScheduleDAG(SD);
2948  return SD;
2949}
2950