ScheduleDAGRRList.cpp revision 4c727204271067f3dbf50bd23098b2df8e1cc47a
1//===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms.  The basic approach uses a priority
12// queue of available nodes to schedule.  One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "pre-RA-sched"
19#include "ScheduleDAGSDNodes.h"
20#include "llvm/InlineAsm.h"
21#include "llvm/CodeGen/SchedulerRegistry.h"
22#include "llvm/CodeGen/SelectionDAGISel.h"
23#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
24#include "llvm/Target/TargetRegisterInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include <climits>
36using namespace llvm;
37
38STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
39STATISTIC(NumUnfolds,    "Number of nodes unfolded");
40STATISTIC(NumDups,       "Number of duplicated nodes");
41STATISTIC(NumPRCopies,   "Number of physical register copies");
42
43static RegisterScheduler
44  burrListDAGScheduler("list-burr",
45                       "Bottom-up register reduction list scheduling",
46                       createBURRListDAGScheduler);
47static RegisterScheduler
48  sourceListDAGScheduler("source",
49                         "Similar to list-burr but schedules in source "
50                         "order when possible",
51                         createSourceListDAGScheduler);
52
53static RegisterScheduler
54  hybridListDAGScheduler("list-hybrid",
55                         "Bottom-up register pressure aware list scheduling "
56                         "which tries to balance latency and register pressure",
57                         createHybridListDAGScheduler);
58
59static RegisterScheduler
60  ILPListDAGScheduler("list-ilp",
61                      "Bottom-up register pressure aware list scheduling "
62                      "which tries to balance ILP and register pressure",
63                      createILPListDAGScheduler);
64
65static cl::opt<bool> DisableSchedCycles(
66  "disable-sched-cycles", cl::Hidden, cl::init(false),
67  cl::desc("Disable cycle-level precision during preRA scheduling"));
68
69// Temporary sched=list-ilp flags until the heuristics are robust.
70// Some options are also available under sched=list-hybrid.
71static cl::opt<bool> DisableSchedRegPressure(
72  "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
73  cl::desc("Disable regpressure priority in sched=list-ilp"));
74static cl::opt<bool> DisableSchedLiveUses(
75  "disable-sched-live-uses", cl::Hidden, cl::init(true),
76  cl::desc("Disable live use priority in sched=list-ilp"));
77static cl::opt<bool> DisableSchedVRegCycle(
78  "disable-sched-vrcycle", cl::Hidden, cl::init(false),
79  cl::desc("Disable virtual register cycle interference checks"));
80static cl::opt<bool> DisableSchedPhysRegJoin(
81  "disable-sched-physreg-join", cl::Hidden, cl::init(false),
82  cl::desc("Disable physreg def-use affinity"));
83static cl::opt<bool> DisableSchedStalls(
84  "disable-sched-stalls", cl::Hidden, cl::init(true),
85  cl::desc("Disable no-stall priority in sched=list-ilp"));
86static cl::opt<bool> DisableSchedCriticalPath(
87  "disable-sched-critical-path", cl::Hidden, cl::init(false),
88  cl::desc("Disable critical path priority in sched=list-ilp"));
89static cl::opt<bool> DisableSchedHeight(
90  "disable-sched-height", cl::Hidden, cl::init(false),
91  cl::desc("Disable scheduled-height priority in sched=list-ilp"));
92static cl::opt<bool> Disable2AddrHack(
93  "disable-2addr-hack", cl::Hidden, cl::init(true),
94  cl::desc("Disable scheduler's two-address hack"));
95
96static cl::opt<int> MaxReorderWindow(
97  "max-sched-reorder", cl::Hidden, cl::init(6),
98  cl::desc("Number of instructions to allow ahead of the critical path "
99           "in sched=list-ilp"));
100
101static cl::opt<unsigned> AvgIPC(
102  "sched-avg-ipc", cl::Hidden, cl::init(1),
103  cl::desc("Average inst/cycle whan no target itinerary exists."));
104
105namespace {
106//===----------------------------------------------------------------------===//
107/// ScheduleDAGRRList - The actual register reduction list scheduler
108/// implementation.  This supports both top-down and bottom-up scheduling.
109///
110class ScheduleDAGRRList : public ScheduleDAGSDNodes {
111private:
112  /// NeedLatency - True if the scheduler will make use of latency information.
113  ///
114  bool NeedLatency;
115
116  /// AvailableQueue - The priority queue to use for the available SUnits.
117  SchedulingPriorityQueue *AvailableQueue;
118
119  /// PendingQueue - This contains all of the instructions whose operands have
120  /// been issued, but their results are not ready yet (due to the latency of
121  /// the operation).  Once the operands becomes available, the instruction is
122  /// added to the AvailableQueue.
123  std::vector<SUnit*> PendingQueue;
124
125  /// HazardRec - The hazard recognizer to use.
126  ScheduleHazardRecognizer *HazardRec;
127
128  /// CurCycle - The current scheduler state corresponds to this cycle.
129  unsigned CurCycle;
130
131  /// MinAvailableCycle - Cycle of the soonest available instruction.
132  unsigned MinAvailableCycle;
133
134  /// IssueCount - Count instructions issued in this cycle
135  /// Currently valid only for bottom-up scheduling.
136  unsigned IssueCount;
137
138  /// LiveRegDefs - A set of physical registers and their definition
139  /// that are "live". These nodes must be scheduled before any other nodes that
140  /// modifies the registers can be scheduled.
141  unsigned NumLiveRegs;
142  std::vector<SUnit*> LiveRegDefs;
143  std::vector<SUnit*> LiveRegGens;
144
145  /// Topo - A topological ordering for SUnits which permits fast IsReachable
146  /// and similar queries.
147  ScheduleDAGTopologicalSort Topo;
148
149  // Hack to keep track of the inverse of FindCallSeqStart without more crazy
150  // DAG crawling.
151  DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
152
153public:
154  ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
155                    SchedulingPriorityQueue *availqueue,
156                    CodeGenOpt::Level OptLevel)
157    : ScheduleDAGSDNodes(mf),
158      NeedLatency(needlatency), AvailableQueue(availqueue), CurCycle(0),
159      Topo(SUnits) {
160
161    const TargetMachine &tm = mf.getTarget();
162    if (DisableSchedCycles || !NeedLatency)
163      HazardRec = new ScheduleHazardRecognizer();
164    else
165      HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(&tm, this);
166  }
167
168  ~ScheduleDAGRRList() {
169    delete HazardRec;
170    delete AvailableQueue;
171  }
172
173  void Schedule();
174
175  ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
176
177  /// IsReachable - Checks if SU is reachable from TargetSU.
178  bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
179    return Topo.IsReachable(SU, TargetSU);
180  }
181
182  /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
183  /// create a cycle.
184  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
185    return Topo.WillCreateCycle(SU, TargetSU);
186  }
187
188  /// AddPred - adds a predecessor edge to SUnit SU.
189  /// This returns true if this is a new predecessor.
190  /// Updates the topological ordering if required.
191  void AddPred(SUnit *SU, const SDep &D) {
192    Topo.AddPred(SU, D.getSUnit());
193    SU->addPred(D);
194  }
195
196  /// RemovePred - removes a predecessor edge from SUnit SU.
197  /// This returns true if an edge was removed.
198  /// Updates the topological ordering if required.
199  void RemovePred(SUnit *SU, const SDep &D) {
200    Topo.RemovePred(SU, D.getSUnit());
201    SU->removePred(D);
202  }
203
204private:
205  bool isReady(SUnit *SU) {
206    return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
207      AvailableQueue->isReady(SU);
208  }
209
210  void ReleasePred(SUnit *SU, const SDep *PredEdge);
211  void ReleasePredecessors(SUnit *SU);
212  void ReleasePending();
213  void AdvanceToCycle(unsigned NextCycle);
214  void AdvancePastStalls(SUnit *SU);
215  void EmitNode(SUnit *SU);
216  void ScheduleNodeBottomUp(SUnit*);
217  void CapturePred(SDep *PredEdge);
218  void UnscheduleNodeBottomUp(SUnit*);
219  void RestoreHazardCheckerBottomUp();
220  void BacktrackBottomUp(SUnit*, SUnit*);
221  SUnit *CopyAndMoveSuccessors(SUnit*);
222  void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
223                                const TargetRegisterClass*,
224                                const TargetRegisterClass*,
225                                SmallVector<SUnit*, 2>&);
226  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
227
228  SUnit *PickNodeToScheduleBottomUp();
229  void ListScheduleBottomUp();
230
231  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
232  /// Updates the topological ordering if required.
233  SUnit *CreateNewSUnit(SDNode *N) {
234    unsigned NumSUnits = SUnits.size();
235    SUnit *NewNode = NewSUnit(N);
236    // Update the topological ordering.
237    if (NewNode->NodeNum >= NumSUnits)
238      Topo.InitDAGTopologicalSorting();
239    return NewNode;
240  }
241
242  /// CreateClone - Creates a new SUnit from an existing one.
243  /// Updates the topological ordering if required.
244  SUnit *CreateClone(SUnit *N) {
245    unsigned NumSUnits = SUnits.size();
246    SUnit *NewNode = Clone(N);
247    // Update the topological ordering.
248    if (NewNode->NodeNum >= NumSUnits)
249      Topo.InitDAGTopologicalSorting();
250    return NewNode;
251  }
252
253  /// ForceUnitLatencies - Register-pressure-reducing scheduling doesn't
254  /// need actual latency information but the hybrid scheduler does.
255  bool ForceUnitLatencies() const {
256    return !NeedLatency;
257  }
258};
259}  // end anonymous namespace
260
261/// GetCostForDef - Looks up the register class and cost for a given definition.
262/// Typically this just means looking up the representative register class,
263/// but for untyped values (MVT::Untyped) it means inspecting the node's
264/// opcode to determine what register class is being generated.
265static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
266                          const TargetLowering *TLI,
267                          const TargetInstrInfo *TII,
268                          const TargetRegisterInfo *TRI,
269                          unsigned &RegClass, unsigned &Cost) {
270  EVT VT = RegDefPos.GetValue();
271
272  // Special handling for untyped values.  These values can only come from
273  // the expansion of custom DAG-to-DAG patterns.
274  if (VT == MVT::Untyped) {
275    const SDNode *Node = RegDefPos.GetNode();
276    unsigned Opcode = Node->getMachineOpcode();
277
278    if (Opcode == TargetOpcode::REG_SEQUENCE) {
279      unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
280      const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
281      RegClass = RC->getID();
282      Cost = 1;
283      return;
284    }
285
286    unsigned Idx = RegDefPos.GetIdx();
287    const MCInstrDesc Desc = TII->get(Opcode);
288    const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI);
289    RegClass = RC->getID();
290    // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
291    // better way to determine it.
292    Cost = 1;
293  } else {
294    RegClass = TLI->getRepRegClassFor(VT)->getID();
295    Cost = TLI->getRepRegClassCostFor(VT);
296  }
297}
298
299/// Schedule - Schedule the DAG using list scheduling.
300void ScheduleDAGRRList::Schedule() {
301  DEBUG(dbgs()
302        << "********** List Scheduling BB#" << BB->getNumber()
303        << " '" << BB->getName() << "' **********\n");
304
305  CurCycle = 0;
306  IssueCount = 0;
307  MinAvailableCycle = DisableSchedCycles ? 0 : UINT_MAX;
308  NumLiveRegs = 0;
309  // Allocate slots for each physical register, plus one for a special register
310  // to track the virtual resource of a calling sequence.
311  LiveRegDefs.resize(TRI->getNumRegs() + 1, NULL);
312  LiveRegGens.resize(TRI->getNumRegs() + 1, NULL);
313  CallSeqEndForStart.clear();
314
315  // Build the scheduling graph.
316  BuildSchedGraph(NULL);
317
318  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
319          SUnits[su].dumpAll(this));
320  Topo.InitDAGTopologicalSorting();
321
322  AvailableQueue->initNodes(SUnits);
323
324  HazardRec->Reset();
325
326  // Execute the actual scheduling loop.
327  ListScheduleBottomUp();
328
329  AvailableQueue->releaseState();
330}
331
332//===----------------------------------------------------------------------===//
333//  Bottom-Up Scheduling
334//===----------------------------------------------------------------------===//
335
336/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
337/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
338void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
339  SUnit *PredSU = PredEdge->getSUnit();
340
341#ifndef NDEBUG
342  if (PredSU->NumSuccsLeft == 0) {
343    dbgs() << "*** Scheduling failed! ***\n";
344    PredSU->dump(this);
345    dbgs() << " has been released too many times!\n";
346    llvm_unreachable(0);
347  }
348#endif
349  --PredSU->NumSuccsLeft;
350
351  if (!ForceUnitLatencies()) {
352    // Updating predecessor's height. This is now the cycle when the
353    // predecessor can be scheduled without causing a pipeline stall.
354    PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
355  }
356
357  // If all the node's successors are scheduled, this node is ready
358  // to be scheduled. Ignore the special EntrySU node.
359  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
360    PredSU->isAvailable = true;
361
362    unsigned Height = PredSU->getHeight();
363    if (Height < MinAvailableCycle)
364      MinAvailableCycle = Height;
365
366    if (isReady(PredSU)) {
367      AvailableQueue->push(PredSU);
368    }
369    // CapturePred and others may have left the node in the pending queue, avoid
370    // adding it twice.
371    else if (!PredSU->isPending) {
372      PredSU->isPending = true;
373      PendingQueue.push_back(PredSU);
374    }
375  }
376}
377
378/// IsChainDependent - Test if Outer is reachable from Inner through
379/// chain dependencies.
380static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
381                             unsigned NestLevel,
382                             const TargetInstrInfo *TII) {
383  SDNode *N = Outer;
384  for (;;) {
385    if (N == Inner)
386      return true;
387    // For a TokenFactor, examine each operand. There may be multiple ways
388    // to get to the CALLSEQ_BEGIN, but we need to find the path with the
389    // most nesting in order to ensure that we find the corresponding match.
390    if (N->getOpcode() == ISD::TokenFactor) {
391      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
392        if (IsChainDependent(N->getOperand(i).getNode(), Inner, NestLevel, TII))
393          return true;
394      return false;
395    }
396    // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
397    if (N->isMachineOpcode()) {
398      if (N->getMachineOpcode() ==
399          (unsigned)TII->getCallFrameDestroyOpcode()) {
400        ++NestLevel;
401      } else if (N->getMachineOpcode() ==
402                 (unsigned)TII->getCallFrameSetupOpcode()) {
403        if (NestLevel == 0)
404          return false;
405        --NestLevel;
406      }
407    }
408    // Otherwise, find the chain and continue climbing.
409    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
410      if (N->getOperand(i).getValueType() == MVT::Other) {
411        N = N->getOperand(i).getNode();
412        goto found_chain_operand;
413      }
414    return false;
415  found_chain_operand:;
416    if (N->getOpcode() == ISD::EntryToken)
417      return false;
418  }
419}
420
421/// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
422/// the corresponding (lowered) CALLSEQ_BEGIN node.
423///
424/// NestLevel and MaxNested are used in recursion to indcate the current level
425/// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
426/// level seen so far.
427///
428/// TODO: It would be better to give CALLSEQ_END an explicit operand to point
429/// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
430static SDNode *
431FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
432                 const TargetInstrInfo *TII) {
433  for (;;) {
434    // For a TokenFactor, examine each operand. There may be multiple ways
435    // to get to the CALLSEQ_BEGIN, but we need to find the path with the
436    // most nesting in order to ensure that we find the corresponding match.
437    if (N->getOpcode() == ISD::TokenFactor) {
438      SDNode *Best = 0;
439      unsigned BestMaxNest = MaxNest;
440      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
441        unsigned MyNestLevel = NestLevel;
442        unsigned MyMaxNest = MaxNest;
443        if (SDNode *New = FindCallSeqStart(N->getOperand(i).getNode(),
444                                           MyNestLevel, MyMaxNest, TII))
445          if (!Best || (MyMaxNest > BestMaxNest)) {
446            Best = New;
447            BestMaxNest = MyMaxNest;
448          }
449      }
450      assert(Best);
451      MaxNest = BestMaxNest;
452      return Best;
453    }
454    // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
455    if (N->isMachineOpcode()) {
456      if (N->getMachineOpcode() ==
457          (unsigned)TII->getCallFrameDestroyOpcode()) {
458        ++NestLevel;
459        MaxNest = std::max(MaxNest, NestLevel);
460      } else if (N->getMachineOpcode() ==
461                 (unsigned)TII->getCallFrameSetupOpcode()) {
462        assert(NestLevel != 0);
463        --NestLevel;
464        if (NestLevel == 0)
465          return N;
466      }
467    }
468    // Otherwise, find the chain and continue climbing.
469    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
470      if (N->getOperand(i).getValueType() == MVT::Other) {
471        N = N->getOperand(i).getNode();
472        goto found_chain_operand;
473      }
474    return 0;
475  found_chain_operand:;
476    if (N->getOpcode() == ISD::EntryToken)
477      return 0;
478  }
479}
480
481/// Call ReleasePred for each predecessor, then update register live def/gen.
482/// Always update LiveRegDefs for a register dependence even if the current SU
483/// also defines the register. This effectively create one large live range
484/// across a sequence of two-address node. This is important because the
485/// entire chain must be scheduled together. Example:
486///
487/// flags = (3) add
488/// flags = (2) addc flags
489/// flags = (1) addc flags
490///
491/// results in
492///
493/// LiveRegDefs[flags] = 3
494/// LiveRegGens[flags] = 1
495///
496/// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
497/// interference on flags.
498void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
499  // Bottom up: release predecessors
500  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
501       I != E; ++I) {
502    ReleasePred(SU, &*I);
503    if (I->isAssignedRegDep()) {
504      // This is a physical register dependency and it's impossible or
505      // expensive to copy the register. Make sure nothing that can
506      // clobber the register is scheduled between the predecessor and
507      // this node.
508      SUnit *RegDef = LiveRegDefs[I->getReg()]; (void)RegDef;
509      assert((!RegDef || RegDef == SU || RegDef == I->getSUnit()) &&
510             "interference on register dependence");
511      LiveRegDefs[I->getReg()] = I->getSUnit();
512      if (!LiveRegGens[I->getReg()]) {
513        ++NumLiveRegs;
514        LiveRegGens[I->getReg()] = SU;
515      }
516    }
517  }
518
519  // If we're scheduling a lowered CALLSEQ_END, find the corresponding
520  // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
521  // these nodes, to prevent other calls from being interscheduled with them.
522  unsigned CallResource = TRI->getNumRegs();
523  if (!LiveRegDefs[CallResource])
524    for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
525      if (Node->isMachineOpcode() &&
526          Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
527        unsigned NestLevel = 0;
528        unsigned MaxNest = 0;
529        SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
530
531        SUnit *Def = &SUnits[N->getNodeId()];
532        CallSeqEndForStart[Def] = SU;
533
534        ++NumLiveRegs;
535        LiveRegDefs[CallResource] = Def;
536        LiveRegGens[CallResource] = SU;
537        break;
538      }
539}
540
541/// Check to see if any of the pending instructions are ready to issue.  If
542/// so, add them to the available queue.
543void ScheduleDAGRRList::ReleasePending() {
544  if (DisableSchedCycles) {
545    assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
546    return;
547  }
548
549  // If the available queue is empty, it is safe to reset MinAvailableCycle.
550  if (AvailableQueue->empty())
551    MinAvailableCycle = UINT_MAX;
552
553  // Check to see if any of the pending instructions are ready to issue.  If
554  // so, add them to the available queue.
555  for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
556    unsigned ReadyCycle = PendingQueue[i]->getHeight();
557    if (ReadyCycle < MinAvailableCycle)
558      MinAvailableCycle = ReadyCycle;
559
560    if (PendingQueue[i]->isAvailable) {
561      if (!isReady(PendingQueue[i]))
562          continue;
563      AvailableQueue->push(PendingQueue[i]);
564    }
565    PendingQueue[i]->isPending = false;
566    PendingQueue[i] = PendingQueue.back();
567    PendingQueue.pop_back();
568    --i; --e;
569  }
570}
571
572/// Move the scheduler state forward by the specified number of Cycles.
573void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
574  if (NextCycle <= CurCycle)
575    return;
576
577  IssueCount = 0;
578  AvailableQueue->setCurCycle(NextCycle);
579  if (!HazardRec->isEnabled()) {
580    // Bypass lots of virtual calls in case of long latency.
581    CurCycle = NextCycle;
582  }
583  else {
584    for (; CurCycle != NextCycle; ++CurCycle) {
585      HazardRec->RecedeCycle();
586    }
587  }
588  // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
589  // available Q to release pending nodes at least once before popping.
590  ReleasePending();
591}
592
593/// Move the scheduler state forward until the specified node's dependents are
594/// ready and can be scheduled with no resource conflicts.
595void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
596  if (DisableSchedCycles)
597    return;
598
599  // FIXME: Nodes such as CopyFromReg probably should not advance the current
600  // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
601  // has predecessors the cycle will be advanced when they are scheduled.
602  // But given the crude nature of modeling latency though such nodes, we
603  // currently need to treat these nodes like real instructions.
604  // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
605
606  unsigned ReadyCycle = SU->getHeight();
607
608  // Bump CurCycle to account for latency. We assume the latency of other
609  // available instructions may be hidden by the stall (not a full pipe stall).
610  // This updates the hazard recognizer's cycle before reserving resources for
611  // this instruction.
612  AdvanceToCycle(ReadyCycle);
613
614  // Calls are scheduled in their preceding cycle, so don't conflict with
615  // hazards from instructions after the call. EmitNode will reset the
616  // scoreboard state before emitting the call.
617  if (SU->isCall)
618    return;
619
620  // FIXME: For resource conflicts in very long non-pipelined stages, we
621  // should probably skip ahead here to avoid useless scoreboard checks.
622  int Stalls = 0;
623  while (true) {
624    ScheduleHazardRecognizer::HazardType HT =
625      HazardRec->getHazardType(SU, -Stalls);
626
627    if (HT == ScheduleHazardRecognizer::NoHazard)
628      break;
629
630    ++Stalls;
631  }
632  AdvanceToCycle(CurCycle + Stalls);
633}
634
635/// Record this SUnit in the HazardRecognizer.
636/// Does not update CurCycle.
637void ScheduleDAGRRList::EmitNode(SUnit *SU) {
638  if (!HazardRec->isEnabled())
639    return;
640
641  // Check for phys reg copy.
642  if (!SU->getNode())
643    return;
644
645  switch (SU->getNode()->getOpcode()) {
646  default:
647    assert(SU->getNode()->isMachineOpcode() &&
648           "This target-independent node should not be scheduled.");
649    break;
650  case ISD::MERGE_VALUES:
651  case ISD::TokenFactor:
652  case ISD::CopyToReg:
653  case ISD::CopyFromReg:
654  case ISD::EH_LABEL:
655    // Noops don't affect the scoreboard state. Copies are likely to be
656    // removed.
657    return;
658  case ISD::INLINEASM:
659    // For inline asm, clear the pipeline state.
660    HazardRec->Reset();
661    return;
662  }
663  if (SU->isCall) {
664    // Calls are scheduled with their preceding instructions. For bottom-up
665    // scheduling, clear the pipeline state before emitting.
666    HazardRec->Reset();
667  }
668
669  HazardRec->EmitInstruction(SU);
670}
671
672static void resetVRegCycle(SUnit *SU);
673
674/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
675/// count of its predecessors. If a predecessor pending count is zero, add it to
676/// the Available queue.
677void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
678  DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
679  DEBUG(SU->dump(this));
680
681#ifndef NDEBUG
682  if (CurCycle < SU->getHeight())
683    DEBUG(dbgs() << "   Height [" << SU->getHeight()
684          << "] pipeline stall!\n");
685#endif
686
687  // FIXME: Do not modify node height. It may interfere with
688  // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
689  // node its ready cycle can aid heuristics, and after scheduling it can
690  // indicate the scheduled cycle.
691  SU->setHeightToAtLeast(CurCycle);
692
693  // Reserve resources for the scheduled intruction.
694  EmitNode(SU);
695
696  Sequence.push_back(SU);
697
698  AvailableQueue->ScheduledNode(SU);
699
700  // If HazardRec is disabled, and each inst counts as one cycle, then
701  // advance CurCycle before ReleasePredecessors to avoid useless pushes to
702  // PendingQueue for schedulers that implement HasReadyFilter.
703  if (!HazardRec->isEnabled() && AvgIPC < 2)
704    AdvanceToCycle(CurCycle + 1);
705
706  // Update liveness of predecessors before successors to avoid treating a
707  // two-address node as a live range def.
708  ReleasePredecessors(SU);
709
710  // Release all the implicit physical register defs that are live.
711  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
712       I != E; ++I) {
713    // LiveRegDegs[I->getReg()] != SU when SU is a two-address node.
714    if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] == SU) {
715      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
716      --NumLiveRegs;
717      LiveRegDefs[I->getReg()] = NULL;
718      LiveRegGens[I->getReg()] = NULL;
719    }
720  }
721  // Release the special call resource dependence, if this is the beginning
722  // of a call.
723  unsigned CallResource = TRI->getNumRegs();
724  if (LiveRegDefs[CallResource] == SU)
725    for (const SDNode *SUNode = SU->getNode(); SUNode;
726         SUNode = SUNode->getGluedNode()) {
727      if (SUNode->isMachineOpcode() &&
728          SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
729        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
730        --NumLiveRegs;
731        LiveRegDefs[CallResource] = NULL;
732        LiveRegGens[CallResource] = NULL;
733      }
734    }
735
736  resetVRegCycle(SU);
737
738  SU->isScheduled = true;
739
740  // Conditions under which the scheduler should eagerly advance the cycle:
741  // (1) No available instructions
742  // (2) All pipelines full, so available instructions must have hazards.
743  //
744  // If HazardRec is disabled, the cycle was pre-advanced before calling
745  // ReleasePredecessors. In that case, IssueCount should remain 0.
746  //
747  // Check AvailableQueue after ReleasePredecessors in case of zero latency.
748  if (HazardRec->isEnabled() || AvgIPC > 1) {
749    if (SU->getNode() && SU->getNode()->isMachineOpcode())
750      ++IssueCount;
751    if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
752        || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
753      AdvanceToCycle(CurCycle + 1);
754  }
755}
756
757/// CapturePred - This does the opposite of ReleasePred. Since SU is being
758/// unscheduled, incrcease the succ left count of its predecessors. Remove
759/// them from AvailableQueue if necessary.
760void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
761  SUnit *PredSU = PredEdge->getSUnit();
762  if (PredSU->isAvailable) {
763    PredSU->isAvailable = false;
764    if (!PredSU->isPending)
765      AvailableQueue->remove(PredSU);
766  }
767
768  assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
769  ++PredSU->NumSuccsLeft;
770}
771
772/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
773/// its predecessor states to reflect the change.
774void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
775  DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
776  DEBUG(SU->dump(this));
777
778  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
779       I != E; ++I) {
780    CapturePred(&*I);
781    if (I->isAssignedRegDep() && SU == LiveRegGens[I->getReg()]){
782      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
783      assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
784             "Physical register dependency violated?");
785      --NumLiveRegs;
786      LiveRegDefs[I->getReg()] = NULL;
787      LiveRegGens[I->getReg()] = NULL;
788    }
789  }
790
791  // Reclaim the special call resource dependence, if this is the beginning
792  // of a call.
793  unsigned CallResource = TRI->getNumRegs();
794  for (const SDNode *SUNode = SU->getNode(); SUNode;
795       SUNode = SUNode->getGluedNode()) {
796    if (SUNode->isMachineOpcode() &&
797        SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
798      ++NumLiveRegs;
799      LiveRegDefs[CallResource] = SU;
800      LiveRegGens[CallResource] = CallSeqEndForStart[SU];
801    }
802  }
803
804  // Release the special call resource dependence, if this is the end
805  // of a call.
806  if (LiveRegGens[CallResource] == SU)
807    for (const SDNode *SUNode = SU->getNode(); SUNode;
808         SUNode = SUNode->getGluedNode()) {
809      if (SUNode->isMachineOpcode() &&
810          SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
811        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
812        --NumLiveRegs;
813        LiveRegDefs[CallResource] = NULL;
814        LiveRegGens[CallResource] = NULL;
815      }
816    }
817
818  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
819       I != E; ++I) {
820    if (I->isAssignedRegDep()) {
821      if (!LiveRegDefs[I->getReg()])
822        ++NumLiveRegs;
823      // This becomes the nearest def. Note that an earlier def may still be
824      // pending if this is a two-address node.
825      LiveRegDefs[I->getReg()] = SU;
826      if (LiveRegGens[I->getReg()] == NULL ||
827          I->getSUnit()->getHeight() < LiveRegGens[I->getReg()]->getHeight())
828        LiveRegGens[I->getReg()] = I->getSUnit();
829    }
830  }
831  if (SU->getHeight() < MinAvailableCycle)
832    MinAvailableCycle = SU->getHeight();
833
834  SU->setHeightDirty();
835  SU->isScheduled = false;
836  SU->isAvailable = true;
837  if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
838    // Don't make available until backtracking is complete.
839    SU->isPending = true;
840    PendingQueue.push_back(SU);
841  }
842  else {
843    AvailableQueue->push(SU);
844  }
845  AvailableQueue->UnscheduledNode(SU);
846}
847
848/// After backtracking, the hazard checker needs to be restored to a state
849/// corresponding the the current cycle.
850void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
851  HazardRec->Reset();
852
853  unsigned LookAhead = std::min((unsigned)Sequence.size(),
854                                HazardRec->getMaxLookAhead());
855  if (LookAhead == 0)
856    return;
857
858  std::vector<SUnit*>::const_iterator I = (Sequence.end() - LookAhead);
859  unsigned HazardCycle = (*I)->getHeight();
860  for (std::vector<SUnit*>::const_iterator E = Sequence.end(); I != E; ++I) {
861    SUnit *SU = *I;
862    for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
863      HazardRec->RecedeCycle();
864    }
865    EmitNode(SU);
866  }
867}
868
869/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
870/// BTCycle in order to schedule a specific node.
871void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
872  SUnit *OldSU = Sequence.back();
873  while (true) {
874    Sequence.pop_back();
875    if (SU->isSucc(OldSU))
876      // Don't try to remove SU from AvailableQueue.
877      SU->isAvailable = false;
878    // FIXME: use ready cycle instead of height
879    CurCycle = OldSU->getHeight();
880    UnscheduleNodeBottomUp(OldSU);
881    AvailableQueue->setCurCycle(CurCycle);
882    if (OldSU == BtSU)
883      break;
884    OldSU = Sequence.back();
885  }
886
887  assert(!SU->isSucc(OldSU) && "Something is wrong!");
888
889  RestoreHazardCheckerBottomUp();
890
891  ReleasePending();
892
893  ++NumBacktracks;
894}
895
896static bool isOperandOf(const SUnit *SU, SDNode *N) {
897  for (const SDNode *SUNode = SU->getNode(); SUNode;
898       SUNode = SUNode->getGluedNode()) {
899    if (SUNode->isOperandOf(N))
900      return true;
901  }
902  return false;
903}
904
905/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
906/// successors to the newly created node.
907SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
908  SDNode *N = SU->getNode();
909  if (!N)
910    return NULL;
911
912  if (SU->getNode()->getGluedNode())
913    return NULL;
914
915  SUnit *NewSU;
916  bool TryUnfold = false;
917  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
918    EVT VT = N->getValueType(i);
919    if (VT == MVT::Glue)
920      return NULL;
921    else if (VT == MVT::Other)
922      TryUnfold = true;
923  }
924  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
925    const SDValue &Op = N->getOperand(i);
926    EVT VT = Op.getNode()->getValueType(Op.getResNo());
927    if (VT == MVT::Glue)
928      return NULL;
929  }
930
931  if (TryUnfold) {
932    SmallVector<SDNode*, 2> NewNodes;
933    if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
934      return NULL;
935
936    // unfolding an x86 DEC64m operation results in store, dec, load which
937    // can't be handled here so quit
938    if (NewNodes.size() == 3)
939      return NULL;
940
941    DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
942    assert(NewNodes.size() == 2 && "Expected a load folding node!");
943
944    N = NewNodes[1];
945    SDNode *LoadNode = NewNodes[0];
946    unsigned NumVals = N->getNumValues();
947    unsigned OldNumVals = SU->getNode()->getNumValues();
948    for (unsigned i = 0; i != NumVals; ++i)
949      DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
950    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
951                                   SDValue(LoadNode, 1));
952
953    // LoadNode may already exist. This can happen when there is another
954    // load from the same location and producing the same type of value
955    // but it has different alignment or volatileness.
956    bool isNewLoad = true;
957    SUnit *LoadSU;
958    if (LoadNode->getNodeId() != -1) {
959      LoadSU = &SUnits[LoadNode->getNodeId()];
960      isNewLoad = false;
961    } else {
962      LoadSU = CreateNewSUnit(LoadNode);
963      LoadNode->setNodeId(LoadSU->NodeNum);
964
965      InitNumRegDefsLeft(LoadSU);
966      ComputeLatency(LoadSU);
967    }
968
969    SUnit *NewSU = CreateNewSUnit(N);
970    assert(N->getNodeId() == -1 && "Node already inserted!");
971    N->setNodeId(NewSU->NodeNum);
972
973    const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
974    for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
975      if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
976        NewSU->isTwoAddress = true;
977        break;
978      }
979    }
980    if (MCID.isCommutable())
981      NewSU->isCommutable = true;
982
983    InitNumRegDefsLeft(NewSU);
984    ComputeLatency(NewSU);
985
986    // Record all the edges to and from the old SU, by category.
987    SmallVector<SDep, 4> ChainPreds;
988    SmallVector<SDep, 4> ChainSuccs;
989    SmallVector<SDep, 4> LoadPreds;
990    SmallVector<SDep, 4> NodePreds;
991    SmallVector<SDep, 4> NodeSuccs;
992    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
993         I != E; ++I) {
994      if (I->isCtrl())
995        ChainPreds.push_back(*I);
996      else if (isOperandOf(I->getSUnit(), LoadNode))
997        LoadPreds.push_back(*I);
998      else
999        NodePreds.push_back(*I);
1000    }
1001    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1002         I != E; ++I) {
1003      if (I->isCtrl())
1004        ChainSuccs.push_back(*I);
1005      else
1006        NodeSuccs.push_back(*I);
1007    }
1008
1009    // Now assign edges to the newly-created nodes.
1010    for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
1011      const SDep &Pred = ChainPreds[i];
1012      RemovePred(SU, Pred);
1013      if (isNewLoad)
1014        AddPred(LoadSU, Pred);
1015    }
1016    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
1017      const SDep &Pred = LoadPreds[i];
1018      RemovePred(SU, Pred);
1019      if (isNewLoad)
1020        AddPred(LoadSU, Pred);
1021    }
1022    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
1023      const SDep &Pred = NodePreds[i];
1024      RemovePred(SU, Pred);
1025      AddPred(NewSU, Pred);
1026    }
1027    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
1028      SDep D = NodeSuccs[i];
1029      SUnit *SuccDep = D.getSUnit();
1030      D.setSUnit(SU);
1031      RemovePred(SuccDep, D);
1032      D.setSUnit(NewSU);
1033      AddPred(SuccDep, D);
1034      // Balance register pressure.
1035      if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled
1036          && !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
1037        --NewSU->NumRegDefsLeft;
1038    }
1039    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
1040      SDep D = ChainSuccs[i];
1041      SUnit *SuccDep = D.getSUnit();
1042      D.setSUnit(SU);
1043      RemovePred(SuccDep, D);
1044      if (isNewLoad) {
1045        D.setSUnit(LoadSU);
1046        AddPred(SuccDep, D);
1047      }
1048    }
1049
1050    // Add a data dependency to reflect that NewSU reads the value defined
1051    // by LoadSU.
1052    AddPred(NewSU, SDep(LoadSU, SDep::Data, LoadSU->Latency));
1053
1054    if (isNewLoad)
1055      AvailableQueue->addNode(LoadSU);
1056    AvailableQueue->addNode(NewSU);
1057
1058    ++NumUnfolds;
1059
1060    if (NewSU->NumSuccsLeft == 0) {
1061      NewSU->isAvailable = true;
1062      return NewSU;
1063    }
1064    SU = NewSU;
1065  }
1066
1067  DEBUG(dbgs() << "    Duplicating SU #" << SU->NodeNum << "\n");
1068  NewSU = CreateClone(SU);
1069
1070  // New SUnit has the exact same predecessors.
1071  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1072       I != E; ++I)
1073    if (!I->isArtificial())
1074      AddPred(NewSU, *I);
1075
1076  // Only copy scheduled successors. Cut them from old node's successor
1077  // list and move them over.
1078  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1079  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1080       I != E; ++I) {
1081    if (I->isArtificial())
1082      continue;
1083    SUnit *SuccSU = I->getSUnit();
1084    if (SuccSU->isScheduled) {
1085      SDep D = *I;
1086      D.setSUnit(NewSU);
1087      AddPred(SuccSU, D);
1088      D.setSUnit(SU);
1089      DelDeps.push_back(std::make_pair(SuccSU, D));
1090    }
1091  }
1092  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
1093    RemovePred(DelDeps[i].first, DelDeps[i].second);
1094
1095  AvailableQueue->updateNode(SU);
1096  AvailableQueue->addNode(NewSU);
1097
1098  ++NumDups;
1099  return NewSU;
1100}
1101
1102/// InsertCopiesAndMoveSuccs - Insert register copies and move all
1103/// scheduled successors of the given SUnit to the last copy.
1104void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
1105                                               const TargetRegisterClass *DestRC,
1106                                               const TargetRegisterClass *SrcRC,
1107                                               SmallVector<SUnit*, 2> &Copies) {
1108  SUnit *CopyFromSU = CreateNewSUnit(NULL);
1109  CopyFromSU->CopySrcRC = SrcRC;
1110  CopyFromSU->CopyDstRC = DestRC;
1111
1112  SUnit *CopyToSU = CreateNewSUnit(NULL);
1113  CopyToSU->CopySrcRC = DestRC;
1114  CopyToSU->CopyDstRC = SrcRC;
1115
1116  // Only copy scheduled successors. Cut them from old node's successor
1117  // list and move them over.
1118  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1119  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1120       I != E; ++I) {
1121    if (I->isArtificial())
1122      continue;
1123    SUnit *SuccSU = I->getSUnit();
1124    if (SuccSU->isScheduled) {
1125      SDep D = *I;
1126      D.setSUnit(CopyToSU);
1127      AddPred(SuccSU, D);
1128      DelDeps.push_back(std::make_pair(SuccSU, *I));
1129    }
1130    else {
1131      // Avoid scheduling the def-side copy before other successors. Otherwise
1132      // we could introduce another physreg interference on the copy and
1133      // continue inserting copies indefinitely.
1134      SDep D(CopyFromSU, SDep::Order, /*Latency=*/0,
1135             /*Reg=*/0, /*isNormalMemory=*/false,
1136             /*isMustAlias=*/false, /*isArtificial=*/true);
1137      AddPred(SuccSU, D);
1138    }
1139  }
1140  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
1141    RemovePred(DelDeps[i].first, DelDeps[i].second);
1142
1143  AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
1144  AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
1145
1146  AvailableQueue->updateNode(SU);
1147  AvailableQueue->addNode(CopyFromSU);
1148  AvailableQueue->addNode(CopyToSU);
1149  Copies.push_back(CopyFromSU);
1150  Copies.push_back(CopyToSU);
1151
1152  ++NumPRCopies;
1153}
1154
1155/// getPhysicalRegisterVT - Returns the ValueType of the physical register
1156/// definition of the specified node.
1157/// FIXME: Move to SelectionDAG?
1158static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
1159                                 const TargetInstrInfo *TII) {
1160  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1161  assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
1162  unsigned NumRes = MCID.getNumDefs();
1163  for (const unsigned *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
1164    if (Reg == *ImpDef)
1165      break;
1166    ++NumRes;
1167  }
1168  return N->getValueType(NumRes);
1169}
1170
1171/// CheckForLiveRegDef - Return true and update live register vector if the
1172/// specified register def of the specified SUnit clobbers any "live" registers.
1173static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
1174                               std::vector<SUnit*> &LiveRegDefs,
1175                               SmallSet<unsigned, 4> &RegAdded,
1176                               SmallVector<unsigned, 4> &LRegs,
1177                               const TargetRegisterInfo *TRI) {
1178  for (const uint16_t *AliasI = TRI->getOverlaps(Reg); *AliasI; ++AliasI) {
1179
1180    // Check if Ref is live.
1181    if (!LiveRegDefs[*AliasI]) continue;
1182
1183    // Allow multiple uses of the same def.
1184    if (LiveRegDefs[*AliasI] == SU) continue;
1185
1186    // Add Reg to the set of interfering live regs.
1187    if (RegAdded.insert(*AliasI)) {
1188      LRegs.push_back(*AliasI);
1189    }
1190  }
1191}
1192
1193/// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
1194/// by RegMask, and add them to LRegs.
1195static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
1196                                     std::vector<SUnit*> &LiveRegDefs,
1197                                     SmallSet<unsigned, 4> &RegAdded,
1198                                     SmallVector<unsigned, 4> &LRegs) {
1199  // Look at all live registers. Skip Reg0 and the special CallResource.
1200  for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
1201    if (!LiveRegDefs[i]) continue;
1202    if (LiveRegDefs[i] == SU) continue;
1203    if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
1204    if (RegAdded.insert(i))
1205      LRegs.push_back(i);
1206  }
1207}
1208
1209/// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
1210static const uint32_t *getNodeRegMask(const SDNode *N) {
1211  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1212    if (const RegisterMaskSDNode *Op =
1213        dyn_cast<RegisterMaskSDNode>(N->getOperand(i).getNode()))
1214      return Op->getRegMask();
1215  return NULL;
1216}
1217
1218/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
1219/// scheduling of the given node to satisfy live physical register dependencies.
1220/// If the specific node is the last one that's available to schedule, do
1221/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
1222bool ScheduleDAGRRList::
1223DelayForLiveRegsBottomUp(SUnit *SU, SmallVector<unsigned, 4> &LRegs) {
1224  if (NumLiveRegs == 0)
1225    return false;
1226
1227  SmallSet<unsigned, 4> RegAdded;
1228  // If this node would clobber any "live" register, then it's not ready.
1229  //
1230  // If SU is the currently live definition of the same register that it uses,
1231  // then we are free to schedule it.
1232  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1233       I != E; ++I) {
1234    if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] != SU)
1235      CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
1236                         RegAdded, LRegs, TRI);
1237  }
1238
1239  for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
1240    if (Node->getOpcode() == ISD::INLINEASM) {
1241      // Inline asm can clobber physical defs.
1242      unsigned NumOps = Node->getNumOperands();
1243      if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1244        --NumOps;  // Ignore the glue operand.
1245
1246      for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1247        unsigned Flags =
1248          cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1249        unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1250
1251        ++i; // Skip the ID value.
1252        if (InlineAsm::isRegDefKind(Flags) ||
1253            InlineAsm::isRegDefEarlyClobberKind(Flags) ||
1254            InlineAsm::isClobberKind(Flags)) {
1255          // Check for def of register or earlyclobber register.
1256          for (; NumVals; --NumVals, ++i) {
1257            unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1258            if (TargetRegisterInfo::isPhysicalRegister(Reg))
1259              CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
1260          }
1261        } else
1262          i += NumVals;
1263      }
1264      continue;
1265    }
1266
1267    if (!Node->isMachineOpcode())
1268      continue;
1269    // If we're in the middle of scheduling a call, don't begin scheduling
1270    // another call. Also, don't allow any physical registers to be live across
1271    // the call.
1272    if (Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
1273      // Check the special calling-sequence resource.
1274      unsigned CallResource = TRI->getNumRegs();
1275      if (LiveRegDefs[CallResource]) {
1276        SDNode *Gen = LiveRegGens[CallResource]->getNode();
1277        while (SDNode *Glued = Gen->getGluedNode())
1278          Gen = Glued;
1279        if (!IsChainDependent(Gen, Node, 0, TII) && RegAdded.insert(CallResource))
1280          LRegs.push_back(CallResource);
1281      }
1282    }
1283    if (const uint32_t *RegMask = getNodeRegMask(Node))
1284      CheckForLiveRegDefMasked(SU, RegMask, LiveRegDefs, RegAdded, LRegs);
1285
1286    const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
1287    if (!MCID.ImplicitDefs)
1288      continue;
1289    for (const unsigned *Reg = MCID.ImplicitDefs; *Reg; ++Reg)
1290      CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
1291  }
1292
1293  return !LRegs.empty();
1294}
1295
1296/// Return a node that can be scheduled in this cycle. Requirements:
1297/// (1) Ready: latency has been satisfied
1298/// (2) No Hazards: resources are available
1299/// (3) No Interferences: may unschedule to break register interferences.
1300SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
1301  SmallVector<SUnit*, 4> Interferences;
1302  DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
1303
1304  SUnit *CurSU = AvailableQueue->pop();
1305  while (CurSU) {
1306    SmallVector<unsigned, 4> LRegs;
1307    if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
1308      break;
1309    LRegsMap.insert(std::make_pair(CurSU, LRegs));
1310
1311    CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
1312    Interferences.push_back(CurSU);
1313    CurSU = AvailableQueue->pop();
1314  }
1315  if (CurSU) {
1316    // Add the nodes that aren't ready back onto the available list.
1317    for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1318      Interferences[i]->isPending = false;
1319      assert(Interferences[i]->isAvailable && "must still be available");
1320      AvailableQueue->push(Interferences[i]);
1321    }
1322    return CurSU;
1323  }
1324
1325  // All candidates are delayed due to live physical reg dependencies.
1326  // Try backtracking, code duplication, or inserting cross class copies
1327  // to resolve it.
1328  for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1329    SUnit *TrySU = Interferences[i];
1330    SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
1331
1332    // Try unscheduling up to the point where it's safe to schedule
1333    // this node.
1334    SUnit *BtSU = NULL;
1335    unsigned LiveCycle = UINT_MAX;
1336    for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
1337      unsigned Reg = LRegs[j];
1338      if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
1339        BtSU = LiveRegGens[Reg];
1340        LiveCycle = BtSU->getHeight();
1341      }
1342    }
1343    if (!WillCreateCycle(TrySU, BtSU))  {
1344      BacktrackBottomUp(TrySU, BtSU);
1345
1346      // Force the current node to be scheduled before the node that
1347      // requires the physical reg dep.
1348      if (BtSU->isAvailable) {
1349        BtSU->isAvailable = false;
1350        if (!BtSU->isPending)
1351          AvailableQueue->remove(BtSU);
1352      }
1353      AddPred(TrySU, SDep(BtSU, SDep::Order, /*Latency=*/1,
1354                          /*Reg=*/0, /*isNormalMemory=*/false,
1355                          /*isMustAlias=*/false, /*isArtificial=*/true));
1356
1357      // If one or more successors has been unscheduled, then the current
1358      // node is no longer avaialable. Schedule a successor that's now
1359      // available instead.
1360      if (!TrySU->isAvailable) {
1361        CurSU = AvailableQueue->pop();
1362      }
1363      else {
1364        CurSU = TrySU;
1365        TrySU->isPending = false;
1366        Interferences.erase(Interferences.begin()+i);
1367      }
1368      break;
1369    }
1370  }
1371
1372  if (!CurSU) {
1373    // Can't backtrack. If it's too expensive to copy the value, then try
1374    // duplicate the nodes that produces these "too expensive to copy"
1375    // values to break the dependency. In case even that doesn't work,
1376    // insert cross class copies.
1377    // If it's not too expensive, i.e. cost != -1, issue copies.
1378    SUnit *TrySU = Interferences[0];
1379    SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
1380    assert(LRegs.size() == 1 && "Can't handle this yet!");
1381    unsigned Reg = LRegs[0];
1382    SUnit *LRDef = LiveRegDefs[Reg];
1383    EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
1384    const TargetRegisterClass *RC =
1385      TRI->getMinimalPhysRegClass(Reg, VT);
1386    const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1387
1388    // If cross copy register class is the same as RC, then it must be possible
1389    // copy the value directly. Do not try duplicate the def.
1390    // If cross copy register class is not the same as RC, then it's possible to
1391    // copy the value but it require cross register class copies and it is
1392    // expensive.
1393    // If cross copy register class is null, then it's not possible to copy
1394    // the value at all.
1395    SUnit *NewDef = 0;
1396    if (DestRC != RC) {
1397      NewDef = CopyAndMoveSuccessors(LRDef);
1398      if (!DestRC && !NewDef)
1399        report_fatal_error("Can't handle live physical register dependency!");
1400    }
1401    if (!NewDef) {
1402      // Issue copies, these can be expensive cross register class copies.
1403      SmallVector<SUnit*, 2> Copies;
1404      InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1405      DEBUG(dbgs() << "    Adding an edge from SU #" << TrySU->NodeNum
1406            << " to SU #" << Copies.front()->NodeNum << "\n");
1407      AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
1408                          /*Reg=*/0, /*isNormalMemory=*/false,
1409                          /*isMustAlias=*/false,
1410                          /*isArtificial=*/true));
1411      NewDef = Copies.back();
1412    }
1413
1414    DEBUG(dbgs() << "    Adding an edge from SU #" << NewDef->NodeNum
1415          << " to SU #" << TrySU->NodeNum << "\n");
1416    LiveRegDefs[Reg] = NewDef;
1417    AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
1418                         /*Reg=*/0, /*isNormalMemory=*/false,
1419                         /*isMustAlias=*/false,
1420                         /*isArtificial=*/true));
1421    TrySU->isAvailable = false;
1422    CurSU = NewDef;
1423  }
1424
1425  assert(CurSU && "Unable to resolve live physical register dependencies!");
1426
1427  // Add the nodes that aren't ready back onto the available list.
1428  for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1429    Interferences[i]->isPending = false;
1430    // May no longer be available due to backtracking.
1431    if (Interferences[i]->isAvailable) {
1432      AvailableQueue->push(Interferences[i]);
1433    }
1434  }
1435  return CurSU;
1436}
1437
1438/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
1439/// schedulers.
1440void ScheduleDAGRRList::ListScheduleBottomUp() {
1441  // Release any predecessors of the special Exit node.
1442  ReleasePredecessors(&ExitSU);
1443
1444  // Add root to Available queue.
1445  if (!SUnits.empty()) {
1446    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
1447    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
1448    RootSU->isAvailable = true;
1449    AvailableQueue->push(RootSU);
1450  }
1451
1452  // While Available queue is not empty, grab the node with the highest
1453  // priority. If it is not ready put it back.  Schedule the node.
1454  Sequence.reserve(SUnits.size());
1455  while (!AvailableQueue->empty()) {
1456    DEBUG(dbgs() << "\nExamining Available:\n";
1457          AvailableQueue->dump(this));
1458
1459    // Pick the best node to schedule taking all constraints into
1460    // consideration.
1461    SUnit *SU = PickNodeToScheduleBottomUp();
1462
1463    AdvancePastStalls(SU);
1464
1465    ScheduleNodeBottomUp(SU);
1466
1467    while (AvailableQueue->empty() && !PendingQueue.empty()) {
1468      // Advance the cycle to free resources. Skip ahead to the next ready SU.
1469      assert(MinAvailableCycle < UINT_MAX && "MinAvailableCycle uninitialized");
1470      AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
1471    }
1472  }
1473
1474  // Reverse the order if it is bottom up.
1475  std::reverse(Sequence.begin(), Sequence.end());
1476
1477#ifndef NDEBUG
1478  VerifyScheduledSequence(/*isBottomUp=*/true);
1479#endif
1480}
1481
1482//===----------------------------------------------------------------------===//
1483//                RegReductionPriorityQueue Definition
1484//===----------------------------------------------------------------------===//
1485//
1486// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1487// to reduce register pressure.
1488//
1489namespace {
1490class RegReductionPQBase;
1491
1492struct queue_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1493  bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
1494};
1495
1496#ifndef NDEBUG
1497template<class SF>
1498struct reverse_sort : public queue_sort {
1499  SF &SortFunc;
1500  reverse_sort(SF &sf) : SortFunc(sf) {}
1501  reverse_sort(const reverse_sort &RHS) : SortFunc(RHS.SortFunc) {}
1502
1503  bool operator()(SUnit* left, SUnit* right) const {
1504    // reverse left/right rather than simply !SortFunc(left, right)
1505    // to expose different paths in the comparison logic.
1506    return SortFunc(right, left);
1507  }
1508};
1509#endif // NDEBUG
1510
1511/// bu_ls_rr_sort - Priority function for bottom up register pressure
1512// reduction scheduler.
1513struct bu_ls_rr_sort : public queue_sort {
1514  enum {
1515    IsBottomUp = true,
1516    HasReadyFilter = false
1517  };
1518
1519  RegReductionPQBase *SPQ;
1520  bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1521  bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1522
1523  bool operator()(SUnit* left, SUnit* right) const;
1524};
1525
1526// src_ls_rr_sort - Priority function for source order scheduler.
1527struct src_ls_rr_sort : public queue_sort {
1528  enum {
1529    IsBottomUp = true,
1530    HasReadyFilter = false
1531  };
1532
1533  RegReductionPQBase *SPQ;
1534  src_ls_rr_sort(RegReductionPQBase *spq)
1535    : SPQ(spq) {}
1536  src_ls_rr_sort(const src_ls_rr_sort &RHS)
1537    : SPQ(RHS.SPQ) {}
1538
1539  bool operator()(SUnit* left, SUnit* right) const;
1540};
1541
1542// hybrid_ls_rr_sort - Priority function for hybrid scheduler.
1543struct hybrid_ls_rr_sort : public queue_sort {
1544  enum {
1545    IsBottomUp = true,
1546    HasReadyFilter = false
1547  };
1548
1549  RegReductionPQBase *SPQ;
1550  hybrid_ls_rr_sort(RegReductionPQBase *spq)
1551    : SPQ(spq) {}
1552  hybrid_ls_rr_sort(const hybrid_ls_rr_sort &RHS)
1553    : SPQ(RHS.SPQ) {}
1554
1555  bool isReady(SUnit *SU, unsigned CurCycle) const;
1556
1557  bool operator()(SUnit* left, SUnit* right) const;
1558};
1559
1560// ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
1561// scheduler.
1562struct ilp_ls_rr_sort : public queue_sort {
1563  enum {
1564    IsBottomUp = true,
1565    HasReadyFilter = false
1566  };
1567
1568  RegReductionPQBase *SPQ;
1569  ilp_ls_rr_sort(RegReductionPQBase *spq)
1570    : SPQ(spq) {}
1571  ilp_ls_rr_sort(const ilp_ls_rr_sort &RHS)
1572    : SPQ(RHS.SPQ) {}
1573
1574  bool isReady(SUnit *SU, unsigned CurCycle) const;
1575
1576  bool operator()(SUnit* left, SUnit* right) const;
1577};
1578
1579class RegReductionPQBase : public SchedulingPriorityQueue {
1580protected:
1581  std::vector<SUnit*> Queue;
1582  unsigned CurQueueId;
1583  bool TracksRegPressure;
1584
1585  // SUnits - The SUnits for the current graph.
1586  std::vector<SUnit> *SUnits;
1587
1588  MachineFunction &MF;
1589  const TargetInstrInfo *TII;
1590  const TargetRegisterInfo *TRI;
1591  const TargetLowering *TLI;
1592  ScheduleDAGRRList *scheduleDAG;
1593
1594  // SethiUllmanNumbers - The SethiUllman number for each node.
1595  std::vector<unsigned> SethiUllmanNumbers;
1596
1597  /// RegPressure - Tracking current reg pressure per register class.
1598  ///
1599  std::vector<unsigned> RegPressure;
1600
1601  /// RegLimit - Tracking the number of allocatable registers per register
1602  /// class.
1603  std::vector<unsigned> RegLimit;
1604
1605public:
1606  RegReductionPQBase(MachineFunction &mf,
1607                     bool hasReadyFilter,
1608                     bool tracksrp,
1609                     const TargetInstrInfo *tii,
1610                     const TargetRegisterInfo *tri,
1611                     const TargetLowering *tli)
1612    : SchedulingPriorityQueue(hasReadyFilter),
1613      CurQueueId(0), TracksRegPressure(tracksrp),
1614      MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(NULL) {
1615    if (TracksRegPressure) {
1616      unsigned NumRC = TRI->getNumRegClasses();
1617      RegLimit.resize(NumRC);
1618      RegPressure.resize(NumRC);
1619      std::fill(RegLimit.begin(), RegLimit.end(), 0);
1620      std::fill(RegPressure.begin(), RegPressure.end(), 0);
1621      for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1622             E = TRI->regclass_end(); I != E; ++I)
1623        RegLimit[(*I)->getID()] = tri->getRegPressureLimit(*I, MF);
1624    }
1625  }
1626
1627  void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1628    scheduleDAG = scheduleDag;
1629  }
1630
1631  ScheduleHazardRecognizer* getHazardRec() {
1632    return scheduleDAG->getHazardRec();
1633  }
1634
1635  void initNodes(std::vector<SUnit> &sunits);
1636
1637  void addNode(const SUnit *SU);
1638
1639  void updateNode(const SUnit *SU);
1640
1641  void releaseState() {
1642    SUnits = 0;
1643    SethiUllmanNumbers.clear();
1644    std::fill(RegPressure.begin(), RegPressure.end(), 0);
1645  }
1646
1647  unsigned getNodePriority(const SUnit *SU) const;
1648
1649  unsigned getNodeOrdering(const SUnit *SU) const {
1650    if (!SU->getNode()) return 0;
1651
1652    return scheduleDAG->DAG->GetOrdering(SU->getNode());
1653  }
1654
1655  bool empty() const { return Queue.empty(); }
1656
1657  void push(SUnit *U) {
1658    assert(!U->NodeQueueId && "Node in the queue already");
1659    U->NodeQueueId = ++CurQueueId;
1660    Queue.push_back(U);
1661  }
1662
1663  void remove(SUnit *SU) {
1664    assert(!Queue.empty() && "Queue is empty!");
1665    assert(SU->NodeQueueId != 0 && "Not in queue!");
1666    std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
1667                                                 SU);
1668    if (I != prior(Queue.end()))
1669      std::swap(*I, Queue.back());
1670    Queue.pop_back();
1671    SU->NodeQueueId = 0;
1672  }
1673
1674  bool tracksRegPressure() const { return TracksRegPressure; }
1675
1676  void dumpRegPressure() const;
1677
1678  bool HighRegPressure(const SUnit *SU) const;
1679
1680  bool MayReduceRegPressure(SUnit *SU) const;
1681
1682  int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
1683
1684  void ScheduledNode(SUnit *SU);
1685
1686  void UnscheduledNode(SUnit *SU);
1687
1688protected:
1689  bool canClobber(const SUnit *SU, const SUnit *Op);
1690  void AddPseudoTwoAddrDeps();
1691  void PrescheduleNodesWithMultipleUses();
1692  void CalculateSethiUllmanNumbers();
1693};
1694
1695template<class SF>
1696static SUnit *popFromQueueImpl(std::vector<SUnit*> &Q, SF &Picker) {
1697  std::vector<SUnit *>::iterator Best = Q.begin();
1698  for (std::vector<SUnit *>::iterator I = llvm::next(Q.begin()),
1699         E = Q.end(); I != E; ++I)
1700    if (Picker(*Best, *I))
1701      Best = I;
1702  SUnit *V = *Best;
1703  if (Best != prior(Q.end()))
1704    std::swap(*Best, Q.back());
1705  Q.pop_back();
1706  return V;
1707}
1708
1709template<class SF>
1710SUnit *popFromQueue(std::vector<SUnit*> &Q, SF &Picker, ScheduleDAG *DAG) {
1711#ifndef NDEBUG
1712  if (DAG->StressSched) {
1713    reverse_sort<SF> RPicker(Picker);
1714    return popFromQueueImpl(Q, RPicker);
1715  }
1716#endif
1717  (void)DAG;
1718  return popFromQueueImpl(Q, Picker);
1719}
1720
1721template<class SF>
1722class RegReductionPriorityQueue : public RegReductionPQBase {
1723  SF Picker;
1724
1725public:
1726  RegReductionPriorityQueue(MachineFunction &mf,
1727                            bool tracksrp,
1728                            const TargetInstrInfo *tii,
1729                            const TargetRegisterInfo *tri,
1730                            const TargetLowering *tli)
1731    : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, tii, tri, tli),
1732      Picker(this) {}
1733
1734  bool isBottomUp() const { return SF::IsBottomUp; }
1735
1736  bool isReady(SUnit *U) const {
1737    return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
1738  }
1739
1740  SUnit *pop() {
1741    if (Queue.empty()) return NULL;
1742
1743    SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
1744    V->NodeQueueId = 0;
1745    return V;
1746  }
1747
1748  void dump(ScheduleDAG *DAG) const {
1749    // Emulate pop() without clobbering NodeQueueIds.
1750    std::vector<SUnit*> DumpQueue = Queue;
1751    SF DumpPicker = Picker;
1752    while (!DumpQueue.empty()) {
1753      SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
1754      dbgs() << "Height " << SU->getHeight() << ": ";
1755      SU->dump(DAG);
1756    }
1757  }
1758};
1759
1760typedef RegReductionPriorityQueue<bu_ls_rr_sort>
1761BURegReductionPriorityQueue;
1762
1763typedef RegReductionPriorityQueue<src_ls_rr_sort>
1764SrcRegReductionPriorityQueue;
1765
1766typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
1767HybridBURRPriorityQueue;
1768
1769typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
1770ILPBURRPriorityQueue;
1771} // end anonymous namespace
1772
1773//===----------------------------------------------------------------------===//
1774//           Static Node Priority for Register Pressure Reduction
1775//===----------------------------------------------------------------------===//
1776
1777// Check for special nodes that bypass scheduling heuristics.
1778// Currently this pushes TokenFactor nodes down, but may be used for other
1779// pseudo-ops as well.
1780//
1781// Return -1 to schedule right above left, 1 for left above right.
1782// Return 0 if no bias exists.
1783static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
1784  bool LSchedLow = left->isScheduleLow;
1785  bool RSchedLow = right->isScheduleLow;
1786  if (LSchedLow != RSchedLow)
1787    return LSchedLow < RSchedLow ? 1 : -1;
1788  return 0;
1789}
1790
1791/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
1792/// Smaller number is the higher priority.
1793static unsigned
1794CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1795  unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
1796  if (SethiUllmanNumber != 0)
1797    return SethiUllmanNumber;
1798
1799  unsigned Extra = 0;
1800  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1801       I != E; ++I) {
1802    if (I->isCtrl()) continue;  // ignore chain preds
1803    SUnit *PredSU = I->getSUnit();
1804    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
1805    if (PredSethiUllman > SethiUllmanNumber) {
1806      SethiUllmanNumber = PredSethiUllman;
1807      Extra = 0;
1808    } else if (PredSethiUllman == SethiUllmanNumber)
1809      ++Extra;
1810  }
1811
1812  SethiUllmanNumber += Extra;
1813
1814  if (SethiUllmanNumber == 0)
1815    SethiUllmanNumber = 1;
1816
1817  return SethiUllmanNumber;
1818}
1819
1820/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1821/// scheduling units.
1822void RegReductionPQBase::CalculateSethiUllmanNumbers() {
1823  SethiUllmanNumbers.assign(SUnits->size(), 0);
1824
1825  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1826    CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1827}
1828
1829void RegReductionPQBase::addNode(const SUnit *SU) {
1830  unsigned SUSize = SethiUllmanNumbers.size();
1831  if (SUnits->size() > SUSize)
1832    SethiUllmanNumbers.resize(SUSize*2, 0);
1833  CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1834}
1835
1836void RegReductionPQBase::updateNode(const SUnit *SU) {
1837  SethiUllmanNumbers[SU->NodeNum] = 0;
1838  CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1839}
1840
1841// Lower priority means schedule further down. For bottom-up scheduling, lower
1842// priority SUs are scheduled before higher priority SUs.
1843unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
1844  assert(SU->NodeNum < SethiUllmanNumbers.size());
1845  unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
1846  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1847    // CopyToReg should be close to its uses to facilitate coalescing and
1848    // avoid spilling.
1849    return 0;
1850  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
1851      Opc == TargetOpcode::SUBREG_TO_REG ||
1852      Opc == TargetOpcode::INSERT_SUBREG)
1853    // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
1854    // close to their uses to facilitate coalescing.
1855    return 0;
1856  if (SU->NumSuccs == 0 && SU->NumPreds != 0)
1857    // If SU does not have a register use, i.e. it doesn't produce a value
1858    // that would be consumed (e.g. store), then it terminates a chain of
1859    // computation.  Give it a large SethiUllman number so it will be
1860    // scheduled right before its predecessors that it doesn't lengthen
1861    // their live ranges.
1862    return 0xffff;
1863  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
1864    // If SU does not have a register def, schedule it close to its uses
1865    // because it does not lengthen any live ranges.
1866    return 0;
1867#if 1
1868  return SethiUllmanNumbers[SU->NodeNum];
1869#else
1870  unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
1871  if (SU->isCallOp) {
1872    // FIXME: This assumes all of the defs are used as call operands.
1873    int NP = (int)Priority - SU->getNode()->getNumValues();
1874    return (NP > 0) ? NP : 0;
1875  }
1876  return Priority;
1877#endif
1878}
1879
1880//===----------------------------------------------------------------------===//
1881//                     Register Pressure Tracking
1882//===----------------------------------------------------------------------===//
1883
1884void RegReductionPQBase::dumpRegPressure() const {
1885  for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1886         E = TRI->regclass_end(); I != E; ++I) {
1887    const TargetRegisterClass *RC = *I;
1888    unsigned Id = RC->getID();
1889    unsigned RP = RegPressure[Id];
1890    if (!RP) continue;
1891    DEBUG(dbgs() << RC->getName() << ": " << RP << " / " << RegLimit[Id]
1892          << '\n');
1893  }
1894}
1895
1896bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
1897  if (!TLI)
1898    return false;
1899
1900  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
1901       I != E; ++I) {
1902    if (I->isCtrl())
1903      continue;
1904    SUnit *PredSU = I->getSUnit();
1905    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1906    // to cover the number of registers defined (they are all live).
1907    if (PredSU->NumRegDefsLeft == 0) {
1908      continue;
1909    }
1910    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1911         RegDefPos.IsValid(); RegDefPos.Advance()) {
1912      unsigned RCId, Cost;
1913      GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost);
1914
1915      if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
1916        return true;
1917    }
1918  }
1919  return false;
1920}
1921
1922bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
1923  const SDNode *N = SU->getNode();
1924
1925  if (!N->isMachineOpcode() || !SU->NumSuccs)
1926    return false;
1927
1928  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1929  for (unsigned i = 0; i != NumDefs; ++i) {
1930    EVT VT = N->getValueType(i);
1931    if (!N->hasAnyUseOfValue(i))
1932      continue;
1933    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1934    if (RegPressure[RCId] >= RegLimit[RCId])
1935      return true;
1936  }
1937  return false;
1938}
1939
1940// Compute the register pressure contribution by this instruction by count up
1941// for uses that are not live and down for defs. Only count register classes
1942// that are already under high pressure. As a side effect, compute the number of
1943// uses of registers that are already live.
1944//
1945// FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
1946// so could probably be factored.
1947int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
1948  LiveUses = 0;
1949  int PDiff = 0;
1950  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
1951       I != E; ++I) {
1952    if (I->isCtrl())
1953      continue;
1954    SUnit *PredSU = I->getSUnit();
1955    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1956    // to cover the number of registers defined (they are all live).
1957    if (PredSU->NumRegDefsLeft == 0) {
1958      if (PredSU->getNode()->isMachineOpcode())
1959        ++LiveUses;
1960      continue;
1961    }
1962    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1963         RegDefPos.IsValid(); RegDefPos.Advance()) {
1964      EVT VT = RegDefPos.GetValue();
1965      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1966      if (RegPressure[RCId] >= RegLimit[RCId])
1967        ++PDiff;
1968    }
1969  }
1970  const SDNode *N = SU->getNode();
1971
1972  if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
1973    return PDiff;
1974
1975  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1976  for (unsigned i = 0; i != NumDefs; ++i) {
1977    EVT VT = N->getValueType(i);
1978    if (!N->hasAnyUseOfValue(i))
1979      continue;
1980    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1981    if (RegPressure[RCId] >= RegLimit[RCId])
1982      --PDiff;
1983  }
1984  return PDiff;
1985}
1986
1987void RegReductionPQBase::ScheduledNode(SUnit *SU) {
1988  if (!TracksRegPressure)
1989    return;
1990
1991  if (!SU->getNode())
1992    return;
1993
1994  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1995       I != E; ++I) {
1996    if (I->isCtrl())
1997      continue;
1998    SUnit *PredSU = I->getSUnit();
1999    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2000    // to cover the number of registers defined (they are all live).
2001    if (PredSU->NumRegDefsLeft == 0) {
2002      continue;
2003    }
2004    // FIXME: The ScheduleDAG currently loses information about which of a
2005    // node's values is consumed by each dependence. Consequently, if the node
2006    // defines multiple register classes, we don't know which to pressurize
2007    // here. Instead the following loop consumes the register defs in an
2008    // arbitrary order. At least it handles the common case of clustered loads
2009    // to the same class. For precise liveness, each SDep needs to indicate the
2010    // result number. But that tightly couples the ScheduleDAG with the
2011    // SelectionDAG making updates tricky. A simpler hack would be to attach a
2012    // value type or register class to SDep.
2013    //
2014    // The most important aspect of register tracking is balancing the increase
2015    // here with the reduction further below. Note that this SU may use multiple
2016    // defs in PredSU. The can't be determined here, but we've already
2017    // compensated by reducing NumRegDefsLeft in PredSU during
2018    // ScheduleDAGSDNodes::AddSchedEdges.
2019    --PredSU->NumRegDefsLeft;
2020    unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
2021    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2022         RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2023      if (SkipRegDefs)
2024        continue;
2025
2026      unsigned RCId, Cost;
2027      GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost);
2028      RegPressure[RCId] += Cost;
2029      break;
2030    }
2031  }
2032
2033  // We should have this assert, but there may be dead SDNodes that never
2034  // materialize as SUnits, so they don't appear to generate liveness.
2035  //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
2036  int SkipRegDefs = (int)SU->NumRegDefsLeft;
2037  for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
2038       RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2039    if (SkipRegDefs > 0)
2040      continue;
2041    unsigned RCId, Cost;
2042    GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost);
2043    if (RegPressure[RCId] < Cost) {
2044      // Register pressure tracking is imprecise. This can happen. But we try
2045      // hard not to let it happen because it likely results in poor scheduling.
2046      DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") has too many regdefs\n");
2047      RegPressure[RCId] = 0;
2048    }
2049    else {
2050      RegPressure[RCId] -= Cost;
2051    }
2052  }
2053  dumpRegPressure();
2054}
2055
2056void RegReductionPQBase::UnscheduledNode(SUnit *SU) {
2057  if (!TracksRegPressure)
2058    return;
2059
2060  const SDNode *N = SU->getNode();
2061  if (!N) return;
2062
2063  if (!N->isMachineOpcode()) {
2064    if (N->getOpcode() != ISD::CopyToReg)
2065      return;
2066  } else {
2067    unsigned Opc = N->getMachineOpcode();
2068    if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2069        Opc == TargetOpcode::INSERT_SUBREG ||
2070        Opc == TargetOpcode::SUBREG_TO_REG ||
2071        Opc == TargetOpcode::REG_SEQUENCE ||
2072        Opc == TargetOpcode::IMPLICIT_DEF)
2073      return;
2074  }
2075
2076  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2077       I != E; ++I) {
2078    if (I->isCtrl())
2079      continue;
2080    SUnit *PredSU = I->getSUnit();
2081    // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
2082    // counts data deps.
2083    if (PredSU->NumSuccsLeft != PredSU->Succs.size())
2084      continue;
2085    const SDNode *PN = PredSU->getNode();
2086    if (!PN->isMachineOpcode()) {
2087      if (PN->getOpcode() == ISD::CopyFromReg) {
2088        EVT VT = PN->getValueType(0);
2089        unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2090        RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2091      }
2092      continue;
2093    }
2094    unsigned POpc = PN->getMachineOpcode();
2095    if (POpc == TargetOpcode::IMPLICIT_DEF)
2096      continue;
2097    if (POpc == TargetOpcode::EXTRACT_SUBREG ||
2098        POpc == TargetOpcode::INSERT_SUBREG ||
2099        POpc == TargetOpcode::SUBREG_TO_REG) {
2100      EVT VT = PN->getValueType(0);
2101      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2102      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2103      continue;
2104    }
2105    unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
2106    for (unsigned i = 0; i != NumDefs; ++i) {
2107      EVT VT = PN->getValueType(i);
2108      if (!PN->hasAnyUseOfValue(i))
2109        continue;
2110      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2111      if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
2112        // Register pressure tracking is imprecise. This can happen.
2113        RegPressure[RCId] = 0;
2114      else
2115        RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
2116    }
2117  }
2118
2119  // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
2120  // may transfer data dependencies to CopyToReg.
2121  if (SU->NumSuccs && N->isMachineOpcode()) {
2122    unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2123    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2124      EVT VT = N->getValueType(i);
2125      if (VT == MVT::Glue || VT == MVT::Other)
2126        continue;
2127      if (!N->hasAnyUseOfValue(i))
2128        continue;
2129      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2130      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2131    }
2132  }
2133
2134  dumpRegPressure();
2135}
2136
2137//===----------------------------------------------------------------------===//
2138//           Dynamic Node Priority for Register Pressure Reduction
2139//===----------------------------------------------------------------------===//
2140
2141/// closestSucc - Returns the scheduled cycle of the successor which is
2142/// closest to the current cycle.
2143static unsigned closestSucc(const SUnit *SU) {
2144  unsigned MaxHeight = 0;
2145  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2146       I != E; ++I) {
2147    if (I->isCtrl()) continue;  // ignore chain succs
2148    unsigned Height = I->getSUnit()->getHeight();
2149    // If there are bunch of CopyToRegs stacked up, they should be considered
2150    // to be at the same position.
2151    if (I->getSUnit()->getNode() &&
2152        I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
2153      Height = closestSucc(I->getSUnit())+1;
2154    if (Height > MaxHeight)
2155      MaxHeight = Height;
2156  }
2157  return MaxHeight;
2158}
2159
2160/// calcMaxScratches - Returns an cost estimate of the worse case requirement
2161/// for scratch registers, i.e. number of data dependencies.
2162static unsigned calcMaxScratches(const SUnit *SU) {
2163  unsigned Scratches = 0;
2164  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2165       I != E; ++I) {
2166    if (I->isCtrl()) continue;  // ignore chain preds
2167    Scratches++;
2168  }
2169  return Scratches;
2170}
2171
2172/// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
2173/// CopyFromReg from a virtual register.
2174static bool hasOnlyLiveInOpers(const SUnit *SU) {
2175  bool RetVal = false;
2176  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2177       I != E; ++I) {
2178    if (I->isCtrl()) continue;
2179    const SUnit *PredSU = I->getSUnit();
2180    if (PredSU->getNode() &&
2181        PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
2182      unsigned Reg =
2183        cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
2184      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2185        RetVal = true;
2186        continue;
2187      }
2188    }
2189    return false;
2190  }
2191  return RetVal;
2192}
2193
2194/// hasOnlyLiveOutUses - Return true if SU has only value successors that are
2195/// CopyToReg to a virtual register. This SU def is probably a liveout and
2196/// it has no other use. It should be scheduled closer to the terminator.
2197static bool hasOnlyLiveOutUses(const SUnit *SU) {
2198  bool RetVal = false;
2199  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2200       I != E; ++I) {
2201    if (I->isCtrl()) continue;
2202    const SUnit *SuccSU = I->getSUnit();
2203    if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
2204      unsigned Reg =
2205        cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
2206      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2207        RetVal = true;
2208        continue;
2209      }
2210    }
2211    return false;
2212  }
2213  return RetVal;
2214}
2215
2216// Set isVRegCycle for a node with only live in opers and live out uses. Also
2217// set isVRegCycle for its CopyFromReg operands.
2218//
2219// This is only relevant for single-block loops, in which case the VRegCycle
2220// node is likely an induction variable in which the operand and target virtual
2221// registers should be coalesced (e.g. pre/post increment values). Setting the
2222// isVRegCycle flag helps the scheduler prioritize other uses of the same
2223// CopyFromReg so that this node becomes the virtual register "kill". This
2224// avoids interference between the values live in and out of the block and
2225// eliminates a copy inside the loop.
2226static void initVRegCycle(SUnit *SU) {
2227  if (DisableSchedVRegCycle)
2228    return;
2229
2230  if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
2231    return;
2232
2233  DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
2234
2235  SU->isVRegCycle = true;
2236
2237  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2238       I != E; ++I) {
2239    if (I->isCtrl()) continue;
2240    I->getSUnit()->isVRegCycle = true;
2241  }
2242}
2243
2244// After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
2245// CopyFromReg operands. We should no longer penalize other uses of this VReg.
2246static void resetVRegCycle(SUnit *SU) {
2247  if (!SU->isVRegCycle)
2248    return;
2249
2250  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
2251       I != E; ++I) {
2252    if (I->isCtrl()) continue;  // ignore chain preds
2253    SUnit *PredSU = I->getSUnit();
2254    if (PredSU->isVRegCycle) {
2255      assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
2256             "VRegCycle def must be CopyFromReg");
2257      I->getSUnit()->isVRegCycle = 0;
2258    }
2259  }
2260}
2261
2262// Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
2263// means a node that defines the VRegCycle has not been scheduled yet.
2264static bool hasVRegCycleUse(const SUnit *SU) {
2265  // If this SU also defines the VReg, don't hoist it as a "use".
2266  if (SU->isVRegCycle)
2267    return false;
2268
2269  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
2270       I != E; ++I) {
2271    if (I->isCtrl()) continue;  // ignore chain preds
2272    if (I->getSUnit()->isVRegCycle &&
2273        I->getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
2274      DEBUG(dbgs() << "  VReg cycle use: SU (" << SU->NodeNum << ")\n");
2275      return true;
2276    }
2277  }
2278  return false;
2279}
2280
2281// Check for either a dependence (latency) or resource (hazard) stall.
2282//
2283// Note: The ScheduleHazardRecognizer interface requires a non-const SU.
2284static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
2285  if ((int)SPQ->getCurCycle() < Height) return true;
2286  if (SPQ->getHazardRec()->getHazardType(SU, 0)
2287      != ScheduleHazardRecognizer::NoHazard)
2288    return true;
2289  return false;
2290}
2291
2292// Return -1 if left has higher priority, 1 if right has higher priority.
2293// Return 0 if latency-based priority is equivalent.
2294static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
2295                            RegReductionPQBase *SPQ) {
2296  // Scheduling an instruction that uses a VReg whose postincrement has not yet
2297  // been scheduled will induce a copy. Model this as an extra cycle of latency.
2298  int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
2299  int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
2300  int LHeight = (int)left->getHeight() + LPenalty;
2301  int RHeight = (int)right->getHeight() + RPenalty;
2302
2303  bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
2304    BUHasStall(left, LHeight, SPQ);
2305  bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
2306    BUHasStall(right, RHeight, SPQ);
2307
2308  // If scheduling one of the node will cause a pipeline stall, delay it.
2309  // If scheduling either one of the node will cause a pipeline stall, sort
2310  // them according to their height.
2311  if (LStall) {
2312    if (!RStall)
2313      return 1;
2314    if (LHeight != RHeight)
2315      return LHeight > RHeight ? 1 : -1;
2316  } else if (RStall)
2317    return -1;
2318
2319  // If either node is scheduling for latency, sort them by height/depth
2320  // and latency.
2321  if (!checkPref || (left->SchedulingPref == Sched::ILP ||
2322                     right->SchedulingPref == Sched::ILP)) {
2323    if (DisableSchedCycles) {
2324      if (LHeight != RHeight)
2325        return LHeight > RHeight ? 1 : -1;
2326    }
2327    else {
2328      // If neither instruction stalls (!LStall && !RStall) then
2329      // its height is already covered so only its depth matters. We also reach
2330      // this if both stall but have the same height.
2331      int LDepth = left->getDepth() - LPenalty;
2332      int RDepth = right->getDepth() - RPenalty;
2333      if (LDepth != RDepth) {
2334        DEBUG(dbgs() << "  Comparing latency of SU (" << left->NodeNum
2335              << ") depth " << LDepth << " vs SU (" << right->NodeNum
2336              << ") depth " << RDepth << "\n");
2337        return LDepth < RDepth ? 1 : -1;
2338      }
2339    }
2340    if (left->Latency != right->Latency)
2341      return left->Latency > right->Latency ? 1 : -1;
2342  }
2343  return 0;
2344}
2345
2346static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
2347  // Schedule physical register definitions close to their use. This is
2348  // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
2349  // long as shortening physreg live ranges is generally good, we can defer
2350  // creating a subtarget hook.
2351  if (!DisableSchedPhysRegJoin) {
2352    bool LHasPhysReg = left->hasPhysRegDefs;
2353    bool RHasPhysReg = right->hasPhysRegDefs;
2354    if (LHasPhysReg != RHasPhysReg) {
2355      #ifndef NDEBUG
2356      const char *PhysRegMsg[] = {" has no physreg", " defines a physreg"};
2357      #endif
2358      DEBUG(dbgs() << "  SU (" << left->NodeNum << ") "
2359            << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum << ") "
2360            << PhysRegMsg[RHasPhysReg] << "\n");
2361      return LHasPhysReg < RHasPhysReg;
2362    }
2363  }
2364
2365  // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
2366  unsigned LPriority = SPQ->getNodePriority(left);
2367  unsigned RPriority = SPQ->getNodePriority(right);
2368
2369  // Be really careful about hoisting call operands above previous calls.
2370  // Only allows it if it would reduce register pressure.
2371  if (left->isCall && right->isCallOp) {
2372    unsigned RNumVals = right->getNode()->getNumValues();
2373    RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
2374  }
2375  if (right->isCall && left->isCallOp) {
2376    unsigned LNumVals = left->getNode()->getNumValues();
2377    LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
2378  }
2379
2380  if (LPriority != RPriority)
2381    return LPriority > RPriority;
2382
2383  // One or both of the nodes are calls and their sethi-ullman numbers are the
2384  // same, then keep source order.
2385  if (left->isCall || right->isCall) {
2386    unsigned LOrder = SPQ->getNodeOrdering(left);
2387    unsigned ROrder = SPQ->getNodeOrdering(right);
2388
2389    // Prefer an ordering where the lower the non-zero order number, the higher
2390    // the preference.
2391    if ((LOrder || ROrder) && LOrder != ROrder)
2392      return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2393  }
2394
2395  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
2396  // e.g.
2397  // t1 = op t2, c1
2398  // t3 = op t4, c2
2399  //
2400  // and the following instructions are both ready.
2401  // t2 = op c3
2402  // t4 = op c4
2403  //
2404  // Then schedule t2 = op first.
2405  // i.e.
2406  // t4 = op c4
2407  // t2 = op c3
2408  // t1 = op t2, c1
2409  // t3 = op t4, c2
2410  //
2411  // This creates more short live intervals.
2412  unsigned LDist = closestSucc(left);
2413  unsigned RDist = closestSucc(right);
2414  if (LDist != RDist)
2415    return LDist < RDist;
2416
2417  // How many registers becomes live when the node is scheduled.
2418  unsigned LScratch = calcMaxScratches(left);
2419  unsigned RScratch = calcMaxScratches(right);
2420  if (LScratch != RScratch)
2421    return LScratch > RScratch;
2422
2423  // Comparing latency against a call makes little sense unless the node
2424  // is register pressure-neutral.
2425  if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
2426    return (left->NodeQueueId > right->NodeQueueId);
2427
2428  // Do not compare latencies when one or both of the nodes are calls.
2429  if (!DisableSchedCycles &&
2430      !(left->isCall || right->isCall)) {
2431    int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
2432    if (result != 0)
2433      return result > 0;
2434  }
2435  else {
2436    if (left->getHeight() != right->getHeight())
2437      return left->getHeight() > right->getHeight();
2438
2439    if (left->getDepth() != right->getDepth())
2440      return left->getDepth() < right->getDepth();
2441  }
2442
2443  assert(left->NodeQueueId && right->NodeQueueId &&
2444         "NodeQueueId cannot be zero");
2445  return (left->NodeQueueId > right->NodeQueueId);
2446}
2447
2448// Bottom up
2449bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2450  if (int res = checkSpecialNodes(left, right))
2451    return res > 0;
2452
2453  return BURRSort(left, right, SPQ);
2454}
2455
2456// Source order, otherwise bottom up.
2457bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2458  if (int res = checkSpecialNodes(left, right))
2459    return res > 0;
2460
2461  unsigned LOrder = SPQ->getNodeOrdering(left);
2462  unsigned ROrder = SPQ->getNodeOrdering(right);
2463
2464  // Prefer an ordering where the lower the non-zero order number, the higher
2465  // the preference.
2466  if ((LOrder || ROrder) && LOrder != ROrder)
2467    return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2468
2469  return BURRSort(left, right, SPQ);
2470}
2471
2472// If the time between now and when the instruction will be ready can cover
2473// the spill code, then avoid adding it to the ready queue. This gives long
2474// stalls highest priority and allows hoisting across calls. It should also
2475// speed up processing the available queue.
2476bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2477  static const unsigned ReadyDelay = 3;
2478
2479  if (SPQ->MayReduceRegPressure(SU)) return true;
2480
2481  if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
2482
2483  if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
2484      != ScheduleHazardRecognizer::NoHazard)
2485    return false;
2486
2487  return true;
2488}
2489
2490// Return true if right should be scheduled with higher priority than left.
2491bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2492  if (int res = checkSpecialNodes(left, right))
2493    return res > 0;
2494
2495  if (left->isCall || right->isCall)
2496    // No way to compute latency of calls.
2497    return BURRSort(left, right, SPQ);
2498
2499  bool LHigh = SPQ->HighRegPressure(left);
2500  bool RHigh = SPQ->HighRegPressure(right);
2501  // Avoid causing spills. If register pressure is high, schedule for
2502  // register pressure reduction.
2503  if (LHigh && !RHigh) {
2504    DEBUG(dbgs() << "  pressure SU(" << left->NodeNum << ") > SU("
2505          << right->NodeNum << ")\n");
2506    return true;
2507  }
2508  else if (!LHigh && RHigh) {
2509    DEBUG(dbgs() << "  pressure SU(" << right->NodeNum << ") > SU("
2510          << left->NodeNum << ")\n");
2511    return false;
2512  }
2513  if (!LHigh && !RHigh) {
2514    int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
2515    if (result != 0)
2516      return result > 0;
2517  }
2518  return BURRSort(left, right, SPQ);
2519}
2520
2521// Schedule as many instructions in each cycle as possible. So don't make an
2522// instruction available unless it is ready in the current cycle.
2523bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2524  if (SU->getHeight() > CurCycle) return false;
2525
2526  if (SPQ->getHazardRec()->getHazardType(SU, 0)
2527      != ScheduleHazardRecognizer::NoHazard)
2528    return false;
2529
2530  return true;
2531}
2532
2533static bool canEnableCoalescing(SUnit *SU) {
2534  unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2535  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2536    // CopyToReg should be close to its uses to facilitate coalescing and
2537    // avoid spilling.
2538    return true;
2539
2540  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2541      Opc == TargetOpcode::SUBREG_TO_REG ||
2542      Opc == TargetOpcode::INSERT_SUBREG)
2543    // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2544    // close to their uses to facilitate coalescing.
2545    return true;
2546
2547  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2548    // If SU does not have a register def, schedule it close to its uses
2549    // because it does not lengthen any live ranges.
2550    return true;
2551
2552  return false;
2553}
2554
2555// list-ilp is currently an experimental scheduler that allows various
2556// heuristics to be enabled prior to the normal register reduction logic.
2557bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2558  if (int res = checkSpecialNodes(left, right))
2559    return res > 0;
2560
2561  if (left->isCall || right->isCall)
2562    // No way to compute latency of calls.
2563    return BURRSort(left, right, SPQ);
2564
2565  unsigned LLiveUses = 0, RLiveUses = 0;
2566  int LPDiff = 0, RPDiff = 0;
2567  if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
2568    LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
2569    RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
2570  }
2571  if (!DisableSchedRegPressure && LPDiff != RPDiff) {
2572    DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum << "): " << LPDiff
2573          << " != SU(" << right->NodeNum << "): " << RPDiff << "\n");
2574    return LPDiff > RPDiff;
2575  }
2576
2577  if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
2578    bool LReduce = canEnableCoalescing(left);
2579    bool RReduce = canEnableCoalescing(right);
2580    if (LReduce && !RReduce) return false;
2581    if (RReduce && !LReduce) return true;
2582  }
2583
2584  if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
2585    DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
2586          << " != SU(" << right->NodeNum << "): " << RLiveUses << "\n");
2587    return LLiveUses < RLiveUses;
2588  }
2589
2590  if (!DisableSchedStalls) {
2591    bool LStall = BUHasStall(left, left->getHeight(), SPQ);
2592    bool RStall = BUHasStall(right, right->getHeight(), SPQ);
2593    if (LStall != RStall)
2594      return left->getHeight() > right->getHeight();
2595  }
2596
2597  if (!DisableSchedCriticalPath) {
2598    int spread = (int)left->getDepth() - (int)right->getDepth();
2599    if (std::abs(spread) > MaxReorderWindow) {
2600      DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
2601            << left->getDepth() << " != SU(" << right->NodeNum << "): "
2602            << right->getDepth() << "\n");
2603      return left->getDepth() < right->getDepth();
2604    }
2605  }
2606
2607  if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
2608    int spread = (int)left->getHeight() - (int)right->getHeight();
2609    if (std::abs(spread) > MaxReorderWindow)
2610      return left->getHeight() > right->getHeight();
2611  }
2612
2613  return BURRSort(left, right, SPQ);
2614}
2615
2616void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
2617  SUnits = &sunits;
2618  // Add pseudo dependency edges for two-address nodes.
2619  if (!Disable2AddrHack)
2620    AddPseudoTwoAddrDeps();
2621  // Reroute edges to nodes with multiple uses.
2622  if (!TracksRegPressure)
2623    PrescheduleNodesWithMultipleUses();
2624  // Calculate node priorities.
2625  CalculateSethiUllmanNumbers();
2626
2627  // For single block loops, mark nodes that look like canonical IV increments.
2628  if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB)) {
2629    for (unsigned i = 0, e = sunits.size(); i != e; ++i) {
2630      initVRegCycle(&sunits[i]);
2631    }
2632  }
2633}
2634
2635//===----------------------------------------------------------------------===//
2636//                    Preschedule for Register Pressure
2637//===----------------------------------------------------------------------===//
2638
2639bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
2640  if (SU->isTwoAddress) {
2641    unsigned Opc = SU->getNode()->getMachineOpcode();
2642    const MCInstrDesc &MCID = TII->get(Opc);
2643    unsigned NumRes = MCID.getNumDefs();
2644    unsigned NumOps = MCID.getNumOperands() - NumRes;
2645    for (unsigned i = 0; i != NumOps; ++i) {
2646      if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
2647        SDNode *DU = SU->getNode()->getOperand(i).getNode();
2648        if (DU->getNodeId() != -1 &&
2649            Op->OrigNode == &(*SUnits)[DU->getNodeId()])
2650          return true;
2651      }
2652    }
2653  }
2654  return false;
2655}
2656
2657/// canClobberReachingPhysRegUse - True if SU would clobber one of it's
2658/// successor's explicit physregs whose definition can reach DepSU.
2659/// i.e. DepSU should not be scheduled above SU.
2660static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
2661                                         ScheduleDAGRRList *scheduleDAG,
2662                                         const TargetInstrInfo *TII,
2663                                         const TargetRegisterInfo *TRI) {
2664  const unsigned *ImpDefs
2665    = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
2666  const uint32_t *RegMask = getNodeRegMask(SU->getNode());
2667  if(!ImpDefs && !RegMask)
2668    return false;
2669
2670  for (SUnit::const_succ_iterator SI = SU->Succs.begin(), SE = SU->Succs.end();
2671       SI != SE; ++SI) {
2672    SUnit *SuccSU = SI->getSUnit();
2673    for (SUnit::const_pred_iterator PI = SuccSU->Preds.begin(),
2674           PE = SuccSU->Preds.end(); PI != PE; ++PI) {
2675      if (!PI->isAssignedRegDep())
2676        continue;
2677
2678      if (RegMask && MachineOperand::clobbersPhysReg(RegMask, PI->getReg()) &&
2679          scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
2680        return true;
2681
2682      if (ImpDefs)
2683        for (const unsigned *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
2684          // Return true if SU clobbers this physical register use and the
2685          // definition of the register reaches from DepSU. IsReachable queries
2686          // a topological forward sort of the DAG (following the successors).
2687          if (TRI->regsOverlap(*ImpDef, PI->getReg()) &&
2688              scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
2689            return true;
2690    }
2691  }
2692  return false;
2693}
2694
2695/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
2696/// physical register defs.
2697static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
2698                                  const TargetInstrInfo *TII,
2699                                  const TargetRegisterInfo *TRI) {
2700  SDNode *N = SuccSU->getNode();
2701  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2702  const unsigned *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
2703  assert(ImpDefs && "Caller should check hasPhysRegDefs");
2704  for (const SDNode *SUNode = SU->getNode(); SUNode;
2705       SUNode = SUNode->getGluedNode()) {
2706    if (!SUNode->isMachineOpcode())
2707      continue;
2708    const unsigned *SUImpDefs =
2709      TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
2710    const uint32_t *SURegMask = getNodeRegMask(SUNode);
2711    if (!SUImpDefs && !SURegMask)
2712      continue;
2713    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2714      EVT VT = N->getValueType(i);
2715      if (VT == MVT::Glue || VT == MVT::Other)
2716        continue;
2717      if (!N->hasAnyUseOfValue(i))
2718        continue;
2719      unsigned Reg = ImpDefs[i - NumDefs];
2720      if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
2721        return true;
2722      if (!SUImpDefs)
2723        continue;
2724      for (;*SUImpDefs; ++SUImpDefs) {
2725        unsigned SUReg = *SUImpDefs;
2726        if (TRI->regsOverlap(Reg, SUReg))
2727          return true;
2728      }
2729    }
2730  }
2731  return false;
2732}
2733
2734/// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
2735/// are not handled well by the general register pressure reduction
2736/// heuristics. When presented with code like this:
2737///
2738///      N
2739///    / |
2740///   /  |
2741///  U  store
2742///  |
2743/// ...
2744///
2745/// the heuristics tend to push the store up, but since the
2746/// operand of the store has another use (U), this would increase
2747/// the length of that other use (the U->N edge).
2748///
2749/// This function transforms code like the above to route U's
2750/// dependence through the store when possible, like this:
2751///
2752///      N
2753///      ||
2754///      ||
2755///     store
2756///       |
2757///       U
2758///       |
2759///      ...
2760///
2761/// This results in the store being scheduled immediately
2762/// after N, which shortens the U->N live range, reducing
2763/// register pressure.
2764///
2765void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
2766  // Visit all the nodes in topological order, working top-down.
2767  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2768    SUnit *SU = &(*SUnits)[i];
2769    // For now, only look at nodes with no data successors, such as stores.
2770    // These are especially important, due to the heuristics in
2771    // getNodePriority for nodes with no data successors.
2772    if (SU->NumSuccs != 0)
2773      continue;
2774    // For now, only look at nodes with exactly one data predecessor.
2775    if (SU->NumPreds != 1)
2776      continue;
2777    // Avoid prescheduling copies to virtual registers, which don't behave
2778    // like other nodes from the perspective of scheduling heuristics.
2779    if (SDNode *N = SU->getNode())
2780      if (N->getOpcode() == ISD::CopyToReg &&
2781          TargetRegisterInfo::isVirtualRegister
2782            (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2783        continue;
2784
2785    // Locate the single data predecessor.
2786    SUnit *PredSU = 0;
2787    for (SUnit::const_pred_iterator II = SU->Preds.begin(),
2788         EE = SU->Preds.end(); II != EE; ++II)
2789      if (!II->isCtrl()) {
2790        PredSU = II->getSUnit();
2791        break;
2792      }
2793    assert(PredSU);
2794
2795    // Don't rewrite edges that carry physregs, because that requires additional
2796    // support infrastructure.
2797    if (PredSU->hasPhysRegDefs)
2798      continue;
2799    // Short-circuit the case where SU is PredSU's only data successor.
2800    if (PredSU->NumSuccs == 1)
2801      continue;
2802    // Avoid prescheduling to copies from virtual registers, which don't behave
2803    // like other nodes from the perspective of scheduling heuristics.
2804    if (SDNode *N = SU->getNode())
2805      if (N->getOpcode() == ISD::CopyFromReg &&
2806          TargetRegisterInfo::isVirtualRegister
2807            (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2808        continue;
2809
2810    // Perform checks on the successors of PredSU.
2811    for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
2812         EE = PredSU->Succs.end(); II != EE; ++II) {
2813      SUnit *PredSuccSU = II->getSUnit();
2814      if (PredSuccSU == SU) continue;
2815      // If PredSU has another successor with no data successors, for
2816      // now don't attempt to choose either over the other.
2817      if (PredSuccSU->NumSuccs == 0)
2818        goto outer_loop_continue;
2819      // Don't break physical register dependencies.
2820      if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
2821        if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
2822          goto outer_loop_continue;
2823      // Don't introduce graph cycles.
2824      if (scheduleDAG->IsReachable(SU, PredSuccSU))
2825        goto outer_loop_continue;
2826    }
2827
2828    // Ok, the transformation is safe and the heuristics suggest it is
2829    // profitable. Update the graph.
2830    DEBUG(dbgs() << "    Prescheduling SU #" << SU->NodeNum
2831                 << " next to PredSU #" << PredSU->NodeNum
2832                 << " to guide scheduling in the presence of multiple uses\n");
2833    for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
2834      SDep Edge = PredSU->Succs[i];
2835      assert(!Edge.isAssignedRegDep());
2836      SUnit *SuccSU = Edge.getSUnit();
2837      if (SuccSU != SU) {
2838        Edge.setSUnit(PredSU);
2839        scheduleDAG->RemovePred(SuccSU, Edge);
2840        scheduleDAG->AddPred(SU, Edge);
2841        Edge.setSUnit(SU);
2842        scheduleDAG->AddPred(SuccSU, Edge);
2843        --i;
2844      }
2845    }
2846  outer_loop_continue:;
2847  }
2848}
2849
2850/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
2851/// it as a def&use operand. Add a pseudo control edge from it to the other
2852/// node (if it won't create a cycle) so the two-address one will be scheduled
2853/// first (lower in the schedule). If both nodes are two-address, favor the
2854/// one that has a CopyToReg use (more likely to be a loop induction update).
2855/// If both are two-address, but one is commutable while the other is not
2856/// commutable, favor the one that's not commutable.
2857void RegReductionPQBase::AddPseudoTwoAddrDeps() {
2858  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2859    SUnit *SU = &(*SUnits)[i];
2860    if (!SU->isTwoAddress)
2861      continue;
2862
2863    SDNode *Node = SU->getNode();
2864    if (!Node || !Node->isMachineOpcode() || SU->getNode()->getGluedNode())
2865      continue;
2866
2867    bool isLiveOut = hasOnlyLiveOutUses(SU);
2868    unsigned Opc = Node->getMachineOpcode();
2869    const MCInstrDesc &MCID = TII->get(Opc);
2870    unsigned NumRes = MCID.getNumDefs();
2871    unsigned NumOps = MCID.getNumOperands() - NumRes;
2872    for (unsigned j = 0; j != NumOps; ++j) {
2873      if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
2874        continue;
2875      SDNode *DU = SU->getNode()->getOperand(j).getNode();
2876      if (DU->getNodeId() == -1)
2877        continue;
2878      const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
2879      if (!DUSU) continue;
2880      for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
2881           E = DUSU->Succs.end(); I != E; ++I) {
2882        if (I->isCtrl()) continue;
2883        SUnit *SuccSU = I->getSUnit();
2884        if (SuccSU == SU)
2885          continue;
2886        // Be conservative. Ignore if nodes aren't at roughly the same
2887        // depth and height.
2888        if (SuccSU->getHeight() < SU->getHeight() &&
2889            (SU->getHeight() - SuccSU->getHeight()) > 1)
2890          continue;
2891        // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
2892        // constrains whatever is using the copy, instead of the copy
2893        // itself. In the case that the copy is coalesced, this
2894        // preserves the intent of the pseudo two-address heurietics.
2895        while (SuccSU->Succs.size() == 1 &&
2896               SuccSU->getNode()->isMachineOpcode() &&
2897               SuccSU->getNode()->getMachineOpcode() ==
2898                 TargetOpcode::COPY_TO_REGCLASS)
2899          SuccSU = SuccSU->Succs.front().getSUnit();
2900        // Don't constrain non-instruction nodes.
2901        if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
2902          continue;
2903        // Don't constrain nodes with physical register defs if the
2904        // predecessor can clobber them.
2905        if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
2906          if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
2907            continue;
2908        }
2909        // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
2910        // these may be coalesced away. We want them close to their uses.
2911        unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
2912        if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
2913            SuccOpc == TargetOpcode::INSERT_SUBREG ||
2914            SuccOpc == TargetOpcode::SUBREG_TO_REG)
2915          continue;
2916        if (!canClobberReachingPhysRegUse(SuccSU, SU, scheduleDAG, TII, TRI) &&
2917            (!canClobber(SuccSU, DUSU) ||
2918             (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
2919             (!SU->isCommutable && SuccSU->isCommutable)) &&
2920            !scheduleDAG->IsReachable(SuccSU, SU)) {
2921          DEBUG(dbgs() << "    Adding a pseudo-two-addr edge from SU #"
2922                       << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
2923          scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Order, /*Latency=*/0,
2924                                        /*Reg=*/0, /*isNormalMemory=*/false,
2925                                        /*isMustAlias=*/false,
2926                                        /*isArtificial=*/true));
2927        }
2928      }
2929    }
2930  }
2931}
2932
2933//===----------------------------------------------------------------------===//
2934//                         Public Constructor Functions
2935//===----------------------------------------------------------------------===//
2936
2937llvm::ScheduleDAGSDNodes *
2938llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
2939                                 CodeGenOpt::Level OptLevel) {
2940  const TargetMachine &TM = IS->TM;
2941  const TargetInstrInfo *TII = TM.getInstrInfo();
2942  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2943
2944  BURegReductionPriorityQueue *PQ =
2945    new BURegReductionPriorityQueue(*IS->MF, false, TII, TRI, 0);
2946  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2947  PQ->setScheduleDAG(SD);
2948  return SD;
2949}
2950
2951llvm::ScheduleDAGSDNodes *
2952llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
2953                                   CodeGenOpt::Level OptLevel) {
2954  const TargetMachine &TM = IS->TM;
2955  const TargetInstrInfo *TII = TM.getInstrInfo();
2956  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2957
2958  SrcRegReductionPriorityQueue *PQ =
2959    new SrcRegReductionPriorityQueue(*IS->MF, false, TII, TRI, 0);
2960  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2961  PQ->setScheduleDAG(SD);
2962  return SD;
2963}
2964
2965llvm::ScheduleDAGSDNodes *
2966llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
2967                                   CodeGenOpt::Level OptLevel) {
2968  const TargetMachine &TM = IS->TM;
2969  const TargetInstrInfo *TII = TM.getInstrInfo();
2970  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2971  const TargetLowering *TLI = &IS->getTargetLowering();
2972
2973  HybridBURRPriorityQueue *PQ =
2974    new HybridBURRPriorityQueue(*IS->MF, true, TII, TRI, TLI);
2975
2976  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
2977  PQ->setScheduleDAG(SD);
2978  return SD;
2979}
2980
2981llvm::ScheduleDAGSDNodes *
2982llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
2983                                CodeGenOpt::Level OptLevel) {
2984  const TargetMachine &TM = IS->TM;
2985  const TargetInstrInfo *TII = TM.getInstrInfo();
2986  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2987  const TargetLowering *TLI = &IS->getTargetLowering();
2988
2989  ILPBURRPriorityQueue *PQ =
2990    new ILPBURRPriorityQueue(*IS->MF, true, TII, TRI, TLI);
2991  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
2992  PQ->setScheduleDAG(SD);
2993  return SD;
2994}
2995