ScheduleDAGRRList.cpp revision 343f0c046702831a4a6aec951b6a297a23241a55
1//===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms.  The basic approach uses a priority
12// queue of available nodes to schedule.  One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "pre-RA-sched"
19#include "llvm/CodeGen/ScheduleDAGSDNodes.h"
20#include "llvm/CodeGen/SchedulerRegistry.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22#include "llvm/Target/TargetData.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/PriorityQueue.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/STLExtras.h"
33#include <climits>
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
38STATISTIC(NumUnfolds,    "Number of nodes unfolded");
39STATISTIC(NumDups,       "Number of duplicated nodes");
40STATISTIC(NumCCCopies,   "Number of cross class copies");
41
42static RegisterScheduler
43  burrListDAGScheduler("list-burr",
44                       "Bottom-up register reduction list scheduling",
45                       createBURRListDAGScheduler);
46static RegisterScheduler
47  tdrListrDAGScheduler("list-tdrr",
48                       "Top-down register reduction list scheduling",
49                       createTDRRListDAGScheduler);
50
51namespace {
52//===----------------------------------------------------------------------===//
53/// ScheduleDAGRRList - The actual register reduction list scheduler
54/// implementation.  This supports both top-down and bottom-up scheduling.
55///
56class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAGSDNodes {
57private:
58  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
59  /// it is top-down.
60  bool isBottomUp;
61
62  /// Fast - True if we are performing fast scheduling.
63  ///
64  bool Fast;
65
66  /// AvailableQueue - The priority queue to use for the available SUnits.
67  SchedulingPriorityQueue *AvailableQueue;
68
69  /// LiveRegDefs - A set of physical registers and their definition
70  /// that are "live". These nodes must be scheduled before any other nodes that
71  /// modifies the registers can be scheduled.
72  unsigned NumLiveRegs;
73  std::vector<SUnit*> LiveRegDefs;
74  std::vector<unsigned> LiveRegCycles;
75
76public:
77  ScheduleDAGRRList(SelectionDAG *dag, MachineBasicBlock *bb,
78                    const TargetMachine &tm, bool isbottomup, bool f,
79                    SchedulingPriorityQueue *availqueue)
80    : ScheduleDAGSDNodes(dag, bb, tm), isBottomUp(isbottomup), Fast(f),
81      AvailableQueue(availqueue) {
82    }
83
84  ~ScheduleDAGRRList() {
85    delete AvailableQueue;
86  }
87
88  void Schedule();
89
90  /// IsReachable - Checks if SU is reachable from TargetSU.
91  bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
92
93  /// willCreateCycle - Returns true if adding an edge from SU to TargetSU will
94  /// create a cycle.
95  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
96
97  /// AddPred - This adds the specified node X as a predecessor of
98  /// the current node Y if not already.
99  /// This returns true if this is a new predecessor.
100  /// Updates the topological ordering if required.
101  bool AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial,
102               unsigned PhyReg = 0, int Cost = 1);
103
104  /// RemovePred - This removes the specified node N from the predecessors of
105  /// the current node M. Updates the topological ordering if required.
106  bool RemovePred(SUnit *M, SUnit *N, bool isCtrl, bool isSpecial);
107
108private:
109  void ReleasePred(SUnit *SU, SUnit *PredSU, bool isChain);
110  void ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain);
111  void CapturePred(SUnit*, SUnit*, bool);
112  void ScheduleNodeBottomUp(SUnit*, unsigned);
113  void ScheduleNodeTopDown(SUnit*, unsigned);
114  void UnscheduleNodeBottomUp(SUnit*);
115  void BacktrackBottomUp(SUnit*, unsigned, unsigned&);
116  SUnit *CopyAndMoveSuccessors(SUnit*);
117  void InsertCCCopiesAndMoveSuccs(SUnit*, unsigned,
118                                  const TargetRegisterClass*,
119                                  const TargetRegisterClass*,
120                                  SmallVector<SUnit*, 2>&);
121  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
122  void ListScheduleTopDown();
123  void ListScheduleBottomUp();
124  void CommuteNodesToReducePressure();
125
126
127  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
128  /// Updates the topological ordering if required.
129  SUnit *CreateNewSUnit(SDNode *N) {
130    SUnit *NewNode = NewSUnit(N);
131    // Update the topological ordering.
132    if (NewNode->NodeNum >= Node2Index.size())
133      InitDAGTopologicalSorting();
134    return NewNode;
135  }
136
137  /// CreateClone - Creates a new SUnit from an existing one.
138  /// Updates the topological ordering if required.
139  SUnit *CreateClone(SUnit *N) {
140    SUnit *NewNode = Clone(N);
141    // Update the topological ordering.
142    if (NewNode->NodeNum >= Node2Index.size())
143      InitDAGTopologicalSorting();
144    return NewNode;
145  }
146
147  /// Functions for preserving the topological ordering
148  /// even after dynamic insertions of new edges.
149  /// This allows a very fast implementation of IsReachable.
150
151  /// InitDAGTopologicalSorting - create the initial topological
152  /// ordering from the DAG to be scheduled.
153  void InitDAGTopologicalSorting();
154
155  /// DFS - make a DFS traversal and mark all nodes affected by the
156  /// edge insertion. These nodes will later get new topological indexes
157  /// by means of the Shift method.
158  void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
159
160  /// Shift - reassign topological indexes for the nodes in the DAG
161  /// to preserve the topological ordering.
162  void Shift(BitVector& Visited, int LowerBound, int UpperBound);
163
164  /// Allocate - assign the topological index to the node n.
165  void Allocate(int n, int index);
166
167  /// Index2Node - Maps topological index to the node number.
168  std::vector<int> Index2Node;
169  /// Node2Index - Maps the node number to its topological index.
170  std::vector<int> Node2Index;
171  /// Visited - a set of nodes visited during a DFS traversal.
172  BitVector Visited;
173};
174}  // end anonymous namespace
175
176
177/// Schedule - Schedule the DAG using list scheduling.
178void ScheduleDAGRRList::Schedule() {
179  DOUT << "********** List Scheduling **********\n";
180
181  NumLiveRegs = 0;
182  LiveRegDefs.resize(TRI->getNumRegs(), NULL);
183  LiveRegCycles.resize(TRI->getNumRegs(), 0);
184
185  // Build scheduling units.
186  BuildSchedUnits();
187
188  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
189          SUnits[su].dumpAll(this));
190  if (!Fast) {
191    CalculateDepths();
192    CalculateHeights();
193  }
194  InitDAGTopologicalSorting();
195
196  AvailableQueue->initNodes(SUnits);
197
198  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
199  if (isBottomUp)
200    ListScheduleBottomUp();
201  else
202    ListScheduleTopDown();
203
204  AvailableQueue->releaseState();
205
206  if (!Fast)
207    CommuteNodesToReducePressure();
208}
209
210/// CommuteNodesToReducePressure - If a node is two-address and commutable, and
211/// it is not the last use of its first operand, add it to the CommuteSet if
212/// possible. It will be commuted when it is translated to a MI.
213void ScheduleDAGRRList::CommuteNodesToReducePressure() {
214  SmallPtrSet<SUnit*, 4> OperandSeen;
215  for (unsigned i = Sequence.size(); i != 0; ) {
216    --i;
217    SUnit *SU = Sequence[i];
218    if (!SU || !SU->getNode()) continue;
219    if (SU->isCommutable) {
220      unsigned Opc = SU->getNode()->getMachineOpcode();
221      const TargetInstrDesc &TID = TII->get(Opc);
222      unsigned NumRes = TID.getNumDefs();
223      unsigned NumOps = TID.getNumOperands() - NumRes;
224      for (unsigned j = 0; j != NumOps; ++j) {
225        if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
226          continue;
227
228        SDNode *OpN = SU->getNode()->getOperand(j).getNode();
229        SUnit *OpSU = isPassiveNode(OpN) ? NULL : &SUnits[OpN->getNodeId()];
230        if (OpSU && OperandSeen.count(OpSU) == 1) {
231          // Ok, so SU is not the last use of OpSU, but SU is two-address so
232          // it will clobber OpSU. Try to commute SU if no other source operands
233          // are live below.
234          bool DoCommute = true;
235          for (unsigned k = 0; k < NumOps; ++k) {
236            if (k != j) {
237              OpN = SU->getNode()->getOperand(k).getNode();
238              OpSU = isPassiveNode(OpN) ? NULL : &SUnits[OpN->getNodeId()];
239              if (OpSU && OperandSeen.count(OpSU) == 1) {
240                DoCommute = false;
241                break;
242              }
243            }
244          }
245          if (DoCommute)
246            CommuteSet.insert(SU->getNode());
247        }
248
249        // Only look at the first use&def node for now.
250        break;
251      }
252    }
253
254    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
255         I != E; ++I) {
256      if (!I->isCtrl)
257        OperandSeen.insert(I->Dep->OrigNode);
258    }
259  }
260}
261
262//===----------------------------------------------------------------------===//
263//  Bottom-Up Scheduling
264//===----------------------------------------------------------------------===//
265
266/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
267/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
268void ScheduleDAGRRList::ReleasePred(SUnit *SU, SUnit *PredSU, bool isChain) {
269  --PredSU->NumSuccsLeft;
270
271#ifndef NDEBUG
272  if (PredSU->NumSuccsLeft < 0) {
273    cerr << "*** Scheduling failed! ***\n";
274    PredSU->dump(this);
275    cerr << " has been released too many times!\n";
276    assert(0);
277  }
278#endif
279
280  // Compute how many cycles it will be before this actually becomes
281  // available.  This is the max of the start time of all predecessors plus
282  // their latencies.
283  // If this is a token edge, we don't need to wait for the latency of the
284  // preceeding instruction (e.g. a long-latency load) unless there is also
285  // some other data dependence.
286  unsigned PredDoneCycle = SU->Cycle;
287  if (!isChain)
288    PredDoneCycle += PredSU->Latency;
289  else if (SU->Latency)
290    PredDoneCycle += 1;
291  PredSU->CycleBound = std::max(PredSU->CycleBound, PredDoneCycle);
292
293  if (PredSU->NumSuccsLeft == 0) {
294    PredSU->isAvailable = true;
295    AvailableQueue->push(PredSU);
296  }
297}
298
299/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
300/// count of its predecessors. If a predecessor pending count is zero, add it to
301/// the Available queue.
302void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
303  DOUT << "*** Scheduling [" << CurCycle << "]: ";
304  DEBUG(SU->dump(this));
305
306  SU->Cycle = CurCycle;
307  Sequence.push_back(SU);
308
309  // Bottom up: release predecessors
310  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
311       I != E; ++I) {
312    ReleasePred(SU, I->Dep, I->isCtrl);
313    if (I->Cost < 0)  {
314      // This is a physical register dependency and it's impossible or
315      // expensive to copy the register. Make sure nothing that can
316      // clobber the register is scheduled between the predecessor and
317      // this node.
318      if (!LiveRegDefs[I->Reg]) {
319        ++NumLiveRegs;
320        LiveRegDefs[I->Reg] = I->Dep;
321        LiveRegCycles[I->Reg] = CurCycle;
322      }
323    }
324  }
325
326  // Release all the implicit physical register defs that are live.
327  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
328       I != E; ++I) {
329    if (I->Cost < 0)  {
330      if (LiveRegCycles[I->Reg] == I->Dep->Cycle) {
331        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
332        assert(LiveRegDefs[I->Reg] == SU &&
333               "Physical register dependency violated?");
334        --NumLiveRegs;
335        LiveRegDefs[I->Reg] = NULL;
336        LiveRegCycles[I->Reg] = 0;
337      }
338    }
339  }
340
341  SU->isScheduled = true;
342  AvailableQueue->ScheduledNode(SU);
343}
344
345/// CapturePred - This does the opposite of ReleasePred. Since SU is being
346/// unscheduled, incrcease the succ left count of its predecessors. Remove
347/// them from AvailableQueue if necessary.
348void ScheduleDAGRRList::CapturePred(SUnit *PredSU, SUnit *SU, bool isChain) {
349  unsigned CycleBound = 0;
350  for (SUnit::succ_iterator I = PredSU->Succs.begin(), E = PredSU->Succs.end();
351       I != E; ++I) {
352    if (I->Dep == SU)
353      continue;
354    CycleBound = std::max(CycleBound,
355                          I->Dep->Cycle + PredSU->Latency);
356  }
357
358  if (PredSU->isAvailable) {
359    PredSU->isAvailable = false;
360    if (!PredSU->isPending)
361      AvailableQueue->remove(PredSU);
362  }
363
364  PredSU->CycleBound = CycleBound;
365  ++PredSU->NumSuccsLeft;
366}
367
368/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
369/// its predecessor states to reflect the change.
370void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
371  DOUT << "*** Unscheduling [" << SU->Cycle << "]: ";
372  DEBUG(SU->dump(this));
373
374  AvailableQueue->UnscheduledNode(SU);
375
376  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
377       I != E; ++I) {
378    CapturePred(I->Dep, SU, I->isCtrl);
379    if (I->Cost < 0 && SU->Cycle == LiveRegCycles[I->Reg])  {
380      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
381      assert(LiveRegDefs[I->Reg] == I->Dep &&
382             "Physical register dependency violated?");
383      --NumLiveRegs;
384      LiveRegDefs[I->Reg] = NULL;
385      LiveRegCycles[I->Reg] = 0;
386    }
387  }
388
389  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
390       I != E; ++I) {
391    if (I->Cost < 0)  {
392      if (!LiveRegDefs[I->Reg]) {
393        LiveRegDefs[I->Reg] = SU;
394        ++NumLiveRegs;
395      }
396      if (I->Dep->Cycle < LiveRegCycles[I->Reg])
397        LiveRegCycles[I->Reg] = I->Dep->Cycle;
398    }
399  }
400
401  SU->Cycle = 0;
402  SU->isScheduled = false;
403  SU->isAvailable = true;
404  AvailableQueue->push(SU);
405}
406
407/// IsReachable - Checks if SU is reachable from TargetSU.
408bool ScheduleDAGRRList::IsReachable(const SUnit *SU, const SUnit *TargetSU) {
409  // If insertion of the edge SU->TargetSU would create a cycle
410  // then there is a path from TargetSU to SU.
411  int UpperBound, LowerBound;
412  LowerBound = Node2Index[TargetSU->NodeNum];
413  UpperBound = Node2Index[SU->NodeNum];
414  bool HasLoop = false;
415  // Is Ord(TargetSU) < Ord(SU) ?
416  if (LowerBound < UpperBound) {
417    Visited.reset();
418    // There may be a path from TargetSU to SU. Check for it.
419    DFS(TargetSU, UpperBound, HasLoop);
420  }
421  return HasLoop;
422}
423
424/// Allocate - assign the topological index to the node n.
425inline void ScheduleDAGRRList::Allocate(int n, int index) {
426  Node2Index[n] = index;
427  Index2Node[index] = n;
428}
429
430/// InitDAGTopologicalSorting - create the initial topological
431/// ordering from the DAG to be scheduled.
432
433/// The idea of the algorithm is taken from
434/// "Online algorithms for managing the topological order of
435/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
436/// This is the MNR algorithm, which was first introduced by
437/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
438/// "Maintaining a topological order under edge insertions".
439///
440/// Short description of the algorithm:
441///
442/// Topological ordering, ord, of a DAG maps each node to a topological
443/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
444///
445/// This means that if there is a path from the node X to the node Z,
446/// then ord(X) < ord(Z).
447///
448/// This property can be used to check for reachability of nodes:
449/// if Z is reachable from X, then an insertion of the edge Z->X would
450/// create a cycle.
451///
452/// The algorithm first computes a topological ordering for the DAG by
453/// initializing the Index2Node and Node2Index arrays and then tries to keep
454/// the ordering up-to-date after edge insertions by reordering the DAG.
455///
456/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
457/// the nodes reachable from Y, and then shifts them using Shift to lie
458/// immediately after X in Index2Node.
459void ScheduleDAGRRList::InitDAGTopologicalSorting() {
460  unsigned DAGSize = SUnits.size();
461  std::vector<SUnit*> WorkList;
462  WorkList.reserve(DAGSize);
463
464  Index2Node.resize(DAGSize);
465  Node2Index.resize(DAGSize);
466
467  // Initialize the data structures.
468  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
469    SUnit *SU = &SUnits[i];
470    int NodeNum = SU->NodeNum;
471    unsigned Degree = SU->Succs.size();
472    // Temporarily use the Node2Index array as scratch space for degree counts.
473    Node2Index[NodeNum] = Degree;
474
475    // Is it a node without dependencies?
476    if (Degree == 0) {
477        assert(SU->Succs.empty() && "SUnit should have no successors");
478        // Collect leaf nodes.
479        WorkList.push_back(SU);
480    }
481  }
482
483  int Id = DAGSize;
484  while (!WorkList.empty()) {
485    SUnit *SU = WorkList.back();
486    WorkList.pop_back();
487    Allocate(SU->NodeNum, --Id);
488    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
489         I != E; ++I) {
490      SUnit *SU = I->Dep;
491      if (!--Node2Index[SU->NodeNum])
492        // If all dependencies of the node are processed already,
493        // then the node can be computed now.
494        WorkList.push_back(SU);
495    }
496  }
497
498  Visited.resize(DAGSize);
499
500#ifndef NDEBUG
501  // Check correctness of the ordering
502  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
503    SUnit *SU = &SUnits[i];
504    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
505         I != E; ++I) {
506       assert(Node2Index[SU->NodeNum] > Node2Index[I->Dep->NodeNum] &&
507       "Wrong topological sorting");
508    }
509  }
510#endif
511}
512
513/// AddPred - adds an edge from SUnit X to SUnit Y.
514/// Updates the topological ordering if required.
515bool ScheduleDAGRRList::AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial,
516                 unsigned PhyReg, int Cost) {
517  int UpperBound, LowerBound;
518  LowerBound = Node2Index[Y->NodeNum];
519  UpperBound = Node2Index[X->NodeNum];
520  bool HasLoop = false;
521  // Is Ord(X) < Ord(Y) ?
522  if (LowerBound < UpperBound) {
523    // Update the topological order.
524    Visited.reset();
525    DFS(Y, UpperBound, HasLoop);
526    assert(!HasLoop && "Inserted edge creates a loop!");
527    // Recompute topological indexes.
528    Shift(Visited, LowerBound, UpperBound);
529  }
530  // Now really insert the edge.
531  return Y->addPred(X, isCtrl, isSpecial, PhyReg, Cost);
532}
533
534/// RemovePred - This removes the specified node N from the predecessors of
535/// the current node M. Updates the topological ordering if required.
536bool ScheduleDAGRRList::RemovePred(SUnit *M, SUnit *N,
537                                   bool isCtrl, bool isSpecial) {
538  // InitDAGTopologicalSorting();
539  return M->removePred(N, isCtrl, isSpecial);
540}
541
542/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
543/// all nodes affected by the edge insertion. These nodes will later get new
544/// topological indexes by means of the Shift method.
545void ScheduleDAGRRList::DFS(const SUnit *SU, int UpperBound, bool& HasLoop) {
546  std::vector<const SUnit*> WorkList;
547  WorkList.reserve(SUnits.size());
548
549  WorkList.push_back(SU);
550  while (!WorkList.empty()) {
551    SU = WorkList.back();
552    WorkList.pop_back();
553    Visited.set(SU->NodeNum);
554    for (int I = SU->Succs.size()-1; I >= 0; --I) {
555      int s = SU->Succs[I].Dep->NodeNum;
556      if (Node2Index[s] == UpperBound) {
557        HasLoop = true;
558        return;
559      }
560      // Visit successors if not already and in affected region.
561      if (!Visited.test(s) && Node2Index[s] < UpperBound) {
562        WorkList.push_back(SU->Succs[I].Dep);
563      }
564    }
565  }
566}
567
568/// Shift - Renumber the nodes so that the topological ordering is
569/// preserved.
570void ScheduleDAGRRList::Shift(BitVector& Visited, int LowerBound,
571                              int UpperBound) {
572  std::vector<int> L;
573  int shift = 0;
574  int i;
575
576  for (i = LowerBound; i <= UpperBound; ++i) {
577    // w is node at topological index i.
578    int w = Index2Node[i];
579    if (Visited.test(w)) {
580      // Unmark.
581      Visited.reset(w);
582      L.push_back(w);
583      shift = shift + 1;
584    } else {
585      Allocate(w, i - shift);
586    }
587  }
588
589  for (unsigned j = 0; j < L.size(); ++j) {
590    Allocate(L[j], i - shift);
591    i = i + 1;
592  }
593}
594
595
596/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
597/// create a cycle.
598bool ScheduleDAGRRList::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
599  if (IsReachable(TargetSU, SU))
600    return true;
601  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
602       I != E; ++I)
603    if (I->Cost < 0 && IsReachable(TargetSU, I->Dep))
604      return true;
605  return false;
606}
607
608/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
609/// BTCycle in order to schedule a specific node. Returns the last unscheduled
610/// SUnit. Also returns if a successor is unscheduled in the process.
611void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle,
612                                          unsigned &CurCycle) {
613  SUnit *OldSU = NULL;
614  while (CurCycle > BtCycle) {
615    OldSU = Sequence.back();
616    Sequence.pop_back();
617    if (SU->isSucc(OldSU))
618      // Don't try to remove SU from AvailableQueue.
619      SU->isAvailable = false;
620    UnscheduleNodeBottomUp(OldSU);
621    --CurCycle;
622  }
623
624
625  if (SU->isSucc(OldSU)) {
626    assert(false && "Something is wrong!");
627    abort();
628  }
629
630  ++NumBacktracks;
631}
632
633/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
634/// successors to the newly created node.
635SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
636  if (SU->getNode()->getFlaggedNode())
637    return NULL;
638
639  SDNode *N = SU->getNode();
640  if (!N)
641    return NULL;
642
643  SUnit *NewSU;
644  bool TryUnfold = false;
645  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
646    MVT VT = N->getValueType(i);
647    if (VT == MVT::Flag)
648      return NULL;
649    else if (VT == MVT::Other)
650      TryUnfold = true;
651  }
652  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
653    const SDValue &Op = N->getOperand(i);
654    MVT VT = Op.getNode()->getValueType(Op.getResNo());
655    if (VT == MVT::Flag)
656      return NULL;
657  }
658
659  if (TryUnfold) {
660    SmallVector<SDNode*, 2> NewNodes;
661    if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
662      return NULL;
663
664    DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
665    assert(NewNodes.size() == 2 && "Expected a load folding node!");
666
667    N = NewNodes[1];
668    SDNode *LoadNode = NewNodes[0];
669    unsigned NumVals = N->getNumValues();
670    unsigned OldNumVals = SU->getNode()->getNumValues();
671    for (unsigned i = 0; i != NumVals; ++i)
672      DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
673    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
674                                   SDValue(LoadNode, 1));
675
676    // LoadNode may already exist. This can happen when there is another
677    // load from the same location and producing the same type of value
678    // but it has different alignment or volatileness.
679    bool isNewLoad = true;
680    SUnit *LoadSU;
681    if (LoadNode->getNodeId() != -1) {
682      LoadSU = &SUnits[LoadNode->getNodeId()];
683      isNewLoad = false;
684    } else {
685      LoadSU = CreateNewSUnit(LoadNode);
686      LoadNode->setNodeId(LoadSU->NodeNum);
687
688      LoadSU->Depth = SU->Depth;
689      LoadSU->Height = SU->Height;
690      ComputeLatency(LoadSU);
691    }
692
693    SUnit *NewSU = CreateNewSUnit(N);
694    assert(N->getNodeId() == -1 && "Node already inserted!");
695    N->setNodeId(NewSU->NodeNum);
696
697    const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
698    for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
699      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
700        NewSU->isTwoAddress = true;
701        break;
702      }
703    }
704    if (TID.isCommutable())
705      NewSU->isCommutable = true;
706    // FIXME: Calculate height / depth and propagate the changes?
707    NewSU->Depth = SU->Depth;
708    NewSU->Height = SU->Height;
709    ComputeLatency(NewSU);
710
711    SUnit *ChainPred = NULL;
712    SmallVector<SDep, 4> ChainSuccs;
713    SmallVector<SDep, 4> LoadPreds;
714    SmallVector<SDep, 4> NodePreds;
715    SmallVector<SDep, 4> NodeSuccs;
716    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
717         I != E; ++I) {
718      if (I->isCtrl)
719        ChainPred = I->Dep;
720      else if (I->Dep->getNode() && I->Dep->getNode()->isOperandOf(LoadNode))
721        LoadPreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
722      else
723        NodePreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
724    }
725    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
726         I != E; ++I) {
727      if (I->isCtrl)
728        ChainSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
729                                  I->isCtrl, I->isSpecial));
730      else
731        NodeSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
732                                 I->isCtrl, I->isSpecial));
733    }
734
735    if (ChainPred) {
736      RemovePred(SU, ChainPred, true, false);
737      if (isNewLoad)
738        AddPred(LoadSU, ChainPred, true, false);
739    }
740    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
741      SDep *Pred = &LoadPreds[i];
742      RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial);
743      if (isNewLoad) {
744        AddPred(LoadSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial,
745                Pred->Reg, Pred->Cost);
746      }
747    }
748    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
749      SDep *Pred = &NodePreds[i];
750      RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial);
751      AddPred(NewSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial,
752              Pred->Reg, Pred->Cost);
753    }
754    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
755      SDep *Succ = &NodeSuccs[i];
756      RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial);
757      AddPred(Succ->Dep, NewSU, Succ->isCtrl, Succ->isSpecial,
758              Succ->Reg, Succ->Cost);
759    }
760    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
761      SDep *Succ = &ChainSuccs[i];
762      RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial);
763      if (isNewLoad) {
764        AddPred(Succ->Dep, LoadSU, Succ->isCtrl, Succ->isSpecial,
765                Succ->Reg, Succ->Cost);
766      }
767    }
768    if (isNewLoad) {
769      AddPred(NewSU, LoadSU, false, false);
770    }
771
772    if (isNewLoad)
773      AvailableQueue->addNode(LoadSU);
774    AvailableQueue->addNode(NewSU);
775
776    ++NumUnfolds;
777
778    if (NewSU->NumSuccsLeft == 0) {
779      NewSU->isAvailable = true;
780      return NewSU;
781    }
782    SU = NewSU;
783  }
784
785  DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
786  NewSU = CreateClone(SU);
787
788  // New SUnit has the exact same predecessors.
789  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
790       I != E; ++I)
791    if (!I->isSpecial) {
792      AddPred(NewSU, I->Dep, I->isCtrl, false, I->Reg, I->Cost);
793      NewSU->Depth = std::max(NewSU->Depth, I->Dep->Depth+1);
794    }
795
796  // Only copy scheduled successors. Cut them from old node's successor
797  // list and move them over.
798  SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
799  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
800       I != E; ++I) {
801    if (I->isSpecial)
802      continue;
803    if (I->Dep->isScheduled) {
804      NewSU->Height = std::max(NewSU->Height, I->Dep->Height+1);
805      AddPred(I->Dep, NewSU, I->isCtrl, false, I->Reg, I->Cost);
806      DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
807    }
808  }
809  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
810    SUnit *Succ = DelDeps[i].first;
811    bool isCtrl = DelDeps[i].second;
812    RemovePred(Succ, SU, isCtrl, false);
813  }
814
815  AvailableQueue->updateNode(SU);
816  AvailableQueue->addNode(NewSU);
817
818  ++NumDups;
819  return NewSU;
820}
821
822/// InsertCCCopiesAndMoveSuccs - Insert expensive cross register class copies
823/// and move all scheduled successors of the given SUnit to the last copy.
824void ScheduleDAGRRList::InsertCCCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
825                                              const TargetRegisterClass *DestRC,
826                                              const TargetRegisterClass *SrcRC,
827                                               SmallVector<SUnit*, 2> &Copies) {
828  SUnit *CopyFromSU = CreateNewSUnit(NULL);
829  CopyFromSU->CopySrcRC = SrcRC;
830  CopyFromSU->CopyDstRC = DestRC;
831  CopyFromSU->Depth = SU->Depth;
832  CopyFromSU->Height = SU->Height;
833
834  SUnit *CopyToSU = CreateNewSUnit(NULL);
835  CopyToSU->CopySrcRC = DestRC;
836  CopyToSU->CopyDstRC = SrcRC;
837
838  // Only copy scheduled successors. Cut them from old node's successor
839  // list and move them over.
840  SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
841  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
842       I != E; ++I) {
843    if (I->isSpecial)
844      continue;
845    if (I->Dep->isScheduled) {
846      CopyToSU->Height = std::max(CopyToSU->Height, I->Dep->Height+1);
847      AddPred(I->Dep, CopyToSU, I->isCtrl, false, I->Reg, I->Cost);
848      DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
849    }
850  }
851  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
852    SUnit *Succ = DelDeps[i].first;
853    bool isCtrl = DelDeps[i].second;
854    RemovePred(Succ, SU, isCtrl, false);
855  }
856
857  AddPred(CopyFromSU, SU, false, false, Reg, -1);
858  AddPred(CopyToSU, CopyFromSU, false, false, Reg, 1);
859
860  AvailableQueue->updateNode(SU);
861  AvailableQueue->addNode(CopyFromSU);
862  AvailableQueue->addNode(CopyToSU);
863  Copies.push_back(CopyFromSU);
864  Copies.push_back(CopyToSU);
865
866  ++NumCCCopies;
867}
868
869/// getPhysicalRegisterVT - Returns the ValueType of the physical register
870/// definition of the specified node.
871/// FIXME: Move to SelectionDAG?
872static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
873                                 const TargetInstrInfo *TII) {
874  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
875  assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
876  unsigned NumRes = TID.getNumDefs();
877  for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
878    if (Reg == *ImpDef)
879      break;
880    ++NumRes;
881  }
882  return N->getValueType(NumRes);
883}
884
885/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
886/// scheduling of the given node to satisfy live physical register dependencies.
887/// If the specific node is the last one that's available to schedule, do
888/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
889bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
890                                                 SmallVector<unsigned, 4> &LRegs){
891  if (NumLiveRegs == 0)
892    return false;
893
894  SmallSet<unsigned, 4> RegAdded;
895  // If this node would clobber any "live" register, then it's not ready.
896  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
897       I != E; ++I) {
898    if (I->Cost < 0)  {
899      unsigned Reg = I->Reg;
900      if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != I->Dep) {
901        if (RegAdded.insert(Reg))
902          LRegs.push_back(Reg);
903      }
904      for (const unsigned *Alias = TRI->getAliasSet(Reg);
905           *Alias; ++Alias)
906        if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != I->Dep) {
907          if (RegAdded.insert(*Alias))
908            LRegs.push_back(*Alias);
909        }
910    }
911  }
912
913  for (SDNode *Node = SU->getNode(); Node; Node = Node->getFlaggedNode()) {
914    if (!Node->isMachineOpcode())
915      continue;
916    const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
917    if (!TID.ImplicitDefs)
918      continue;
919    for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
920      if (LiveRegDefs[*Reg] && LiveRegDefs[*Reg] != SU) {
921        if (RegAdded.insert(*Reg))
922          LRegs.push_back(*Reg);
923      }
924      for (const unsigned *Alias = TRI->getAliasSet(*Reg);
925           *Alias; ++Alias)
926        if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) {
927          if (RegAdded.insert(*Alias))
928            LRegs.push_back(*Alias);
929        }
930    }
931  }
932  return !LRegs.empty();
933}
934
935
936/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
937/// schedulers.
938void ScheduleDAGRRList::ListScheduleBottomUp() {
939  unsigned CurCycle = 0;
940  // Add root to Available queue.
941  if (!SUnits.empty()) {
942    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
943    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
944    RootSU->isAvailable = true;
945    AvailableQueue->push(RootSU);
946  }
947
948  // While Available queue is not empty, grab the node with the highest
949  // priority. If it is not ready put it back.  Schedule the node.
950  SmallVector<SUnit*, 4> NotReady;
951  DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
952  Sequence.reserve(SUnits.size());
953  while (!AvailableQueue->empty()) {
954    bool Delayed = false;
955    LRegsMap.clear();
956    SUnit *CurSU = AvailableQueue->pop();
957    while (CurSU) {
958      if (CurSU->CycleBound <= CurCycle) {
959        SmallVector<unsigned, 4> LRegs;
960        if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
961          break;
962        Delayed = true;
963        LRegsMap.insert(std::make_pair(CurSU, LRegs));
964      }
965
966      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
967      NotReady.push_back(CurSU);
968      CurSU = AvailableQueue->pop();
969    }
970
971    // All candidates are delayed due to live physical reg dependencies.
972    // Try backtracking, code duplication, or inserting cross class copies
973    // to resolve it.
974    if (Delayed && !CurSU) {
975      for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
976        SUnit *TrySU = NotReady[i];
977        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
978
979        // Try unscheduling up to the point where it's safe to schedule
980        // this node.
981        unsigned LiveCycle = CurCycle;
982        for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
983          unsigned Reg = LRegs[j];
984          unsigned LCycle = LiveRegCycles[Reg];
985          LiveCycle = std::min(LiveCycle, LCycle);
986        }
987        SUnit *OldSU = Sequence[LiveCycle];
988        if (!WillCreateCycle(TrySU, OldSU))  {
989          BacktrackBottomUp(TrySU, LiveCycle, CurCycle);
990          // Force the current node to be scheduled before the node that
991          // requires the physical reg dep.
992          if (OldSU->isAvailable) {
993            OldSU->isAvailable = false;
994            AvailableQueue->remove(OldSU);
995          }
996          AddPred(TrySU, OldSU, true, true);
997          // If one or more successors has been unscheduled, then the current
998          // node is no longer avaialable. Schedule a successor that's now
999          // available instead.
1000          if (!TrySU->isAvailable)
1001            CurSU = AvailableQueue->pop();
1002          else {
1003            CurSU = TrySU;
1004            TrySU->isPending = false;
1005            NotReady.erase(NotReady.begin()+i);
1006          }
1007          break;
1008        }
1009      }
1010
1011      if (!CurSU) {
1012        // Can't backtrack. Try duplicating the nodes that produces these
1013        // "expensive to copy" values to break the dependency. In case even
1014        // that doesn't work, insert cross class copies.
1015        SUnit *TrySU = NotReady[0];
1016        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
1017        assert(LRegs.size() == 1 && "Can't handle this yet!");
1018        unsigned Reg = LRegs[0];
1019        SUnit *LRDef = LiveRegDefs[Reg];
1020        SUnit *NewDef = CopyAndMoveSuccessors(LRDef);
1021        if (!NewDef) {
1022          // Issue expensive cross register class copies.
1023          MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
1024          const TargetRegisterClass *RC =
1025            TRI->getPhysicalRegisterRegClass(Reg, VT);
1026          const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1027          if (!DestRC) {
1028            assert(false && "Don't know how to copy this physical register!");
1029            abort();
1030          }
1031          SmallVector<SUnit*, 2> Copies;
1032          InsertCCCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1033          DOUT << "Adding an edge from SU # " << TrySU->NodeNum
1034               << " to SU #" << Copies.front()->NodeNum << "\n";
1035          AddPred(TrySU, Copies.front(), true, true);
1036          NewDef = Copies.back();
1037        }
1038
1039        DOUT << "Adding an edge from SU # " << NewDef->NodeNum
1040             << " to SU #" << TrySU->NodeNum << "\n";
1041        LiveRegDefs[Reg] = NewDef;
1042        AddPred(NewDef, TrySU, true, true);
1043        TrySU->isAvailable = false;
1044        CurSU = NewDef;
1045      }
1046
1047      if (!CurSU) {
1048        assert(false && "Unable to resolve live physical register dependencies!");
1049        abort();
1050      }
1051    }
1052
1053    // Add the nodes that aren't ready back onto the available list.
1054    for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
1055      NotReady[i]->isPending = false;
1056      // May no longer be available due to backtracking.
1057      if (NotReady[i]->isAvailable)
1058        AvailableQueue->push(NotReady[i]);
1059    }
1060    NotReady.clear();
1061
1062    if (!CurSU)
1063      Sequence.push_back(0);
1064    else
1065      ScheduleNodeBottomUp(CurSU, CurCycle);
1066    ++CurCycle;
1067  }
1068
1069  // Reverse the order if it is bottom up.
1070  std::reverse(Sequence.begin(), Sequence.end());
1071
1072
1073#ifndef NDEBUG
1074  // Verify that all SUnits were scheduled.
1075  bool AnyNotSched = false;
1076  unsigned DeadNodes = 0;
1077  unsigned Noops = 0;
1078  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1079    if (!SUnits[i].isScheduled) {
1080      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
1081        ++DeadNodes;
1082        continue;
1083      }
1084      if (!AnyNotSched)
1085        cerr << "*** List scheduling failed! ***\n";
1086      SUnits[i].dump(this);
1087      cerr << "has not been scheduled!\n";
1088      AnyNotSched = true;
1089    }
1090    if (SUnits[i].NumSuccsLeft != 0) {
1091      if (!AnyNotSched)
1092        cerr << "*** List scheduling failed! ***\n";
1093      SUnits[i].dump(this);
1094      cerr << "has successors left!\n";
1095      AnyNotSched = true;
1096    }
1097  }
1098  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
1099    if (!Sequence[i])
1100      ++Noops;
1101  assert(!AnyNotSched);
1102  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
1103         "The number of nodes scheduled doesn't match the expected number!");
1104#endif
1105}
1106
1107//===----------------------------------------------------------------------===//
1108//  Top-Down Scheduling
1109//===----------------------------------------------------------------------===//
1110
1111/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
1112/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
1113void ScheduleDAGRRList::ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain) {
1114  --SuccSU->NumPredsLeft;
1115
1116#ifndef NDEBUG
1117  if (SuccSU->NumPredsLeft < 0) {
1118    cerr << "*** Scheduling failed! ***\n";
1119    SuccSU->dump(this);
1120    cerr << " has been released too many times!\n";
1121    assert(0);
1122  }
1123#endif
1124
1125  // Compute how many cycles it will be before this actually becomes
1126  // available.  This is the max of the start time of all predecessors plus
1127  // their latencies.
1128  // If this is a token edge, we don't need to wait for the latency of the
1129  // preceeding instruction (e.g. a long-latency load) unless there is also
1130  // some other data dependence.
1131  unsigned PredDoneCycle = SU->Cycle;
1132  if (!isChain)
1133    PredDoneCycle += SU->Latency;
1134  else if (SU->Latency)
1135    PredDoneCycle += 1;
1136  SuccSU->CycleBound = std::max(SuccSU->CycleBound, PredDoneCycle);
1137
1138  if (SuccSU->NumPredsLeft == 0) {
1139    SuccSU->isAvailable = true;
1140    AvailableQueue->push(SuccSU);
1141  }
1142}
1143
1144
1145/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
1146/// count of its successors. If a successor pending count is zero, add it to
1147/// the Available queue.
1148void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
1149  DOUT << "*** Scheduling [" << CurCycle << "]: ";
1150  DEBUG(SU->dump(this));
1151
1152  SU->Cycle = CurCycle;
1153  Sequence.push_back(SU);
1154
1155  // Top down: release successors
1156  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1157       I != E; ++I)
1158    ReleaseSucc(SU, I->Dep, I->isCtrl);
1159
1160  SU->isScheduled = true;
1161  AvailableQueue->ScheduledNode(SU);
1162}
1163
1164/// ListScheduleTopDown - The main loop of list scheduling for top-down
1165/// schedulers.
1166void ScheduleDAGRRList::ListScheduleTopDown() {
1167  unsigned CurCycle = 0;
1168
1169  // All leaves to Available queue.
1170  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1171    // It is available if it has no predecessors.
1172    if (SUnits[i].Preds.empty()) {
1173      AvailableQueue->push(&SUnits[i]);
1174      SUnits[i].isAvailable = true;
1175    }
1176  }
1177
1178  // While Available queue is not empty, grab the node with the highest
1179  // priority. If it is not ready put it back.  Schedule the node.
1180  std::vector<SUnit*> NotReady;
1181  Sequence.reserve(SUnits.size());
1182  while (!AvailableQueue->empty()) {
1183    SUnit *CurSU = AvailableQueue->pop();
1184    while (CurSU && CurSU->CycleBound > CurCycle) {
1185      NotReady.push_back(CurSU);
1186      CurSU = AvailableQueue->pop();
1187    }
1188
1189    // Add the nodes that aren't ready back onto the available list.
1190    AvailableQueue->push_all(NotReady);
1191    NotReady.clear();
1192
1193    if (!CurSU)
1194      Sequence.push_back(0);
1195    else
1196      ScheduleNodeTopDown(CurSU, CurCycle);
1197    ++CurCycle;
1198  }
1199
1200
1201#ifndef NDEBUG
1202  // Verify that all SUnits were scheduled.
1203  bool AnyNotSched = false;
1204  unsigned DeadNodes = 0;
1205  unsigned Noops = 0;
1206  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1207    if (!SUnits[i].isScheduled) {
1208      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
1209        ++DeadNodes;
1210        continue;
1211      }
1212      if (!AnyNotSched)
1213        cerr << "*** List scheduling failed! ***\n";
1214      SUnits[i].dump(this);
1215      cerr << "has not been scheduled!\n";
1216      AnyNotSched = true;
1217    }
1218    if (SUnits[i].NumPredsLeft != 0) {
1219      if (!AnyNotSched)
1220        cerr << "*** List scheduling failed! ***\n";
1221      SUnits[i].dump(this);
1222      cerr << "has predecessors left!\n";
1223      AnyNotSched = true;
1224    }
1225  }
1226  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
1227    if (!Sequence[i])
1228      ++Noops;
1229  assert(!AnyNotSched);
1230  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
1231         "The number of nodes scheduled doesn't match the expected number!");
1232#endif
1233}
1234
1235
1236
1237//===----------------------------------------------------------------------===//
1238//                RegReductionPriorityQueue Implementation
1239//===----------------------------------------------------------------------===//
1240//
1241// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1242// to reduce register pressure.
1243//
1244namespace {
1245  template<class SF>
1246  class RegReductionPriorityQueue;
1247
1248  /// Sorting functions for the Available queue.
1249  struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1250    RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
1251    bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
1252    bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1253
1254    bool operator()(const SUnit* left, const SUnit* right) const;
1255  };
1256
1257  struct bu_ls_rr_fast_sort : public std::binary_function<SUnit*, SUnit*, bool>{
1258    RegReductionPriorityQueue<bu_ls_rr_fast_sort> *SPQ;
1259    bu_ls_rr_fast_sort(RegReductionPriorityQueue<bu_ls_rr_fast_sort> *spq)
1260      : SPQ(spq) {}
1261    bu_ls_rr_fast_sort(const bu_ls_rr_fast_sort &RHS) : SPQ(RHS.SPQ) {}
1262
1263    bool operator()(const SUnit* left, const SUnit* right) const;
1264  };
1265
1266  struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1267    RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
1268    td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
1269    td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1270
1271    bool operator()(const SUnit* left, const SUnit* right) const;
1272  };
1273}  // end anonymous namespace
1274
1275static inline bool isCopyFromLiveIn(const SUnit *SU) {
1276  SDNode *N = SU->getNode();
1277  return N && N->getOpcode() == ISD::CopyFromReg &&
1278    N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
1279}
1280
1281/// CalcNodeBUSethiUllmanNumber - Compute Sethi Ullman number for bottom up
1282/// scheduling. Smaller number is the higher priority.
1283static unsigned
1284CalcNodeBUSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1285  unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
1286  if (SethiUllmanNumber != 0)
1287    return SethiUllmanNumber;
1288
1289  unsigned Extra = 0;
1290  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1291       I != E; ++I) {
1292    if (I->isCtrl) continue;  // ignore chain preds
1293    SUnit *PredSU = I->Dep;
1294    unsigned PredSethiUllman = CalcNodeBUSethiUllmanNumber(PredSU, SUNumbers);
1295    if (PredSethiUllman > SethiUllmanNumber) {
1296      SethiUllmanNumber = PredSethiUllman;
1297      Extra = 0;
1298    } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
1299      ++Extra;
1300  }
1301
1302  SethiUllmanNumber += Extra;
1303
1304  if (SethiUllmanNumber == 0)
1305    SethiUllmanNumber = 1;
1306
1307  return SethiUllmanNumber;
1308}
1309
1310/// CalcNodeTDSethiUllmanNumber - Compute Sethi Ullman number for top down
1311/// scheduling. Smaller number is the higher priority.
1312static unsigned
1313CalcNodeTDSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1314  unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
1315  if (SethiUllmanNumber != 0)
1316    return SethiUllmanNumber;
1317
1318  unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
1319  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1320    SethiUllmanNumber = 0xffff;
1321  else if (SU->NumSuccsLeft == 0)
1322    // If SU does not have a use, i.e. it doesn't produce a value that would
1323    // be consumed (e.g. store), then it terminates a chain of computation.
1324    // Give it a small SethiUllman number so it will be scheduled right before
1325    // its predecessors that it doesn't lengthen their live ranges.
1326    SethiUllmanNumber = 0;
1327  else if (SU->NumPredsLeft == 0 &&
1328           (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
1329    SethiUllmanNumber = 0xffff;
1330  else {
1331    int Extra = 0;
1332    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1333         I != E; ++I) {
1334      if (I->isCtrl) continue;  // ignore chain preds
1335      SUnit *PredSU = I->Dep;
1336      unsigned PredSethiUllman = CalcNodeTDSethiUllmanNumber(PredSU, SUNumbers);
1337      if (PredSethiUllman > SethiUllmanNumber) {
1338        SethiUllmanNumber = PredSethiUllman;
1339        Extra = 0;
1340      } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
1341        ++Extra;
1342    }
1343
1344    SethiUllmanNumber += Extra;
1345  }
1346
1347  return SethiUllmanNumber;
1348}
1349
1350
1351namespace {
1352  template<class SF>
1353  class VISIBILITY_HIDDEN RegReductionPriorityQueue
1354   : public SchedulingPriorityQueue {
1355    PriorityQueue<SUnit*, std::vector<SUnit*>, SF> Queue;
1356    unsigned currentQueueId;
1357
1358  public:
1359    RegReductionPriorityQueue() :
1360    Queue(SF(this)), currentQueueId(0) {}
1361
1362    virtual void initNodes(std::vector<SUnit> &sunits) = 0;
1363
1364    virtual void addNode(const SUnit *SU) = 0;
1365
1366    virtual void updateNode(const SUnit *SU) = 0;
1367
1368    virtual void releaseState() = 0;
1369
1370    virtual unsigned getNodePriority(const SUnit *SU) const = 0;
1371
1372    unsigned size() const { return Queue.size(); }
1373
1374    bool empty() const { return Queue.empty(); }
1375
1376    void push(SUnit *U) {
1377      assert(!U->NodeQueueId && "Node in the queue already");
1378      U->NodeQueueId = ++currentQueueId;
1379      Queue.push(U);
1380    }
1381
1382    void push_all(const std::vector<SUnit *> &Nodes) {
1383      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
1384        push(Nodes[i]);
1385    }
1386
1387    SUnit *pop() {
1388      if (empty()) return NULL;
1389      SUnit *V = Queue.top();
1390      Queue.pop();
1391      V->NodeQueueId = 0;
1392      return V;
1393    }
1394
1395    void remove(SUnit *SU) {
1396      assert(!Queue.empty() && "Queue is empty!");
1397      assert(SU->NodeQueueId != 0 && "Not in queue!");
1398      Queue.erase_one(SU);
1399      SU->NodeQueueId = 0;
1400    }
1401  };
1402
1403  class VISIBILITY_HIDDEN BURegReductionPriorityQueue
1404   : public RegReductionPriorityQueue<bu_ls_rr_sort> {
1405    // SUnits - The SUnits for the current graph.
1406    std::vector<SUnit> *SUnits;
1407
1408    // SethiUllmanNumbers - The SethiUllman number for each node.
1409    std::vector<unsigned> SethiUllmanNumbers;
1410
1411    const TargetInstrInfo *TII;
1412    const TargetRegisterInfo *TRI;
1413    ScheduleDAGRRList *scheduleDAG;
1414
1415  public:
1416    explicit BURegReductionPriorityQueue(const TargetInstrInfo *tii,
1417                                         const TargetRegisterInfo *tri)
1418      : TII(tii), TRI(tri), scheduleDAG(NULL) {}
1419
1420    void initNodes(std::vector<SUnit> &sunits) {
1421      SUnits = &sunits;
1422      // Add pseudo dependency edges for two-address nodes.
1423      AddPseudoTwoAddrDeps();
1424      // Calculate node priorities.
1425      CalculateSethiUllmanNumbers();
1426    }
1427
1428    void addNode(const SUnit *SU) {
1429      unsigned SUSize = SethiUllmanNumbers.size();
1430      if (SUnits->size() > SUSize)
1431        SethiUllmanNumbers.resize(SUSize*2, 0);
1432      CalcNodeBUSethiUllmanNumber(SU, SethiUllmanNumbers);
1433    }
1434
1435    void updateNode(const SUnit *SU) {
1436      SethiUllmanNumbers[SU->NodeNum] = 0;
1437      CalcNodeBUSethiUllmanNumber(SU, SethiUllmanNumbers);
1438    }
1439
1440    void releaseState() {
1441      SUnits = 0;
1442      SethiUllmanNumbers.clear();
1443    }
1444
1445    unsigned getNodePriority(const SUnit *SU) const {
1446      assert(SU->NodeNum < SethiUllmanNumbers.size());
1447      unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
1448      if (Opc == ISD::CopyFromReg && !isCopyFromLiveIn(SU))
1449        // CopyFromReg should be close to its def because it restricts
1450        // allocation choices. But if it is a livein then perhaps we want it
1451        // closer to its uses so it can be coalesced.
1452        return 0xffff;
1453      else if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1454        // CopyToReg should be close to its uses to facilitate coalescing and
1455        // avoid spilling.
1456        return 0;
1457      else if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
1458               Opc == TargetInstrInfo::INSERT_SUBREG)
1459        // EXTRACT_SUBREG / INSERT_SUBREG should be close to its use to
1460        // facilitate coalescing.
1461        return 0;
1462      else if (SU->NumSuccs == 0)
1463        // If SU does not have a use, i.e. it doesn't produce a value that would
1464        // be consumed (e.g. store), then it terminates a chain of computation.
1465        // Give it a large SethiUllman number so it will be scheduled right
1466        // before its predecessors that it doesn't lengthen their live ranges.
1467        return 0xffff;
1468      else if (SU->NumPreds == 0)
1469        // If SU does not have a def, schedule it close to its uses because it
1470        // does not lengthen any live ranges.
1471        return 0;
1472      else
1473        return SethiUllmanNumbers[SU->NodeNum];
1474    }
1475
1476    void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1477      scheduleDAG = scheduleDag;
1478    }
1479
1480  private:
1481    bool canClobber(const SUnit *SU, const SUnit *Op);
1482    void AddPseudoTwoAddrDeps();
1483    void CalculateSethiUllmanNumbers();
1484  };
1485
1486
1487  class VISIBILITY_HIDDEN BURegReductionFastPriorityQueue
1488   : public RegReductionPriorityQueue<bu_ls_rr_fast_sort> {
1489    // SUnits - The SUnits for the current graph.
1490    const std::vector<SUnit> *SUnits;
1491
1492    // SethiUllmanNumbers - The SethiUllman number for each node.
1493    std::vector<unsigned> SethiUllmanNumbers;
1494  public:
1495    explicit BURegReductionFastPriorityQueue() {}
1496
1497    void initNodes(std::vector<SUnit> &sunits) {
1498      SUnits = &sunits;
1499      // Calculate node priorities.
1500      CalculateSethiUllmanNumbers();
1501    }
1502
1503    void addNode(const SUnit *SU) {
1504      unsigned SUSize = SethiUllmanNumbers.size();
1505      if (SUnits->size() > SUSize)
1506        SethiUllmanNumbers.resize(SUSize*2, 0);
1507      CalcNodeBUSethiUllmanNumber(SU, SethiUllmanNumbers);
1508    }
1509
1510    void updateNode(const SUnit *SU) {
1511      SethiUllmanNumbers[SU->NodeNum] = 0;
1512      CalcNodeBUSethiUllmanNumber(SU, SethiUllmanNumbers);
1513    }
1514
1515    void releaseState() {
1516      SUnits = 0;
1517      SethiUllmanNumbers.clear();
1518    }
1519
1520    unsigned getNodePriority(const SUnit *SU) const {
1521      return SethiUllmanNumbers[SU->NodeNum];
1522    }
1523
1524  private:
1525    void CalculateSethiUllmanNumbers();
1526  };
1527
1528
1529  class VISIBILITY_HIDDEN TDRegReductionPriorityQueue
1530   : public RegReductionPriorityQueue<td_ls_rr_sort> {
1531    // SUnits - The SUnits for the current graph.
1532    const std::vector<SUnit> *SUnits;
1533
1534    // SethiUllmanNumbers - The SethiUllman number for each node.
1535    std::vector<unsigned> SethiUllmanNumbers;
1536
1537  public:
1538    TDRegReductionPriorityQueue() {}
1539
1540    void initNodes(std::vector<SUnit> &sunits) {
1541      SUnits = &sunits;
1542      // Calculate node priorities.
1543      CalculateSethiUllmanNumbers();
1544    }
1545
1546    void addNode(const SUnit *SU) {
1547      unsigned SUSize = SethiUllmanNumbers.size();
1548      if (SUnits->size() > SUSize)
1549        SethiUllmanNumbers.resize(SUSize*2, 0);
1550      CalcNodeTDSethiUllmanNumber(SU, SethiUllmanNumbers);
1551    }
1552
1553    void updateNode(const SUnit *SU) {
1554      SethiUllmanNumbers[SU->NodeNum] = 0;
1555      CalcNodeTDSethiUllmanNumber(SU, SethiUllmanNumbers);
1556    }
1557
1558    void releaseState() {
1559      SUnits = 0;
1560      SethiUllmanNumbers.clear();
1561    }
1562
1563    unsigned getNodePriority(const SUnit *SU) const {
1564      assert(SU->NodeNum < SethiUllmanNumbers.size());
1565      return SethiUllmanNumbers[SU->NodeNum];
1566    }
1567
1568  private:
1569    void CalculateSethiUllmanNumbers();
1570  };
1571}
1572
1573/// closestSucc - Returns the scheduled cycle of the successor which is
1574/// closet to the current cycle.
1575static unsigned closestSucc(const SUnit *SU) {
1576  unsigned MaxCycle = 0;
1577  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1578       I != E; ++I) {
1579    unsigned Cycle = I->Dep->Cycle;
1580    // If there are bunch of CopyToRegs stacked up, they should be considered
1581    // to be at the same position.
1582    if (I->Dep->getNode() && I->Dep->getNode()->getOpcode() == ISD::CopyToReg)
1583      Cycle = closestSucc(I->Dep)+1;
1584    if (Cycle > MaxCycle)
1585      MaxCycle = Cycle;
1586  }
1587  return MaxCycle;
1588}
1589
1590/// calcMaxScratches - Returns an cost estimate of the worse case requirement
1591/// for scratch registers. Live-in operands and live-out results don't count
1592/// since they are "fixed".
1593static unsigned calcMaxScratches(const SUnit *SU) {
1594  unsigned Scratches = 0;
1595  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1596       I != E; ++I) {
1597    if (I->isCtrl) continue;  // ignore chain preds
1598    if (!I->Dep->getNode() || I->Dep->getNode()->getOpcode() != ISD::CopyFromReg)
1599      Scratches++;
1600  }
1601  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1602       I != E; ++I) {
1603    if (I->isCtrl) continue;  // ignore chain succs
1604    if (!I->Dep->getNode() || I->Dep->getNode()->getOpcode() != ISD::CopyToReg)
1605      Scratches += 10;
1606  }
1607  return Scratches;
1608}
1609
1610// Bottom up
1611bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1612  unsigned LPriority = SPQ->getNodePriority(left);
1613  unsigned RPriority = SPQ->getNodePriority(right);
1614  if (LPriority != RPriority)
1615    return LPriority > RPriority;
1616
1617  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
1618  // e.g.
1619  // t1 = op t2, c1
1620  // t3 = op t4, c2
1621  //
1622  // and the following instructions are both ready.
1623  // t2 = op c3
1624  // t4 = op c4
1625  //
1626  // Then schedule t2 = op first.
1627  // i.e.
1628  // t4 = op c4
1629  // t2 = op c3
1630  // t1 = op t2, c1
1631  // t3 = op t4, c2
1632  //
1633  // This creates more short live intervals.
1634  unsigned LDist = closestSucc(left);
1635  unsigned RDist = closestSucc(right);
1636  if (LDist != RDist)
1637    return LDist < RDist;
1638
1639  // Intuitively, it's good to push down instructions whose results are
1640  // liveout so their long live ranges won't conflict with other values
1641  // which are needed inside the BB. Further prioritize liveout instructions
1642  // by the number of operands which are calculated within the BB.
1643  unsigned LScratch = calcMaxScratches(left);
1644  unsigned RScratch = calcMaxScratches(right);
1645  if (LScratch != RScratch)
1646    return LScratch > RScratch;
1647
1648  if (left->Height != right->Height)
1649    return left->Height > right->Height;
1650
1651  if (left->Depth != right->Depth)
1652    return left->Depth < right->Depth;
1653
1654  if (left->CycleBound != right->CycleBound)
1655    return left->CycleBound > right->CycleBound;
1656
1657  assert(left->NodeQueueId && right->NodeQueueId &&
1658         "NodeQueueId cannot be zero");
1659  return (left->NodeQueueId > right->NodeQueueId);
1660}
1661
1662bool
1663bu_ls_rr_fast_sort::operator()(const SUnit *left, const SUnit *right) const {
1664  unsigned LPriority = SPQ->getNodePriority(left);
1665  unsigned RPriority = SPQ->getNodePriority(right);
1666  if (LPriority != RPriority)
1667    return LPriority > RPriority;
1668  assert(left->NodeQueueId && right->NodeQueueId &&
1669         "NodeQueueId cannot be zero");
1670  return (left->NodeQueueId > right->NodeQueueId);
1671}
1672
1673bool
1674BURegReductionPriorityQueue::canClobber(const SUnit *SU, const SUnit *Op) {
1675  if (SU->isTwoAddress) {
1676    unsigned Opc = SU->getNode()->getMachineOpcode();
1677    const TargetInstrDesc &TID = TII->get(Opc);
1678    unsigned NumRes = TID.getNumDefs();
1679    unsigned NumOps = TID.getNumOperands() - NumRes;
1680    for (unsigned i = 0; i != NumOps; ++i) {
1681      if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) {
1682        SDNode *DU = SU->getNode()->getOperand(i).getNode();
1683        if (DU->getNodeId() != -1 &&
1684            Op->OrigNode == &(*SUnits)[DU->getNodeId()])
1685          return true;
1686      }
1687    }
1688  }
1689  return false;
1690}
1691
1692
1693/// hasCopyToRegUse - Return true if SU has a value successor that is a
1694/// CopyToReg node.
1695static bool hasCopyToRegUse(const SUnit *SU) {
1696  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1697       I != E; ++I) {
1698    if (I->isCtrl) continue;
1699    const SUnit *SuccSU = I->Dep;
1700    if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg)
1701      return true;
1702  }
1703  return false;
1704}
1705
1706/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
1707/// physical register defs.
1708static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
1709                                  const TargetInstrInfo *TII,
1710                                  const TargetRegisterInfo *TRI) {
1711  SDNode *N = SuccSU->getNode();
1712  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1713  const unsigned *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
1714  assert(ImpDefs && "Caller should check hasPhysRegDefs");
1715  const unsigned *SUImpDefs =
1716    TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
1717  if (!SUImpDefs)
1718    return false;
1719  for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
1720    MVT VT = N->getValueType(i);
1721    if (VT == MVT::Flag || VT == MVT::Other)
1722      continue;
1723    if (!N->hasAnyUseOfValue(i))
1724      continue;
1725    unsigned Reg = ImpDefs[i - NumDefs];
1726    for (;*SUImpDefs; ++SUImpDefs) {
1727      unsigned SUReg = *SUImpDefs;
1728      if (TRI->regsOverlap(Reg, SUReg))
1729        return true;
1730    }
1731  }
1732  return false;
1733}
1734
1735/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
1736/// it as a def&use operand. Add a pseudo control edge from it to the other
1737/// node (if it won't create a cycle) so the two-address one will be scheduled
1738/// first (lower in the schedule). If both nodes are two-address, favor the
1739/// one that has a CopyToReg use (more likely to be a loop induction update).
1740/// If both are two-address, but one is commutable while the other is not
1741/// commutable, favor the one that's not commutable.
1742void BURegReductionPriorityQueue::AddPseudoTwoAddrDeps() {
1743  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
1744    SUnit *SU = &(*SUnits)[i];
1745    if (!SU->isTwoAddress)
1746      continue;
1747
1748    SDNode *Node = SU->getNode();
1749    if (!Node || !Node->isMachineOpcode() || SU->getNode()->getFlaggedNode())
1750      continue;
1751
1752    unsigned Opc = Node->getMachineOpcode();
1753    const TargetInstrDesc &TID = TII->get(Opc);
1754    unsigned NumRes = TID.getNumDefs();
1755    unsigned NumOps = TID.getNumOperands() - NumRes;
1756    for (unsigned j = 0; j != NumOps; ++j) {
1757      if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
1758        continue;
1759      SDNode *DU = SU->getNode()->getOperand(j).getNode();
1760      if (DU->getNodeId() == -1)
1761        continue;
1762      const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
1763      if (!DUSU) continue;
1764      for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
1765           E = DUSU->Succs.end(); I != E; ++I) {
1766        if (I->isCtrl) continue;
1767        SUnit *SuccSU = I->Dep;
1768        if (SuccSU == SU)
1769          continue;
1770        // Be conservative. Ignore if nodes aren't at roughly the same
1771        // depth and height.
1772        if (SuccSU->Height < SU->Height && (SU->Height - SuccSU->Height) > 1)
1773          continue;
1774        if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
1775          continue;
1776        // Don't constrain nodes with physical register defs if the
1777        // predecessor can clobber them.
1778        if (SuccSU->hasPhysRegDefs) {
1779          if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
1780            continue;
1781        }
1782        // Don't constraint extract_subreg / insert_subreg these may be
1783        // coalesced away. We don't them close to their uses.
1784        unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
1785        if (SuccOpc == TargetInstrInfo::EXTRACT_SUBREG ||
1786            SuccOpc == TargetInstrInfo::INSERT_SUBREG)
1787          continue;
1788        if ((!canClobber(SuccSU, DUSU) ||
1789             (hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
1790             (!SU->isCommutable && SuccSU->isCommutable)) &&
1791            !scheduleDAG->IsReachable(SuccSU, SU)) {
1792          DOUT << "Adding an edge from SU # " << SU->NodeNum
1793               << " to SU #" << SuccSU->NodeNum << "\n";
1794          scheduleDAG->AddPred(SU, SuccSU, true, true);
1795        }
1796      }
1797    }
1798  }
1799}
1800
1801/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1802/// scheduling units.
1803void BURegReductionPriorityQueue::CalculateSethiUllmanNumbers() {
1804  SethiUllmanNumbers.assign(SUnits->size(), 0);
1805
1806  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1807    CalcNodeBUSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1808}
1809void BURegReductionFastPriorityQueue::CalculateSethiUllmanNumbers() {
1810  SethiUllmanNumbers.assign(SUnits->size(), 0);
1811
1812  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1813    CalcNodeBUSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1814}
1815
1816/// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled
1817/// predecessors of the successors of the SUnit SU. Stop when the provided
1818/// limit is exceeded.
1819static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU,
1820                                                    unsigned Limit) {
1821  unsigned Sum = 0;
1822  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1823       I != E; ++I) {
1824    const SUnit *SuccSU = I->Dep;
1825    for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
1826         EE = SuccSU->Preds.end(); II != EE; ++II) {
1827      SUnit *PredSU = II->Dep;
1828      if (!PredSU->isScheduled)
1829        if (++Sum > Limit)
1830          return Sum;
1831    }
1832  }
1833  return Sum;
1834}
1835
1836
1837// Top down
1838bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1839  unsigned LPriority = SPQ->getNodePriority(left);
1840  unsigned RPriority = SPQ->getNodePriority(right);
1841  bool LIsTarget = left->getNode() && left->getNode()->isMachineOpcode();
1842  bool RIsTarget = right->getNode() && right->getNode()->isMachineOpcode();
1843  bool LIsFloater = LIsTarget && left->NumPreds == 0;
1844  bool RIsFloater = RIsTarget && right->NumPreds == 0;
1845  unsigned LBonus = (LimitedSumOfUnscheduledPredsOfSuccs(left,1) == 1) ? 2 : 0;
1846  unsigned RBonus = (LimitedSumOfUnscheduledPredsOfSuccs(right,1) == 1) ? 2 : 0;
1847
1848  if (left->NumSuccs == 0 && right->NumSuccs != 0)
1849    return false;
1850  else if (left->NumSuccs != 0 && right->NumSuccs == 0)
1851    return true;
1852
1853  if (LIsFloater)
1854    LBonus -= 2;
1855  if (RIsFloater)
1856    RBonus -= 2;
1857  if (left->NumSuccs == 1)
1858    LBonus += 2;
1859  if (right->NumSuccs == 1)
1860    RBonus += 2;
1861
1862  if (LPriority+LBonus != RPriority+RBonus)
1863    return LPriority+LBonus < RPriority+RBonus;
1864
1865  if (left->Depth != right->Depth)
1866    return left->Depth < right->Depth;
1867
1868  if (left->NumSuccsLeft != right->NumSuccsLeft)
1869    return left->NumSuccsLeft > right->NumSuccsLeft;
1870
1871  if (left->CycleBound != right->CycleBound)
1872    return left->CycleBound > right->CycleBound;
1873
1874  assert(left->NodeQueueId && right->NodeQueueId &&
1875         "NodeQueueId cannot be zero");
1876  return (left->NodeQueueId > right->NodeQueueId);
1877}
1878
1879/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1880/// scheduling units.
1881void TDRegReductionPriorityQueue::CalculateSethiUllmanNumbers() {
1882  SethiUllmanNumbers.assign(SUnits->size(), 0);
1883
1884  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1885    CalcNodeTDSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1886}
1887
1888//===----------------------------------------------------------------------===//
1889//                         Public Constructor Functions
1890//===----------------------------------------------------------------------===//
1891
1892llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
1893                                                    SelectionDAG *DAG,
1894                                                    const TargetMachine *TM,
1895                                                    MachineBasicBlock *BB,
1896                                                    bool Fast) {
1897  if (Fast)
1898    return new ScheduleDAGRRList(DAG, BB, *TM, true, true,
1899                                 new BURegReductionFastPriorityQueue());
1900
1901  const TargetInstrInfo *TII = TM->getInstrInfo();
1902  const TargetRegisterInfo *TRI = TM->getRegisterInfo();
1903
1904  BURegReductionPriorityQueue *PQ = new BURegReductionPriorityQueue(TII, TRI);
1905
1906  ScheduleDAGRRList *SD =
1907    new ScheduleDAGRRList(DAG, BB, *TM, true, false, PQ);
1908  PQ->setScheduleDAG(SD);
1909  return SD;
1910}
1911
1912llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
1913                                                    SelectionDAG *DAG,
1914                                                    const TargetMachine *TM,
1915                                                    MachineBasicBlock *BB,
1916                                                    bool Fast) {
1917  return new ScheduleDAGRRList(DAG, BB, *TM, false, Fast,
1918                               new TDRegReductionPriorityQueue());
1919}
1920