ScheduleDAGRRList.cpp revision 48fb0205803f2fadef072d33720c11536490d213
1//===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Evan Cheng and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms.  The basic approach uses a priority
12// queue of available nodes to schedule.  One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "pre-RA-sched"
19#include "llvm/CodeGen/ScheduleDAG.h"
20#include "llvm/CodeGen/SchedulerRegistry.h"
21#include "llvm/CodeGen/SSARegMap.h"
22#include "llvm/Target/MRegisterInfo.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetInstrInfo.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/Statistic.h"
31#include <climits>
32#include <queue>
33#include "llvm/Support/CommandLine.h"
34using namespace llvm;
35
36STATISTIC(NumBacktracks, "Number of times scheduler backtraced");
37STATISTIC(NumUnfolds,    "Number of nodes unfolded");
38STATISTIC(NumDups,       "Number of duplicated nodes");
39STATISTIC(NumCCCopies,   "Number of cross class copies");
40
41static RegisterScheduler
42  burrListDAGScheduler("list-burr",
43                       "  Bottom-up register reduction list scheduling",
44                       createBURRListDAGScheduler);
45static RegisterScheduler
46  tdrListrDAGScheduler("list-tdrr",
47                       "  Top-down register reduction list scheduling",
48                       createTDRRListDAGScheduler);
49
50namespace {
51//===----------------------------------------------------------------------===//
52/// ScheduleDAGRRList - The actual register reduction list scheduler
53/// implementation.  This supports both top-down and bottom-up scheduling.
54///
55class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAG {
56private:
57  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
58  /// it is top-down.
59  bool isBottomUp;
60
61  /// AvailableQueue - The priority queue to use for the available SUnits.
62  ///a
63  SchedulingPriorityQueue *AvailableQueue;
64
65  /// LiveRegs / LiveRegDefs - A set of physical registers and their definition
66  /// that are "live". These nodes must be scheduled before any other nodes that
67  /// modifies the registers can be scheduled.
68  SmallSet<unsigned, 4> LiveRegs;
69  std::vector<SUnit*> LiveRegDefs;
70  std::vector<unsigned> LiveRegCycles;
71
72public:
73  ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
74                  const TargetMachine &tm, bool isbottomup,
75                  SchedulingPriorityQueue *availqueue)
76    : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup),
77      AvailableQueue(availqueue) {
78    }
79
80  ~ScheduleDAGRRList() {
81    delete AvailableQueue;
82  }
83
84  void Schedule();
85
86private:
87  void ReleasePred(SUnit*, bool, unsigned);
88  void ReleaseSucc(SUnit*, bool isChain, unsigned);
89  void CapturePred(SUnit*, SUnit*, bool);
90  void ScheduleNodeBottomUp(SUnit*, unsigned);
91  void ScheduleNodeTopDown(SUnit*, unsigned);
92  void UnscheduleNodeBottomUp(SUnit*);
93  void BacktrackBottomUp(SUnit*, unsigned, unsigned&);
94  SUnit *CopyAndMoveSuccessors(SUnit*);
95  void InsertCCCopiesAndMoveSuccs(SUnit*, unsigned,
96                                  const TargetRegisterClass*,
97                                  const TargetRegisterClass*,
98                                  SmallVector<SUnit*, 2>&);
99  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
100  void ListScheduleTopDown();
101  void ListScheduleBottomUp();
102  void CommuteNodesToReducePressure();
103};
104}  // end anonymous namespace
105
106
107/// Schedule - Schedule the DAG using list scheduling.
108void ScheduleDAGRRList::Schedule() {
109  DOUT << "********** List Scheduling **********\n";
110
111  LiveRegDefs.resize(MRI->getNumRegs(), NULL);
112  LiveRegCycles.resize(MRI->getNumRegs(), 0);
113
114  // Build scheduling units.
115  BuildSchedUnits();
116
117  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
118          SUnits[su].dumpAll(&DAG));
119  CalculateDepths();
120  CalculateHeights();
121
122  AvailableQueue->initNodes(SUnitMap, SUnits);
123
124  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
125  if (isBottomUp)
126    ListScheduleBottomUp();
127  else
128    ListScheduleTopDown();
129
130  AvailableQueue->releaseState();
131
132  CommuteNodesToReducePressure();
133
134  DOUT << "*** Final schedule ***\n";
135  DEBUG(dumpSchedule());
136  DOUT << "\n";
137
138  // Emit in scheduled order
139  EmitSchedule();
140}
141
142/// CommuteNodesToReducePressure - If a node is two-address and commutable, and
143/// it is not the last use of its first operand, add it to the CommuteSet if
144/// possible. It will be commuted when it is translated to a MI.
145void ScheduleDAGRRList::CommuteNodesToReducePressure() {
146  SmallPtrSet<SUnit*, 4> OperandSeen;
147  for (unsigned i = Sequence.size()-1; i != 0; --i) {  // Ignore first node.
148    SUnit *SU = Sequence[i];
149    if (!SU || !SU->Node) continue;
150    if (SU->isCommutable) {
151      unsigned Opc = SU->Node->getTargetOpcode();
152      unsigned NumRes = TII->getNumDefs(Opc);
153      unsigned NumOps = CountOperands(SU->Node);
154      for (unsigned j = 0; j != NumOps; ++j) {
155        if (TII->getOperandConstraint(Opc, j+NumRes, TOI::TIED_TO) == -1)
156          continue;
157
158        SDNode *OpN = SU->Node->getOperand(j).Val;
159        SUnit *OpSU = SUnitMap[OpN][SU->InstanceNo];
160        if (OpSU && OperandSeen.count(OpSU) == 1) {
161          // Ok, so SU is not the last use of OpSU, but SU is two-address so
162          // it will clobber OpSU. Try to commute SU if no other source operands
163          // are live below.
164          bool DoCommute = true;
165          for (unsigned k = 0; k < NumOps; ++k) {
166            if (k != j) {
167              OpN = SU->Node->getOperand(k).Val;
168              OpSU = SUnitMap[OpN][SU->InstanceNo];
169              if (OpSU && OperandSeen.count(OpSU) == 1) {
170                DoCommute = false;
171                break;
172              }
173            }
174          }
175          if (DoCommute)
176            CommuteSet.insert(SU->Node);
177        }
178
179        // Only look at the first use&def node for now.
180        break;
181      }
182    }
183
184    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
185         I != E; ++I) {
186      if (!I->isCtrl)
187        OperandSeen.insert(I->Dep);
188    }
189  }
190}
191
192//===----------------------------------------------------------------------===//
193//  Bottom-Up Scheduling
194//===----------------------------------------------------------------------===//
195
196/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
197/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
198void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain,
199                                    unsigned CurCycle) {
200  // FIXME: the distance between two nodes is not always == the predecessor's
201  // latency. For example, the reader can very well read the register written
202  // by the predecessor later than the issue cycle. It also depends on the
203  // interrupt model (drain vs. freeze).
204  PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
205
206  --PredSU->NumSuccsLeft;
207
208#ifndef NDEBUG
209  if (PredSU->NumSuccsLeft < 0) {
210    cerr << "*** List scheduling failed! ***\n";
211    PredSU->dump(&DAG);
212    cerr << " has been released too many times!\n";
213    assert(0);
214  }
215#endif
216
217  if (PredSU->NumSuccsLeft == 0) {
218    // EntryToken has to go last!  Special case it here.
219    if (!PredSU->Node || PredSU->Node->getOpcode() != ISD::EntryToken) {
220      PredSU->isAvailable = true;
221      AvailableQueue->push(PredSU);
222    }
223  }
224}
225
226/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
227/// count of its predecessors. If a predecessor pending count is zero, add it to
228/// the Available queue.
229void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
230  DOUT << "*** Scheduling [" << CurCycle << "]: ";
231  DEBUG(SU->dump(&DAG));
232  SU->Cycle = CurCycle;
233
234  AvailableQueue->ScheduledNode(SU);
235
236  // Bottom up: release predecessors
237  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
238       I != E; ++I) {
239    ReleasePred(I->Dep, I->isCtrl, CurCycle);
240    if (I->Cost < 0)  {
241      // This is a physical register dependency and it's impossible or
242      // expensive to copy the register. Make sure nothing that can
243      // clobber the register is scheduled between the predecessor and
244      // this node.
245      if (LiveRegs.insert(I->Reg)) {
246        LiveRegDefs[I->Reg] = I->Dep;
247        LiveRegCycles[I->Reg] = CurCycle;
248      }
249    }
250  }
251
252  // Release all the implicit physical register defs that are live.
253  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
254       I != E; ++I) {
255    if (I->Cost < 0)  {
256      if (LiveRegCycles[I->Reg] == I->Dep->Cycle) {
257        LiveRegs.erase(I->Reg);
258        assert(LiveRegDefs[I->Reg] == SU &&
259               "Physical register dependency violated?");
260        LiveRegDefs[I->Reg] = NULL;
261        LiveRegCycles[I->Reg] = 0;
262      }
263    }
264  }
265
266  SU->isScheduled = true;
267}
268
269/// CapturePred - This does the opposite of ReleasePred. Since SU is being
270/// unscheduled, incrcease the succ left count of its predecessors. Remove
271/// them from AvailableQueue if necessary.
272void ScheduleDAGRRList::CapturePred(SUnit *PredSU, SUnit *SU, bool isChain) {
273  PredSU->CycleBound = 0;
274  for (SUnit::succ_iterator I = PredSU->Succs.begin(), E = PredSU->Succs.end();
275       I != E; ++I) {
276    if (I->Dep == SU)
277      continue;
278    PredSU->CycleBound = std::max(PredSU->CycleBound,
279                                  I->Dep->Cycle + PredSU->Latency);
280  }
281
282  if (PredSU->isAvailable) {
283    PredSU->isAvailable = false;
284    if (!PredSU->isPending)
285      AvailableQueue->remove(PredSU);
286  }
287
288  ++PredSU->NumSuccsLeft;
289}
290
291/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
292/// its predecessor states to reflect the change.
293void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
294  DOUT << "*** Unscheduling [" << SU->Cycle << "]: ";
295  DEBUG(SU->dump(&DAG));
296
297  AvailableQueue->UnscheduledNode(SU);
298
299  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
300       I != E; ++I) {
301    CapturePred(I->Dep, SU, I->isCtrl);
302    if (I->Cost < 0 && SU->Cycle == LiveRegCycles[I->Reg])  {
303      LiveRegs.erase(I->Reg);
304      assert(LiveRegDefs[I->Reg] == I->Dep &&
305             "Physical register dependency violated?");
306      LiveRegDefs[I->Reg] = NULL;
307      LiveRegCycles[I->Reg] = 0;
308    }
309  }
310
311  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
312       I != E; ++I) {
313    if (I->Cost < 0)  {
314      if (LiveRegs.insert(I->Reg)) {
315        assert(!LiveRegDefs[I->Reg] &&
316               "Physical register dependency violated?");
317        LiveRegDefs[I->Reg] = SU;
318      }
319      if (I->Dep->Cycle < LiveRegCycles[I->Reg])
320        LiveRegCycles[I->Reg] = I->Dep->Cycle;
321    }
322  }
323
324  SU->Cycle = 0;
325  SU->isScheduled = false;
326  SU->isAvailable = true;
327  AvailableQueue->push(SU);
328}
329
330// FIXME: This is probably too slow!
331static void isReachable(SUnit *SU, SUnit *TargetSU,
332                        SmallPtrSet<SUnit*, 32> &Visited, bool &Reached) {
333  if (Reached) return;
334  if (SU == TargetSU) {
335    Reached = true;
336    return;
337  }
338  if (!Visited.insert(SU)) return;
339
340  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E;
341       ++I)
342    isReachable(I->Dep, TargetSU, Visited, Reached);
343}
344
345static bool isReachable(SUnit *SU, SUnit *TargetSU) {
346  SmallPtrSet<SUnit*, 32> Visited;
347  bool Reached = false;
348  isReachable(SU, TargetSU, Visited, Reached);
349  return Reached;
350}
351
352/// willCreateCycle - Returns true if adding an edge from SU to TargetSU will
353/// create a cycle.
354static bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
355  if (isReachable(TargetSU, SU))
356    return true;
357  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
358       I != E; ++I)
359    if (I->Cost < 0 && isReachable(TargetSU, I->Dep))
360      return true;
361  return false;
362}
363
364/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
365/// BTCycle in order to schedule a specific node. Returns the last unscheduled
366/// SUnit. Also returns if a successor is unscheduled in the process.
367void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle,
368                                          unsigned &CurCycle) {
369  SUnit *OldSU = NULL;
370  while (CurCycle > BtCycle) {
371    OldSU = Sequence.back();
372    Sequence.pop_back();
373    if (SU->isSucc(OldSU))
374      // Don't try to remove SU from AvailableQueue.
375      SU->isAvailable = false;
376    UnscheduleNodeBottomUp(OldSU);
377    --CurCycle;
378  }
379
380
381  if (SU->isSucc(OldSU)) {
382    assert(false && "Something is wrong!");
383    abort();
384  }
385
386  ++NumBacktracks;
387}
388
389/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
390/// successors to the newly created node.
391SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
392  if (SU->FlaggedNodes.size())
393    return NULL;
394
395  SDNode *N = SU->Node;
396  if (!N)
397    return NULL;
398
399  SUnit *NewSU;
400  bool TryUnfold = false;
401  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
402    MVT::ValueType VT = N->getValueType(i);
403    if (VT == MVT::Flag)
404      return NULL;
405    else if (VT == MVT::Other)
406      TryUnfold = true;
407  }
408  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
409    const SDOperand &Op = N->getOperand(i);
410    MVT::ValueType VT = Op.Val->getValueType(Op.ResNo);
411    if (VT == MVT::Flag)
412      return NULL;
413  }
414
415  if (TryUnfold) {
416    SmallVector<SDNode*, 4> NewNodes;
417    if (!MRI->unfoldMemoryOperand(DAG, N, NewNodes))
418      return NULL;
419
420    DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
421    assert(NewNodes.size() == 2 && "Expected a load folding node!");
422
423    N = NewNodes[1];
424    SDNode *LoadNode = NewNodes[0];
425    unsigned NumVals = N->getNumValues();
426    unsigned OldNumVals = SU->Node->getNumValues();
427    for (unsigned i = 0; i != NumVals; ++i)
428      DAG.ReplaceAllUsesOfValueWith(SDOperand(SU->Node, i), SDOperand(N, i));
429    DAG.ReplaceAllUsesOfValueWith(SDOperand(SU->Node, OldNumVals-1),
430                                  SDOperand(LoadNode, 1));
431
432    SUnit *LoadSU = NewSUnit(LoadNode);
433    SUnit *NewSU = NewSUnit(N);
434    SUnitMap[LoadNode].push_back(LoadSU);
435    SUnitMap[N].push_back(NewSU);
436    const TargetInstrDescriptor *TID = &TII->get(LoadNode->getTargetOpcode());
437    for (unsigned i = 0; i != TID->numOperands; ++i) {
438      if (TID->getOperandConstraint(i, TOI::TIED_TO) != -1) {
439        LoadSU->isTwoAddress = true;
440        break;
441      }
442    }
443    if (TID->Flags & M_COMMUTABLE)
444      LoadSU->isCommutable = true;
445
446    TID = &TII->get(N->getTargetOpcode());
447    for (unsigned i = 0; i != TID->numOperands; ++i) {
448      if (TID->getOperandConstraint(i, TOI::TIED_TO) != -1) {
449        NewSU->isTwoAddress = true;
450        break;
451      }
452    }
453    if (TID->Flags & M_COMMUTABLE)
454      NewSU->isCommutable = true;
455
456    // FIXME: Calculate height / depth and propagate the changes?
457    LoadSU->Depth = NewSU->Depth = SU->Depth;
458    LoadSU->Height = NewSU->Height = SU->Height;
459    ComputeLatency(LoadSU);
460    ComputeLatency(NewSU);
461
462    SUnit *ChainPred = NULL;
463    SmallVector<SDep, 4> ChainSuccs;
464    SmallVector<SDep, 4> LoadPreds;
465    SmallVector<SDep, 4> NodePreds;
466    SmallVector<SDep, 4> NodeSuccs;
467    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
468         I != E; ++I) {
469      if (I->isCtrl)
470        ChainPred = I->Dep;
471      else if (I->Dep->Node && I->Dep->Node->isOperand(LoadNode))
472        LoadPreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
473      else
474        NodePreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
475    }
476    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
477         I != E; ++I) {
478      if (I->isCtrl)
479        ChainSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
480                                  I->isCtrl, I->isSpecial));
481      else
482        NodeSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
483                                 I->isCtrl, I->isSpecial));
484    }
485
486    SU->removePred(ChainPred, true, false);
487    LoadSU->addPred(ChainPred, true, false);
488    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
489      SDep *Pred = &LoadPreds[i];
490      SU->removePred(Pred->Dep, Pred->isCtrl, Pred->isSpecial);
491      LoadSU->addPred(Pred->Dep, Pred->isCtrl, Pred->isSpecial,
492                      Pred->Reg, Pred->Cost);
493    }
494    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
495      SDep *Pred = &NodePreds[i];
496      SU->removePred(Pred->Dep, Pred->isCtrl, Pred->isSpecial);
497      NewSU->addPred(Pred->Dep, Pred->isCtrl, Pred->isSpecial,
498                     Pred->Reg, Pred->Cost);
499    }
500    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
501      SDep *Succ = &NodeSuccs[i];
502      Succ->Dep->removePred(SU, Succ->isCtrl, Succ->isSpecial);
503      Succ->Dep->addPred(NewSU, Succ->isCtrl, Succ->isSpecial,
504                         Succ->Reg, Succ->Cost);
505    }
506    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
507      SDep *Succ = &ChainSuccs[i];
508      Succ->Dep->removePred(SU, Succ->isCtrl, Succ->isSpecial);
509      Succ->Dep->addPred(LoadSU, Succ->isCtrl, Succ->isSpecial,
510                         Succ->Reg, Succ->Cost);
511    }
512    NewSU->addPred(LoadSU, false, false);
513
514    AvailableQueue->addNode(LoadSU);
515    AvailableQueue->addNode(NewSU);
516
517    ++NumUnfolds;
518
519    if (NewSU->NumSuccsLeft == 0) {
520      NewSU->isAvailable = true;
521      return NewSU;
522    } else
523      SU = NewSU;
524  }
525
526  DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
527  NewSU = Clone(SU);
528
529  // New SUnit has the exact same predecessors.
530  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
531       I != E; ++I)
532    if (!I->isSpecial) {
533      NewSU->addPred(I->Dep, I->isCtrl, false, I->Reg, I->Cost);
534      NewSU->Depth = std::max(NewSU->Depth, I->Dep->Depth+1);
535    }
536
537  // Only copy scheduled successors. Cut them from old node's successor
538  // list and move them over.
539  SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
540  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
541       I != E; ++I) {
542    if (I->isSpecial)
543      continue;
544    if (I->Dep->isScheduled) {
545      NewSU->Height = std::max(NewSU->Height, I->Dep->Height+1);
546      I->Dep->addPred(NewSU, I->isCtrl, false, I->Reg, I->Cost);
547      DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
548    }
549  }
550  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
551    SUnit *Succ = DelDeps[i].first;
552    bool isCtrl = DelDeps[i].second;
553    Succ->removePred(SU, isCtrl, false);
554  }
555
556  AvailableQueue->updateNode(SU);
557  AvailableQueue->addNode(NewSU);
558
559  ++NumDups;
560  return NewSU;
561}
562
563/// InsertCCCopiesAndMoveSuccs - Insert expensive cross register class copies
564/// and move all scheduled successors of the given SUnit to the last copy.
565void ScheduleDAGRRList::InsertCCCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
566                                              const TargetRegisterClass *DestRC,
567                                              const TargetRegisterClass *SrcRC,
568                                               SmallVector<SUnit*, 2> &Copies) {
569  SUnit *CopyFromSU = NewSUnit(NULL);
570  CopyFromSU->CopySrcRC = SrcRC;
571  CopyFromSU->CopyDstRC = DestRC;
572  CopyFromSU->Depth = SU->Depth;
573  CopyFromSU->Height = SU->Height;
574
575  SUnit *CopyToSU = NewSUnit(NULL);
576  CopyToSU->CopySrcRC = DestRC;
577  CopyToSU->CopyDstRC = SrcRC;
578
579  // Only copy scheduled successors. Cut them from old node's successor
580  // list and move them over.
581  SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
582  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
583       I != E; ++I) {
584    if (I->isSpecial)
585      continue;
586    if (I->Dep->isScheduled) {
587      CopyToSU->Height = std::max(CopyToSU->Height, I->Dep->Height+1);
588      I->Dep->addPred(CopyToSU, I->isCtrl, false, I->Reg, I->Cost);
589      DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
590    }
591  }
592  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
593    SUnit *Succ = DelDeps[i].first;
594    bool isCtrl = DelDeps[i].second;
595    Succ->removePred(SU, isCtrl, false);
596  }
597
598  CopyFromSU->addPred(SU, false, false, Reg, -1);
599  CopyToSU->addPred(CopyFromSU, false, false, Reg, 1);
600
601  AvailableQueue->updateNode(SU);
602  AvailableQueue->addNode(CopyFromSU);
603  AvailableQueue->addNode(CopyToSU);
604  Copies.push_back(CopyFromSU);
605  Copies.push_back(CopyToSU);
606
607  ++NumCCCopies;
608}
609
610/// getPhysicalRegisterVT - Returns the ValueType of the physical register
611/// definition of the specified node.
612/// FIXME: Move to SelectionDAG?
613static MVT::ValueType getPhysicalRegisterVT(SDNode *N, unsigned Reg,
614                                            const TargetInstrInfo *TII) {
615  const TargetInstrDescriptor &TID = TII->get(N->getTargetOpcode());
616  assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
617  unsigned NumRes = TID.numDefs;
618  for (const unsigned *ImpDef = TID.ImplicitDefs; *ImpDef; ++ImpDef) {
619    if (Reg == *ImpDef)
620      break;
621    ++NumRes;
622  }
623  return N->getValueType(NumRes);
624}
625
626/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
627/// scheduling of the given node to satisfy live physical register dependencies.
628/// If the specific node is the last one that's available to schedule, do
629/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
630bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
631                                                 SmallVector<unsigned, 4> &LRegs){
632  if (LiveRegs.empty())
633    return false;
634
635  SmallSet<unsigned, 4> RegAdded;
636  // If this node would clobber any "live" register, then it's not ready.
637  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
638       I != E; ++I) {
639    if (I->Cost < 0)  {
640      unsigned Reg = I->Reg;
641      if (LiveRegs.count(Reg) && LiveRegDefs[Reg] != I->Dep) {
642        if (RegAdded.insert(Reg))
643          LRegs.push_back(Reg);
644      }
645      for (const unsigned *Alias = MRI->getAliasSet(Reg);
646           *Alias; ++Alias)
647        if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != I->Dep) {
648          if (RegAdded.insert(*Alias))
649            LRegs.push_back(*Alias);
650        }
651    }
652  }
653
654  for (unsigned i = 0, e = SU->FlaggedNodes.size()+1; i != e; ++i) {
655    SDNode *Node = (i == 0) ? SU->Node : SU->FlaggedNodes[i-1];
656    if (!Node || !Node->isTargetOpcode())
657      continue;
658    const TargetInstrDescriptor &TID = TII->get(Node->getTargetOpcode());
659    if (!TID.ImplicitDefs)
660      continue;
661    for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
662      if (LiveRegs.count(*Reg) && LiveRegDefs[*Reg] != SU) {
663        if (RegAdded.insert(*Reg))
664          LRegs.push_back(*Reg);
665      }
666      for (const unsigned *Alias = MRI->getAliasSet(*Reg);
667           *Alias; ++Alias)
668        if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != SU) {
669          if (RegAdded.insert(*Alias))
670            LRegs.push_back(*Alias);
671        }
672    }
673  }
674  return !LRegs.empty();
675}
676
677
678/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
679/// schedulers.
680void ScheduleDAGRRList::ListScheduleBottomUp() {
681  unsigned CurCycle = 0;
682  // Add root to Available queue.
683  SUnit *RootSU = SUnitMap[DAG.getRoot().Val].front();
684  RootSU->isAvailable = true;
685  AvailableQueue->push(RootSU);
686
687  // While Available queue is not empty, grab the node with the highest
688  // priority. If it is not ready put it back.  Schedule the node.
689  SmallVector<SUnit*, 4> NotReady;
690  while (!AvailableQueue->empty()) {
691    bool Delayed = false;
692    DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
693    SUnit *CurSU = AvailableQueue->pop();
694    while (CurSU) {
695      if (CurSU->CycleBound <= CurCycle) {
696        SmallVector<unsigned, 4> LRegs;
697        if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
698          break;
699        Delayed = true;
700        LRegsMap.insert(std::make_pair(CurSU, LRegs));
701      }
702
703      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
704      NotReady.push_back(CurSU);
705      CurSU = AvailableQueue->pop();
706    }
707
708    // All candidates are delayed due to live physical reg dependencies.
709    // Try backtracking, code duplication, or inserting cross class copies
710    // to resolve it.
711    if (Delayed && !CurSU) {
712      for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
713        SUnit *TrySU = NotReady[i];
714        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
715
716        // Try unscheduling up to the point where it's safe to schedule
717        // this node.
718        unsigned LiveCycle = CurCycle;
719        for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
720          unsigned Reg = LRegs[j];
721          unsigned LCycle = LiveRegCycles[Reg];
722          LiveCycle = std::min(LiveCycle, LCycle);
723        }
724        SUnit *OldSU = Sequence[LiveCycle];
725        if (!WillCreateCycle(TrySU, OldSU))  {
726          BacktrackBottomUp(TrySU, LiveCycle, CurCycle);
727          // Force the current node to be scheduled before the node that
728          // requires the physical reg dep.
729          if (OldSU->isAvailable) {
730            OldSU->isAvailable = false;
731            AvailableQueue->remove(OldSU);
732          }
733          TrySU->addPred(OldSU, true, true);
734          // If one or more successors has been unscheduled, then the current
735          // node is no longer avaialable. Schedule a successor that's now
736          // available instead.
737          if (!TrySU->isAvailable)
738            CurSU = AvailableQueue->pop();
739          else {
740            CurSU = TrySU;
741            TrySU->isPending = false;
742            NotReady.erase(NotReady.begin()+i);
743          }
744          break;
745        }
746      }
747
748      if (!CurSU) {
749        // Can't backtrace. Try duplicating the nodes that produces these
750        // "expensive to copy" values to break the dependency. In case even
751        // that doesn't work, insert cross class copies.
752        SUnit *TrySU = NotReady[0];
753        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
754        assert(LRegs.size() == 1 && "Can't handle this yet!");
755        unsigned Reg = LRegs[0];
756        SUnit *LRDef = LiveRegDefs[Reg];
757        SUnit *NewDef = CopyAndMoveSuccessors(LRDef);
758        if (!NewDef) {
759          // Issue expensive cross register class copies.
760          MVT::ValueType VT = getPhysicalRegisterVT(LRDef->Node, Reg, TII);
761          const TargetRegisterClass *RC =
762            MRI->getPhysicalRegisterRegClass(VT, Reg);
763          const TargetRegisterClass *DestRC = MRI->getCrossCopyRegClass(RC);
764          if (!DestRC) {
765            assert(false && "Don't know how to copy this physical register!");
766            abort();
767          }
768          SmallVector<SUnit*, 2> Copies;
769          InsertCCCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
770          DOUT << "Adding an edge from SU # " << TrySU->NodeNum
771               << " to SU #" << Copies.front()->NodeNum << "\n";
772          TrySU->addPred(Copies.front(), true, true);
773          NewDef = Copies.back();
774        }
775
776        DOUT << "Adding an edge from SU # " << NewDef->NodeNum
777             << " to SU #" << TrySU->NodeNum << "\n";
778        LiveRegDefs[Reg] = NewDef;
779        NewDef->addPred(TrySU, true, true);
780        TrySU->isAvailable = false;
781        CurSU = NewDef;
782      }
783
784      if (!CurSU) {
785        assert(false && "Unable to resolve live physical register dependencies!");
786        abort();
787      }
788    }
789
790    // Add the nodes that aren't ready back onto the available list.
791    for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
792      NotReady[i]->isPending = false;
793      // May no longer be available due to backtracking.
794      if (NotReady[i]->isAvailable)
795        AvailableQueue->push(NotReady[i]);
796    }
797    NotReady.clear();
798
799    if (!CurSU)
800      Sequence.push_back(0);
801    else {
802      ScheduleNodeBottomUp(CurSU, CurCycle);
803      Sequence.push_back(CurSU);
804    }
805    ++CurCycle;
806  }
807
808  // Add entry node last
809  if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
810    SUnit *Entry = SUnitMap[DAG.getEntryNode().Val].front();
811    Sequence.push_back(Entry);
812  }
813
814  // Reverse the order if it is bottom up.
815  std::reverse(Sequence.begin(), Sequence.end());
816
817
818#ifndef NDEBUG
819  // Verify that all SUnits were scheduled.
820  bool AnyNotSched = false;
821  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
822    if (SUnits[i].NumSuccsLeft != 0) {
823      if (!AnyNotSched)
824        cerr << "*** List scheduling failed! ***\n";
825      SUnits[i].dump(&DAG);
826      cerr << "has not been scheduled!\n";
827      AnyNotSched = true;
828    }
829  }
830  assert(!AnyNotSched);
831#endif
832}
833
834//===----------------------------------------------------------------------===//
835//  Top-Down Scheduling
836//===----------------------------------------------------------------------===//
837
838/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
839/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
840void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain,
841                                    unsigned CurCycle) {
842  // FIXME: the distance between two nodes is not always == the predecessor's
843  // latency. For example, the reader can very well read the register written
844  // by the predecessor later than the issue cycle. It also depends on the
845  // interrupt model (drain vs. freeze).
846  SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
847
848  --SuccSU->NumPredsLeft;
849
850#ifndef NDEBUG
851  if (SuccSU->NumPredsLeft < 0) {
852    cerr << "*** List scheduling failed! ***\n";
853    SuccSU->dump(&DAG);
854    cerr << " has been released too many times!\n";
855    assert(0);
856  }
857#endif
858
859  if (SuccSU->NumPredsLeft == 0) {
860    SuccSU->isAvailable = true;
861    AvailableQueue->push(SuccSU);
862  }
863}
864
865
866/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
867/// count of its successors. If a successor pending count is zero, add it to
868/// the Available queue.
869void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
870  DOUT << "*** Scheduling [" << CurCycle << "]: ";
871  DEBUG(SU->dump(&DAG));
872  SU->Cycle = CurCycle;
873
874  AvailableQueue->ScheduledNode(SU);
875
876  // Top down: release successors
877  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
878       I != E; ++I)
879    ReleaseSucc(I->Dep, I->isCtrl, CurCycle);
880  SU->isScheduled = true;
881}
882
883/// ListScheduleTopDown - The main loop of list scheduling for top-down
884/// schedulers.
885void ScheduleDAGRRList::ListScheduleTopDown() {
886  unsigned CurCycle = 0;
887  SUnit *Entry = SUnitMap[DAG.getEntryNode().Val].front();
888
889  // All leaves to Available queue.
890  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
891    // It is available if it has no predecessors.
892    if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
893      AvailableQueue->push(&SUnits[i]);
894      SUnits[i].isAvailable = true;
895    }
896  }
897
898  // Emit the entry node first.
899  ScheduleNodeTopDown(Entry, CurCycle);
900  Sequence.push_back(Entry);
901  ++CurCycle;
902
903  // While Available queue is not empty, grab the node with the highest
904  // priority. If it is not ready put it back.  Schedule the node.
905  std::vector<SUnit*> NotReady;
906  while (!AvailableQueue->empty()) {
907    SUnit *CurSU = AvailableQueue->pop();
908    while (CurSU && CurSU->CycleBound > CurCycle) {
909      NotReady.push_back(CurSU);
910      CurSU = AvailableQueue->pop();
911    }
912
913    // Add the nodes that aren't ready back onto the available list.
914    AvailableQueue->push_all(NotReady);
915    NotReady.clear();
916
917    if (!CurSU)
918      Sequence.push_back(0);
919    else {
920      ScheduleNodeTopDown(CurSU, CurCycle);
921      Sequence.push_back(CurSU);
922    }
923    CurCycle++;
924  }
925
926
927#ifndef NDEBUG
928  // Verify that all SUnits were scheduled.
929  bool AnyNotSched = false;
930  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
931    if (!SUnits[i].isScheduled) {
932      if (!AnyNotSched)
933        cerr << "*** List scheduling failed! ***\n";
934      SUnits[i].dump(&DAG);
935      cerr << "has not been scheduled!\n";
936      AnyNotSched = true;
937    }
938  }
939  assert(!AnyNotSched);
940#endif
941}
942
943
944
945//===----------------------------------------------------------------------===//
946//                RegReductionPriorityQueue Implementation
947//===----------------------------------------------------------------------===//
948//
949// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
950// to reduce register pressure.
951//
952namespace {
953  template<class SF>
954  class RegReductionPriorityQueue;
955
956  /// Sorting functions for the Available queue.
957  struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
958    RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
959    bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
960    bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
961
962    bool operator()(const SUnit* left, const SUnit* right) const;
963  };
964
965  struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
966    RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
967    td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
968    td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
969
970    bool operator()(const SUnit* left, const SUnit* right) const;
971  };
972}  // end anonymous namespace
973
974static inline bool isCopyFromLiveIn(const SUnit *SU) {
975  SDNode *N = SU->Node;
976  return N && N->getOpcode() == ISD::CopyFromReg &&
977    N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
978}
979
980namespace {
981  template<class SF>
982  class VISIBILITY_HIDDEN RegReductionPriorityQueue
983   : public SchedulingPriorityQueue {
984    std::priority_queue<SUnit*, std::vector<SUnit*>, SF> Queue;
985
986  public:
987    RegReductionPriorityQueue() :
988    Queue(SF(this)) {}
989
990    virtual void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
991                           std::vector<SUnit> &sunits) {}
992
993    virtual void addNode(const SUnit *SU) {}
994
995    virtual void updateNode(const SUnit *SU) {}
996
997    virtual void releaseState() {}
998
999    virtual unsigned getNodePriority(const SUnit *SU) const {
1000      return 0;
1001    }
1002
1003    unsigned size() const { return Queue.size(); }
1004
1005    bool empty() const { return Queue.empty(); }
1006
1007    void push(SUnit *U) {
1008      Queue.push(U);
1009    }
1010    void push_all(const std::vector<SUnit *> &Nodes) {
1011      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
1012        Queue.push(Nodes[i]);
1013    }
1014
1015    SUnit *pop() {
1016      if (empty()) return NULL;
1017      SUnit *V = Queue.top();
1018      Queue.pop();
1019      return V;
1020    }
1021
1022    /// remove - This is a really inefficient way to remove a node from a
1023    /// priority queue.  We should roll our own heap to make this better or
1024    /// something.
1025    void remove(SUnit *SU) {
1026      std::vector<SUnit*> Temp;
1027
1028      assert(!Queue.empty() && "Not in queue!");
1029      while (Queue.top() != SU) {
1030        Temp.push_back(Queue.top());
1031        Queue.pop();
1032        assert(!Queue.empty() && "Not in queue!");
1033      }
1034
1035      // Remove the node from the PQ.
1036      Queue.pop();
1037
1038      // Add all the other nodes back.
1039      for (unsigned i = 0, e = Temp.size(); i != e; ++i)
1040        Queue.push(Temp[i]);
1041    }
1042  };
1043
1044  template<class SF>
1045  class VISIBILITY_HIDDEN BURegReductionPriorityQueue
1046   : public RegReductionPriorityQueue<SF> {
1047    // SUnitMap SDNode to SUnit mapping (n -> n).
1048    DenseMap<SDNode*, std::vector<SUnit*> > *SUnitMap;
1049
1050    // SUnits - The SUnits for the current graph.
1051    const std::vector<SUnit> *SUnits;
1052
1053    // SethiUllmanNumbers - The SethiUllman number for each node.
1054    std::vector<unsigned> SethiUllmanNumbers;
1055
1056    const TargetInstrInfo *TII;
1057  public:
1058    explicit BURegReductionPriorityQueue(const TargetInstrInfo *tii)
1059      : TII(tii) {}
1060
1061    void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
1062                   std::vector<SUnit> &sunits) {
1063      SUnitMap = &sumap;
1064      SUnits = &sunits;
1065      // Add pseudo dependency edges for two-address nodes.
1066      AddPseudoTwoAddrDeps();
1067      // Calculate node priorities.
1068      CalculateSethiUllmanNumbers();
1069    }
1070
1071    void addNode(const SUnit *SU) {
1072      SethiUllmanNumbers.resize(SUnits->size(), 0);
1073      CalcNodeSethiUllmanNumber(SU);
1074    }
1075
1076    void updateNode(const SUnit *SU) {
1077      SethiUllmanNumbers[SU->NodeNum] = 0;
1078      CalcNodeSethiUllmanNumber(SU);
1079    }
1080
1081    void releaseState() {
1082      SUnits = 0;
1083      SethiUllmanNumbers.clear();
1084    }
1085
1086    unsigned getNodePriority(const SUnit *SU) const {
1087      assert(SU->NodeNum < SethiUllmanNumbers.size());
1088      unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
1089      if (Opc == ISD::CopyFromReg && !isCopyFromLiveIn(SU))
1090        // CopyFromReg should be close to its def because it restricts
1091        // allocation choices. But if it is a livein then perhaps we want it
1092        // closer to its uses so it can be coalesced.
1093        return 0xffff;
1094      else if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1095        // CopyToReg should be close to its uses to facilitate coalescing and
1096        // avoid spilling.
1097        return 0;
1098      else if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
1099               Opc == TargetInstrInfo::INSERT_SUBREG)
1100        // EXTRACT_SUBREG / INSERT_SUBREG should be close to its use to
1101        // facilitate coalescing.
1102        return 0;
1103      else if (SU->NumSuccs == 0)
1104        // If SU does not have a use, i.e. it doesn't produce a value that would
1105        // be consumed (e.g. store), then it terminates a chain of computation.
1106        // Give it a large SethiUllman number so it will be scheduled right
1107        // before its predecessors that it doesn't lengthen their live ranges.
1108        return 0xffff;
1109      else if (SU->NumPreds == 0)
1110        // If SU does not have a def, schedule it close to its uses because it
1111        // does not lengthen any live ranges.
1112        return 0;
1113      else
1114        return SethiUllmanNumbers[SU->NodeNum];
1115    }
1116
1117  private:
1118    bool canClobber(SUnit *SU, SUnit *Op);
1119    void AddPseudoTwoAddrDeps();
1120    void CalculateSethiUllmanNumbers();
1121    unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
1122  };
1123
1124
1125  template<class SF>
1126  class VISIBILITY_HIDDEN TDRegReductionPriorityQueue
1127   : public RegReductionPriorityQueue<SF> {
1128    // SUnitMap SDNode to SUnit mapping (n -> n).
1129    DenseMap<SDNode*, std::vector<SUnit*> > *SUnitMap;
1130
1131    // SUnits - The SUnits for the current graph.
1132    const std::vector<SUnit> *SUnits;
1133
1134    // SethiUllmanNumbers - The SethiUllman number for each node.
1135    std::vector<unsigned> SethiUllmanNumbers;
1136
1137  public:
1138    TDRegReductionPriorityQueue() {}
1139
1140    void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
1141                   std::vector<SUnit> &sunits) {
1142      SUnitMap = &sumap;
1143      SUnits = &sunits;
1144      // Calculate node priorities.
1145      CalculateSethiUllmanNumbers();
1146    }
1147
1148    void addNode(const SUnit *SU) {
1149      SethiUllmanNumbers.resize(SUnits->size(), 0);
1150      CalcNodeSethiUllmanNumber(SU);
1151    }
1152
1153    void updateNode(const SUnit *SU) {
1154      SethiUllmanNumbers[SU->NodeNum] = 0;
1155      CalcNodeSethiUllmanNumber(SU);
1156    }
1157
1158    void releaseState() {
1159      SUnits = 0;
1160      SethiUllmanNumbers.clear();
1161    }
1162
1163    unsigned getNodePriority(const SUnit *SU) const {
1164      assert(SU->NodeNum < SethiUllmanNumbers.size());
1165      return SethiUllmanNumbers[SU->NodeNum];
1166    }
1167
1168  private:
1169    void CalculateSethiUllmanNumbers();
1170    unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
1171  };
1172}
1173
1174/// closestSucc - Returns the scheduled cycle of the successor which is
1175/// closet to the current cycle.
1176static unsigned closestSucc(const SUnit *SU) {
1177  unsigned MaxCycle = 0;
1178  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1179       I != E; ++I) {
1180    unsigned Cycle = I->Dep->Cycle;
1181    // If there are bunch of CopyToRegs stacked up, they should be considered
1182    // to be at the same position.
1183    if (I->Dep->Node && I->Dep->Node->getOpcode() == ISD::CopyToReg)
1184      Cycle = closestSucc(I->Dep)+1;
1185    if (Cycle > MaxCycle)
1186      MaxCycle = Cycle;
1187  }
1188  return MaxCycle;
1189}
1190
1191// Bottom up
1192bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1193  // There used to be a special tie breaker here that looked for
1194  // two-address instructions and preferred the instruction with a
1195  // def&use operand.  The special case triggered diagnostics when
1196  // _GLIBCXX_DEBUG was enabled because it broke the strict weak
1197  // ordering that priority_queue requires. It didn't help much anyway
1198  // because AddPseudoTwoAddrDeps already covers many of the cases
1199  // where it would have applied.  In addition, it's counter-intuitive
1200  // that a tie breaker would be the first thing attempted.  There's a
1201  // "real" tie breaker below that is the operation of last resort.
1202  // The fact that the "special tie breaker" would trigger when there
1203  // wasn't otherwise a tie is what broke the strict weak ordering
1204  // constraint.
1205
1206  unsigned LPriority = SPQ->getNodePriority(left);
1207  unsigned RPriority = SPQ->getNodePriority(right);
1208  if (LPriority > RPriority)
1209    return true;
1210  else if (LPriority == RPriority) {
1211    // Try schedule def + use closer when Sethi-Ullman numbers are the same.
1212    // e.g.
1213    // t1 = op t2, c1
1214    // t3 = op t4, c2
1215    //
1216    // and the following instructions are both ready.
1217    // t2 = op c3
1218    // t4 = op c4
1219    //
1220    // Then schedule t2 = op first.
1221    // i.e.
1222    // t4 = op c4
1223    // t2 = op c3
1224    // t1 = op t2, c1
1225    // t3 = op t4, c2
1226    //
1227    // This creates more short live intervals.
1228    unsigned LDist = closestSucc(left);
1229    unsigned RDist = closestSucc(right);
1230    if (LDist < RDist)
1231      return true;
1232    else if (LDist == RDist) {
1233      if (left->Height > right->Height)
1234        return true;
1235      else if (left->Height == right->Height)
1236        if (left->Depth < right->Depth)
1237          return true;
1238        else if (left->Depth == right->Depth)
1239          if (left->CycleBound > right->CycleBound)
1240            return true;
1241    }
1242  }
1243  return false;
1244}
1245
1246template<class SF>
1247bool BURegReductionPriorityQueue<SF>::canClobber(SUnit *SU, SUnit *Op) {
1248  if (SU->isTwoAddress) {
1249    unsigned Opc = SU->Node->getTargetOpcode();
1250    unsigned NumRes = TII->getNumDefs(Opc);
1251    unsigned NumOps = ScheduleDAG::CountOperands(SU->Node);
1252    for (unsigned i = 0; i != NumOps; ++i) {
1253      if (TII->getOperandConstraint(Opc, i+NumRes, TOI::TIED_TO) != -1) {
1254        SDNode *DU = SU->Node->getOperand(i).Val;
1255        if (Op == (*SUnitMap)[DU][SU->InstanceNo])
1256          return true;
1257      }
1258    }
1259  }
1260  return false;
1261}
1262
1263
1264/// hasCopyToRegUse - Return true if SU has a value successor that is a
1265/// CopyToReg node.
1266static bool hasCopyToRegUse(SUnit *SU) {
1267  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1268       I != E; ++I) {
1269    if (I->isCtrl) continue;
1270    SUnit *SuccSU = I->Dep;
1271    if (SuccSU->Node && SuccSU->Node->getOpcode() == ISD::CopyToReg)
1272      return true;
1273  }
1274  return false;
1275}
1276
1277/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
1278/// it as a def&use operand. Add a pseudo control edge from it to the other
1279/// node (if it won't create a cycle) so the two-address one will be scheduled
1280/// first (lower in the schedule). If both nodes are two-address, favor the
1281/// one that has a CopyToReg use (more likely to be a loop induction update).
1282/// If both are two-address, but one is commutable while the other is not
1283/// commutable, favor the one that's not commutable.
1284template<class SF>
1285void BURegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
1286  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
1287    SUnit *SU = (SUnit *)&((*SUnits)[i]);
1288    if (!SU->isTwoAddress)
1289      continue;
1290
1291    SDNode *Node = SU->Node;
1292    if (!Node || !Node->isTargetOpcode() || SU->FlaggedNodes.size() > 0)
1293      continue;
1294
1295    unsigned Opc = Node->getTargetOpcode();
1296    unsigned NumRes = TII->getNumDefs(Opc);
1297    unsigned NumOps = ScheduleDAG::CountOperands(Node);
1298    for (unsigned j = 0; j != NumOps; ++j) {
1299      if (TII->getOperandConstraint(Opc, j+NumRes, TOI::TIED_TO) != -1) {
1300        SDNode *DU = SU->Node->getOperand(j).Val;
1301        SUnit *DUSU = (*SUnitMap)[DU][SU->InstanceNo];
1302        if (!DUSU) continue;
1303        for (SUnit::succ_iterator I = DUSU->Succs.begin(),E = DUSU->Succs.end();
1304             I != E; ++I) {
1305          if (I->isCtrl) continue;
1306          SUnit *SuccSU = I->Dep;
1307          // Don't constrain nodes with implicit defs. It can create cycles
1308          // plus it may increase register pressures.
1309          if (SuccSU == SU || SuccSU->hasPhysRegDefs)
1310            continue;
1311          // Be conservative. Ignore if nodes aren't at roughly the same
1312          // depth and height.
1313          if (SuccSU->Height < SU->Height && (SU->Height - SuccSU->Height) > 1)
1314            continue;
1315          if (SuccSU->Depth > SU->Depth && (SuccSU->Depth - SU->Depth) > 1)
1316            continue;
1317          if (!SuccSU->Node || !SuccSU->Node->isTargetOpcode())
1318            continue;
1319          // Don't constraint extract_subreg / insert_subreg these may be
1320          // coalesced away. We don't them close to their uses.
1321          unsigned SuccOpc = SuccSU->Node->getTargetOpcode();
1322          if (SuccOpc == TargetInstrInfo::EXTRACT_SUBREG ||
1323              SuccOpc == TargetInstrInfo::INSERT_SUBREG)
1324            continue;
1325          if ((!canClobber(SuccSU, DUSU) ||
1326               (hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
1327               (!SU->isCommutable && SuccSU->isCommutable)) &&
1328              !isReachable(SuccSU, SU)) {
1329            DOUT << "Adding an edge from SU # " << SU->NodeNum
1330                 << " to SU #" << SuccSU->NodeNum << "\n";
1331            SU->addPred(SuccSU, true, true);
1332          }
1333        }
1334      }
1335    }
1336  }
1337}
1338
1339/// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number.
1340/// Smaller number is the higher priority.
1341template<class SF>
1342unsigned BURegReductionPriorityQueue<SF>::
1343CalcNodeSethiUllmanNumber(const SUnit *SU) {
1344  unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
1345  if (SethiUllmanNumber != 0)
1346    return SethiUllmanNumber;
1347
1348  unsigned Extra = 0;
1349  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1350       I != E; ++I) {
1351    if (I->isCtrl) continue;  // ignore chain preds
1352    SUnit *PredSU = I->Dep;
1353    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
1354    if (PredSethiUllman > SethiUllmanNumber) {
1355      SethiUllmanNumber = PredSethiUllman;
1356      Extra = 0;
1357    } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
1358      ++Extra;
1359  }
1360
1361  SethiUllmanNumber += Extra;
1362
1363  if (SethiUllmanNumber == 0)
1364    SethiUllmanNumber = 1;
1365
1366  return SethiUllmanNumber;
1367}
1368
1369/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1370/// scheduling units.
1371template<class SF>
1372void BURegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
1373  SethiUllmanNumbers.assign(SUnits->size(), 0);
1374
1375  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1376    CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
1377}
1378
1379static unsigned SumOfUnscheduledPredsOfSuccs(const SUnit *SU) {
1380  unsigned Sum = 0;
1381  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1382       I != E; ++I) {
1383    SUnit *SuccSU = I->Dep;
1384    for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
1385         EE = SuccSU->Preds.end(); II != EE; ++II) {
1386      SUnit *PredSU = II->Dep;
1387      if (!PredSU->isScheduled)
1388        ++Sum;
1389    }
1390  }
1391
1392  return Sum;
1393}
1394
1395
1396// Top down
1397bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1398  unsigned LPriority = SPQ->getNodePriority(left);
1399  unsigned RPriority = SPQ->getNodePriority(right);
1400  bool LIsTarget = left->Node && left->Node->isTargetOpcode();
1401  bool RIsTarget = right->Node && right->Node->isTargetOpcode();
1402  bool LIsFloater = LIsTarget && left->NumPreds == 0;
1403  bool RIsFloater = RIsTarget && right->NumPreds == 0;
1404  unsigned LBonus = (SumOfUnscheduledPredsOfSuccs(left) == 1) ? 2 : 0;
1405  unsigned RBonus = (SumOfUnscheduledPredsOfSuccs(right) == 1) ? 2 : 0;
1406
1407  if (left->NumSuccs == 0 && right->NumSuccs != 0)
1408    return false;
1409  else if (left->NumSuccs != 0 && right->NumSuccs == 0)
1410    return true;
1411
1412  // Special tie breaker: if two nodes share a operand, the one that use it
1413  // as a def&use operand is preferred.
1414  if (LIsTarget && RIsTarget) {
1415    if (left->isTwoAddress && !right->isTwoAddress) {
1416      SDNode *DUNode = left->Node->getOperand(0).Val;
1417      if (DUNode->isOperand(right->Node))
1418        RBonus += 2;
1419    }
1420    if (!left->isTwoAddress && right->isTwoAddress) {
1421      SDNode *DUNode = right->Node->getOperand(0).Val;
1422      if (DUNode->isOperand(left->Node))
1423        LBonus += 2;
1424    }
1425  }
1426  if (LIsFloater)
1427    LBonus -= 2;
1428  if (RIsFloater)
1429    RBonus -= 2;
1430  if (left->NumSuccs == 1)
1431    LBonus += 2;
1432  if (right->NumSuccs == 1)
1433    RBonus += 2;
1434
1435  if (LPriority+LBonus < RPriority+RBonus)
1436    return true;
1437  else if (LPriority == RPriority)
1438    if (left->Depth < right->Depth)
1439      return true;
1440    else if (left->Depth == right->Depth)
1441      if (left->NumSuccsLeft > right->NumSuccsLeft)
1442        return true;
1443      else if (left->NumSuccsLeft == right->NumSuccsLeft)
1444        if (left->CycleBound > right->CycleBound)
1445          return true;
1446  return false;
1447}
1448
1449/// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number.
1450/// Smaller number is the higher priority.
1451template<class SF>
1452unsigned TDRegReductionPriorityQueue<SF>::
1453CalcNodeSethiUllmanNumber(const SUnit *SU) {
1454  unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
1455  if (SethiUllmanNumber != 0)
1456    return SethiUllmanNumber;
1457
1458  unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
1459  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1460    SethiUllmanNumber = 0xffff;
1461  else if (SU->NumSuccsLeft == 0)
1462    // If SU does not have a use, i.e. it doesn't produce a value that would
1463    // be consumed (e.g. store), then it terminates a chain of computation.
1464    // Give it a small SethiUllman number so it will be scheduled right before
1465    // its predecessors that it doesn't lengthen their live ranges.
1466    SethiUllmanNumber = 0;
1467  else if (SU->NumPredsLeft == 0 &&
1468           (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
1469    SethiUllmanNumber = 0xffff;
1470  else {
1471    int Extra = 0;
1472    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1473         I != E; ++I) {
1474      if (I->isCtrl) continue;  // ignore chain preds
1475      SUnit *PredSU = I->Dep;
1476      unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
1477      if (PredSethiUllman > SethiUllmanNumber) {
1478        SethiUllmanNumber = PredSethiUllman;
1479        Extra = 0;
1480      } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
1481        ++Extra;
1482    }
1483
1484    SethiUllmanNumber += Extra;
1485  }
1486
1487  return SethiUllmanNumber;
1488}
1489
1490/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1491/// scheduling units.
1492template<class SF>
1493void TDRegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
1494  SethiUllmanNumbers.assign(SUnits->size(), 0);
1495
1496  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1497    CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
1498}
1499
1500//===----------------------------------------------------------------------===//
1501//                         Public Constructor Functions
1502//===----------------------------------------------------------------------===//
1503
1504llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
1505                                                    SelectionDAG *DAG,
1506                                                    MachineBasicBlock *BB) {
1507  const TargetInstrInfo *TII = DAG->getTarget().getInstrInfo();
1508  return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), true,
1509                           new BURegReductionPriorityQueue<bu_ls_rr_sort>(TII));
1510}
1511
1512llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
1513                                                    SelectionDAG *DAG,
1514                                                    MachineBasicBlock *BB) {
1515  return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), false,
1516                              new TDRegReductionPriorityQueue<td_ls_rr_sort>());
1517}
1518
1519