ScheduleDAGRRList.cpp revision 7cead1c297f367069a91935694ae50eb5093c25b
1//===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Evan Cheng and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms.  The basic approach uses a priority
12// queue of available nodes to schedule.  One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "pre-RA-sched"
19#include "llvm/CodeGen/ScheduleDAG.h"
20#include "llvm/CodeGen/SchedulerRegistry.h"
21#include "llvm/CodeGen/SSARegMap.h"
22#include "llvm/Target/MRegisterInfo.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetInstrInfo.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/Statistic.h"
31#include <climits>
32#include <queue>
33#include "llvm/Support/CommandLine.h"
34using namespace llvm;
35
36STATISTIC(NumBacktracks, "Number of times scheduler backtraced");
37STATISTIC(NumUnfolds,    "Number of nodes unfolded");
38STATISTIC(NumDups,       "Number of duplicated nodes");
39STATISTIC(NumCCCopies,   "Number of cross class copies");
40
41static RegisterScheduler
42  burrListDAGScheduler("list-burr",
43                       "  Bottom-up register reduction list scheduling",
44                       createBURRListDAGScheduler);
45static RegisterScheduler
46  tdrListrDAGScheduler("list-tdrr",
47                       "  Top-down register reduction list scheduling",
48                       createTDRRListDAGScheduler);
49
50namespace {
51//===----------------------------------------------------------------------===//
52/// ScheduleDAGRRList - The actual register reduction list scheduler
53/// implementation.  This supports both top-down and bottom-up scheduling.
54///
55class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAG {
56private:
57  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
58  /// it is top-down.
59  bool isBottomUp;
60
61  /// AvailableQueue - The priority queue to use for the available SUnits.
62  ///a
63  SchedulingPriorityQueue *AvailableQueue;
64
65  /// LiveRegs / LiveRegDefs - A set of physical registers and their definition
66  /// that are "live". These nodes must be scheduled before any other nodes that
67  /// modifies the registers can be scheduled.
68  SmallSet<unsigned, 4> LiveRegs;
69  std::vector<SUnit*> LiveRegDefs;
70  std::vector<unsigned> LiveRegCycles;
71
72public:
73  ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
74                  const TargetMachine &tm, bool isbottomup,
75                  SchedulingPriorityQueue *availqueue)
76    : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup),
77      AvailableQueue(availqueue) {
78    }
79
80  ~ScheduleDAGRRList() {
81    delete AvailableQueue;
82  }
83
84  void Schedule();
85
86private:
87  void ReleasePred(SUnit*, bool, unsigned);
88  void ReleaseSucc(SUnit*, bool isChain, unsigned);
89  void CapturePred(SUnit*, SUnit*, bool);
90  void ScheduleNodeBottomUp(SUnit*, unsigned);
91  void ScheduleNodeTopDown(SUnit*, unsigned);
92  void UnscheduleNodeBottomUp(SUnit*);
93  void BacktrackBottomUp(SUnit*, unsigned, unsigned&);
94  SUnit *CopyAndMoveSuccessors(SUnit*);
95  void InsertCCCopiesAndMoveSuccs(SUnit*, unsigned,
96                                  const TargetRegisterClass*,
97                                  const TargetRegisterClass*,
98                                  SmallVector<SUnit*, 2>&);
99  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
100  void ListScheduleTopDown();
101  void ListScheduleBottomUp();
102  void CommuteNodesToReducePressure();
103};
104}  // end anonymous namespace
105
106
107/// Schedule - Schedule the DAG using list scheduling.
108void ScheduleDAGRRList::Schedule() {
109  DOUT << "********** List Scheduling **********\n";
110
111  LiveRegDefs.resize(MRI->getNumRegs(), NULL);
112  LiveRegCycles.resize(MRI->getNumRegs(), 0);
113
114  // Build scheduling units.
115  BuildSchedUnits();
116
117  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
118          SUnits[su].dumpAll(&DAG));
119  CalculateDepths();
120  CalculateHeights();
121
122  AvailableQueue->initNodes(SUnitMap, SUnits);
123
124  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
125  if (isBottomUp)
126    ListScheduleBottomUp();
127  else
128    ListScheduleTopDown();
129
130  AvailableQueue->releaseState();
131
132  CommuteNodesToReducePressure();
133
134  DOUT << "*** Final schedule ***\n";
135  DEBUG(dumpSchedule());
136  DOUT << "\n";
137
138  // Emit in scheduled order
139  EmitSchedule();
140}
141
142/// CommuteNodesToReducePressure - If a node is two-address and commutable, and
143/// it is not the last use of its first operand, add it to the CommuteSet if
144/// possible. It will be commuted when it is translated to a MI.
145void ScheduleDAGRRList::CommuteNodesToReducePressure() {
146  SmallPtrSet<SUnit*, 4> OperandSeen;
147  for (unsigned i = Sequence.size()-1; i != 0; --i) {  // Ignore first node.
148    SUnit *SU = Sequence[i];
149    if (!SU || !SU->Node) continue;
150    if (SU->isCommutable) {
151      unsigned Opc = SU->Node->getTargetOpcode();
152      unsigned NumRes = TII->getNumDefs(Opc);
153      unsigned NumOps = CountOperands(SU->Node);
154      for (unsigned j = 0; j != NumOps; ++j) {
155        if (TII->getOperandConstraint(Opc, j+NumRes, TOI::TIED_TO) == -1)
156          continue;
157
158        SDNode *OpN = SU->Node->getOperand(j).Val;
159        SUnit *OpSU = isPassiveNode(OpN) ? NULL : SUnitMap[OpN][SU->InstanceNo];
160        if (OpSU && OperandSeen.count(OpSU) == 1) {
161          // Ok, so SU is not the last use of OpSU, but SU is two-address so
162          // it will clobber OpSU. Try to commute SU if no other source operands
163          // are live below.
164          bool DoCommute = true;
165          for (unsigned k = 0; k < NumOps; ++k) {
166            if (k != j) {
167              OpN = SU->Node->getOperand(k).Val;
168              OpSU = isPassiveNode(OpN) ? NULL : SUnitMap[OpN][SU->InstanceNo];
169              if (OpSU && OperandSeen.count(OpSU) == 1) {
170                DoCommute = false;
171                break;
172              }
173            }
174          }
175          if (DoCommute)
176            CommuteSet.insert(SU->Node);
177        }
178
179        // Only look at the first use&def node for now.
180        break;
181      }
182    }
183
184    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
185         I != E; ++I) {
186      if (!I->isCtrl)
187        OperandSeen.insert(I->Dep);
188    }
189  }
190}
191
192//===----------------------------------------------------------------------===//
193//  Bottom-Up Scheduling
194//===----------------------------------------------------------------------===//
195
196/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
197/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
198void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain,
199                                    unsigned CurCycle) {
200  // FIXME: the distance between two nodes is not always == the predecessor's
201  // latency. For example, the reader can very well read the register written
202  // by the predecessor later than the issue cycle. It also depends on the
203  // interrupt model (drain vs. freeze).
204  PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
205
206  --PredSU->NumSuccsLeft;
207
208#ifndef NDEBUG
209  if (PredSU->NumSuccsLeft < 0) {
210    cerr << "*** List scheduling failed! ***\n";
211    PredSU->dump(&DAG);
212    cerr << " has been released too many times!\n";
213    assert(0);
214  }
215#endif
216
217  if (PredSU->NumSuccsLeft == 0) {
218    // EntryToken has to go last!  Special case it here.
219    if (!PredSU->Node || PredSU->Node->getOpcode() != ISD::EntryToken) {
220      PredSU->isAvailable = true;
221      AvailableQueue->push(PredSU);
222    }
223  }
224}
225
226/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
227/// count of its predecessors. If a predecessor pending count is zero, add it to
228/// the Available queue.
229void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
230  DOUT << "*** Scheduling [" << CurCycle << "]: ";
231  DEBUG(SU->dump(&DAG));
232  SU->Cycle = CurCycle;
233
234  AvailableQueue->ScheduledNode(SU);
235
236  // Bottom up: release predecessors
237  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
238       I != E; ++I) {
239    ReleasePred(I->Dep, I->isCtrl, CurCycle);
240    if (I->Cost < 0)  {
241      // This is a physical register dependency and it's impossible or
242      // expensive to copy the register. Make sure nothing that can
243      // clobber the register is scheduled between the predecessor and
244      // this node.
245      if (LiveRegs.insert(I->Reg)) {
246        LiveRegDefs[I->Reg] = I->Dep;
247        LiveRegCycles[I->Reg] = CurCycle;
248      }
249    }
250  }
251
252  // Release all the implicit physical register defs that are live.
253  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
254       I != E; ++I) {
255    if (I->Cost < 0)  {
256      if (LiveRegCycles[I->Reg] == I->Dep->Cycle) {
257        LiveRegs.erase(I->Reg);
258        assert(LiveRegDefs[I->Reg] == SU &&
259               "Physical register dependency violated?");
260        LiveRegDefs[I->Reg] = NULL;
261        LiveRegCycles[I->Reg] = 0;
262      }
263    }
264  }
265
266  SU->isScheduled = true;
267}
268
269/// CapturePred - This does the opposite of ReleasePred. Since SU is being
270/// unscheduled, incrcease the succ left count of its predecessors. Remove
271/// them from AvailableQueue if necessary.
272void ScheduleDAGRRList::CapturePred(SUnit *PredSU, SUnit *SU, bool isChain) {
273  PredSU->CycleBound = 0;
274  for (SUnit::succ_iterator I = PredSU->Succs.begin(), E = PredSU->Succs.end();
275       I != E; ++I) {
276    if (I->Dep == SU)
277      continue;
278    PredSU->CycleBound = std::max(PredSU->CycleBound,
279                                  I->Dep->Cycle + PredSU->Latency);
280  }
281
282  if (PredSU->isAvailable) {
283    PredSU->isAvailable = false;
284    if (!PredSU->isPending)
285      AvailableQueue->remove(PredSU);
286  }
287
288  ++PredSU->NumSuccsLeft;
289}
290
291/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
292/// its predecessor states to reflect the change.
293void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
294  DOUT << "*** Unscheduling [" << SU->Cycle << "]: ";
295  DEBUG(SU->dump(&DAG));
296
297  AvailableQueue->UnscheduledNode(SU);
298
299  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
300       I != E; ++I) {
301    CapturePred(I->Dep, SU, I->isCtrl);
302    if (I->Cost < 0 && SU->Cycle == LiveRegCycles[I->Reg])  {
303      LiveRegs.erase(I->Reg);
304      assert(LiveRegDefs[I->Reg] == I->Dep &&
305             "Physical register dependency violated?");
306      LiveRegDefs[I->Reg] = NULL;
307      LiveRegCycles[I->Reg] = 0;
308    }
309  }
310
311  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
312       I != E; ++I) {
313    if (I->Cost < 0)  {
314      if (LiveRegs.insert(I->Reg)) {
315        assert(!LiveRegDefs[I->Reg] &&
316               "Physical register dependency violated?");
317        LiveRegDefs[I->Reg] = SU;
318      }
319      if (I->Dep->Cycle < LiveRegCycles[I->Reg])
320        LiveRegCycles[I->Reg] = I->Dep->Cycle;
321    }
322  }
323
324  SU->Cycle = 0;
325  SU->isScheduled = false;
326  SU->isAvailable = true;
327  AvailableQueue->push(SU);
328}
329
330// FIXME: This is probably too slow!
331static void isReachable(SUnit *SU, SUnit *TargetSU,
332                        SmallPtrSet<SUnit*, 32> &Visited, bool &Reached) {
333  if (Reached) return;
334  if (SU == TargetSU) {
335    Reached = true;
336    return;
337  }
338  if (!Visited.insert(SU)) return;
339
340  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E;
341       ++I)
342    isReachable(I->Dep, TargetSU, Visited, Reached);
343}
344
345static bool isReachable(SUnit *SU, SUnit *TargetSU) {
346  SmallPtrSet<SUnit*, 32> Visited;
347  bool Reached = false;
348  isReachable(SU, TargetSU, Visited, Reached);
349  return Reached;
350}
351
352/// willCreateCycle - Returns true if adding an edge from SU to TargetSU will
353/// create a cycle.
354static bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
355  if (isReachable(TargetSU, SU))
356    return true;
357  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
358       I != E; ++I)
359    if (I->Cost < 0 && isReachable(TargetSU, I->Dep))
360      return true;
361  return false;
362}
363
364/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
365/// BTCycle in order to schedule a specific node. Returns the last unscheduled
366/// SUnit. Also returns if a successor is unscheduled in the process.
367void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle,
368                                          unsigned &CurCycle) {
369  SUnit *OldSU = NULL;
370  while (CurCycle > BtCycle) {
371    OldSU = Sequence.back();
372    Sequence.pop_back();
373    if (SU->isSucc(OldSU))
374      // Don't try to remove SU from AvailableQueue.
375      SU->isAvailable = false;
376    UnscheduleNodeBottomUp(OldSU);
377    --CurCycle;
378  }
379
380
381  if (SU->isSucc(OldSU)) {
382    assert(false && "Something is wrong!");
383    abort();
384  }
385
386  ++NumBacktracks;
387}
388
389/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
390/// successors to the newly created node.
391SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
392  if (SU->FlaggedNodes.size())
393    return NULL;
394
395  SDNode *N = SU->Node;
396  if (!N)
397    return NULL;
398
399  SUnit *NewSU;
400  bool TryUnfold = false;
401  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
402    MVT::ValueType VT = N->getValueType(i);
403    if (VT == MVT::Flag)
404      return NULL;
405    else if (VT == MVT::Other)
406      TryUnfold = true;
407  }
408  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
409    const SDOperand &Op = N->getOperand(i);
410    MVT::ValueType VT = Op.Val->getValueType(Op.ResNo);
411    if (VT == MVT::Flag)
412      return NULL;
413  }
414
415  if (TryUnfold) {
416    SmallVector<SDNode*, 4> NewNodes;
417    if (!MRI->unfoldMemoryOperand(DAG, N, NewNodes))
418      return NULL;
419
420    DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
421    assert(NewNodes.size() == 2 && "Expected a load folding node!");
422
423    N = NewNodes[1];
424    SDNode *LoadNode = NewNodes[0];
425    unsigned NumVals = N->getNumValues();
426    unsigned OldNumVals = SU->Node->getNumValues();
427    for (unsigned i = 0; i != NumVals; ++i)
428      DAG.ReplaceAllUsesOfValueWith(SDOperand(SU->Node, i), SDOperand(N, i));
429    DAG.ReplaceAllUsesOfValueWith(SDOperand(SU->Node, OldNumVals-1),
430                                  SDOperand(LoadNode, 1));
431
432    SUnit *NewSU = NewSUnit(N);
433    SUnitMap[N].push_back(NewSU);
434    const TargetInstrDescriptor *TID = &TII->get(N->getTargetOpcode());
435    for (unsigned i = 0; i != TID->numOperands; ++i) {
436      if (TID->getOperandConstraint(i, TOI::TIED_TO) != -1) {
437        NewSU->isTwoAddress = true;
438        break;
439      }
440    }
441    if (TID->Flags & M_COMMUTABLE)
442      NewSU->isCommutable = true;
443    // FIXME: Calculate height / depth and propagate the changes?
444    NewSU->Depth = SU->Depth;
445    NewSU->Height = SU->Height;
446    ComputeLatency(NewSU);
447
448    // LoadNode may already exist. This can happen when there is another
449    // load from the same location and producing the same type of value
450    // but it has different alignment or volatileness.
451    bool isNewLoad = true;
452    SUnit *LoadSU;
453    DenseMap<SDNode*, std::vector<SUnit*> >::iterator SMI =
454      SUnitMap.find(LoadNode);
455    if (SMI != SUnitMap.end()) {
456      LoadSU = SMI->second.front();
457      isNewLoad = false;
458    } else {
459      LoadSU = NewSUnit(LoadNode);
460      SUnitMap[LoadNode].push_back(LoadSU);
461
462      LoadSU->Depth = SU->Depth;
463      LoadSU->Height = SU->Height;
464      ComputeLatency(LoadSU);
465    }
466
467    SUnit *ChainPred = NULL;
468    SmallVector<SDep, 4> ChainSuccs;
469    SmallVector<SDep, 4> LoadPreds;
470    SmallVector<SDep, 4> NodePreds;
471    SmallVector<SDep, 4> NodeSuccs;
472    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
473         I != E; ++I) {
474      if (I->isCtrl)
475        ChainPred = I->Dep;
476      else if (I->Dep->Node && I->Dep->Node->isOperand(LoadNode))
477        LoadPreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
478      else
479        NodePreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
480    }
481    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
482         I != E; ++I) {
483      if (I->isCtrl)
484        ChainSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
485                                  I->isCtrl, I->isSpecial));
486      else
487        NodeSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
488                                 I->isCtrl, I->isSpecial));
489    }
490
491    SU->removePred(ChainPred, true, false);
492    if (isNewLoad)
493      LoadSU->addPred(ChainPred, true, false);
494    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
495      SDep *Pred = &LoadPreds[i];
496      SU->removePred(Pred->Dep, Pred->isCtrl, Pred->isSpecial);
497      if (isNewLoad)
498        LoadSU->addPred(Pred->Dep, Pred->isCtrl, Pred->isSpecial,
499                        Pred->Reg, Pred->Cost);
500    }
501    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
502      SDep *Pred = &NodePreds[i];
503      SU->removePred(Pred->Dep, Pred->isCtrl, Pred->isSpecial);
504      NewSU->addPred(Pred->Dep, Pred->isCtrl, Pred->isSpecial,
505                     Pred->Reg, Pred->Cost);
506    }
507    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
508      SDep *Succ = &NodeSuccs[i];
509      Succ->Dep->removePred(SU, Succ->isCtrl, Succ->isSpecial);
510      Succ->Dep->addPred(NewSU, Succ->isCtrl, Succ->isSpecial,
511                         Succ->Reg, Succ->Cost);
512    }
513    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
514      SDep *Succ = &ChainSuccs[i];
515      Succ->Dep->removePred(SU, Succ->isCtrl, Succ->isSpecial);
516      if (isNewLoad)
517        Succ->Dep->addPred(LoadSU, Succ->isCtrl, Succ->isSpecial,
518                           Succ->Reg, Succ->Cost);
519    }
520    if (isNewLoad)
521      NewSU->addPred(LoadSU, false, false);
522
523    if (isNewLoad)
524      AvailableQueue->addNode(LoadSU);
525    AvailableQueue->addNode(NewSU);
526
527    ++NumUnfolds;
528
529    if (NewSU->NumSuccsLeft == 0) {
530      NewSU->isAvailable = true;
531      return NewSU;
532    }
533    SU = NewSU;
534  }
535
536  DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
537  NewSU = Clone(SU);
538
539  // New SUnit has the exact same predecessors.
540  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
541       I != E; ++I)
542    if (!I->isSpecial) {
543      NewSU->addPred(I->Dep, I->isCtrl, false, I->Reg, I->Cost);
544      NewSU->Depth = std::max(NewSU->Depth, I->Dep->Depth+1);
545    }
546
547  // Only copy scheduled successors. Cut them from old node's successor
548  // list and move them over.
549  SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
550  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
551       I != E; ++I) {
552    if (I->isSpecial)
553      continue;
554    if (I->Dep->isScheduled) {
555      NewSU->Height = std::max(NewSU->Height, I->Dep->Height+1);
556      I->Dep->addPred(NewSU, I->isCtrl, false, I->Reg, I->Cost);
557      DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
558    }
559  }
560  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
561    SUnit *Succ = DelDeps[i].first;
562    bool isCtrl = DelDeps[i].second;
563    Succ->removePred(SU, isCtrl, false);
564  }
565
566  AvailableQueue->updateNode(SU);
567  AvailableQueue->addNode(NewSU);
568
569  ++NumDups;
570  return NewSU;
571}
572
573/// InsertCCCopiesAndMoveSuccs - Insert expensive cross register class copies
574/// and move all scheduled successors of the given SUnit to the last copy.
575void ScheduleDAGRRList::InsertCCCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
576                                              const TargetRegisterClass *DestRC,
577                                              const TargetRegisterClass *SrcRC,
578                                               SmallVector<SUnit*, 2> &Copies) {
579  SUnit *CopyFromSU = NewSUnit(NULL);
580  CopyFromSU->CopySrcRC = SrcRC;
581  CopyFromSU->CopyDstRC = DestRC;
582  CopyFromSU->Depth = SU->Depth;
583  CopyFromSU->Height = SU->Height;
584
585  SUnit *CopyToSU = NewSUnit(NULL);
586  CopyToSU->CopySrcRC = DestRC;
587  CopyToSU->CopyDstRC = SrcRC;
588
589  // Only copy scheduled successors. Cut them from old node's successor
590  // list and move them over.
591  SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
592  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
593       I != E; ++I) {
594    if (I->isSpecial)
595      continue;
596    if (I->Dep->isScheduled) {
597      CopyToSU->Height = std::max(CopyToSU->Height, I->Dep->Height+1);
598      I->Dep->addPred(CopyToSU, I->isCtrl, false, I->Reg, I->Cost);
599      DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
600    }
601  }
602  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
603    SUnit *Succ = DelDeps[i].first;
604    bool isCtrl = DelDeps[i].second;
605    Succ->removePred(SU, isCtrl, false);
606  }
607
608  CopyFromSU->addPred(SU, false, false, Reg, -1);
609  CopyToSU->addPred(CopyFromSU, false, false, Reg, 1);
610
611  AvailableQueue->updateNode(SU);
612  AvailableQueue->addNode(CopyFromSU);
613  AvailableQueue->addNode(CopyToSU);
614  Copies.push_back(CopyFromSU);
615  Copies.push_back(CopyToSU);
616
617  ++NumCCCopies;
618}
619
620/// getPhysicalRegisterVT - Returns the ValueType of the physical register
621/// definition of the specified node.
622/// FIXME: Move to SelectionDAG?
623static MVT::ValueType getPhysicalRegisterVT(SDNode *N, unsigned Reg,
624                                            const TargetInstrInfo *TII) {
625  const TargetInstrDescriptor &TID = TII->get(N->getTargetOpcode());
626  assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
627  unsigned NumRes = TID.numDefs;
628  for (const unsigned *ImpDef = TID.ImplicitDefs; *ImpDef; ++ImpDef) {
629    if (Reg == *ImpDef)
630      break;
631    ++NumRes;
632  }
633  return N->getValueType(NumRes);
634}
635
636/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
637/// scheduling of the given node to satisfy live physical register dependencies.
638/// If the specific node is the last one that's available to schedule, do
639/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
640bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
641                                                 SmallVector<unsigned, 4> &LRegs){
642  if (LiveRegs.empty())
643    return false;
644
645  SmallSet<unsigned, 4> RegAdded;
646  // If this node would clobber any "live" register, then it's not ready.
647  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
648       I != E; ++I) {
649    if (I->Cost < 0)  {
650      unsigned Reg = I->Reg;
651      if (LiveRegs.count(Reg) && LiveRegDefs[Reg] != I->Dep) {
652        if (RegAdded.insert(Reg))
653          LRegs.push_back(Reg);
654      }
655      for (const unsigned *Alias = MRI->getAliasSet(Reg);
656           *Alias; ++Alias)
657        if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != I->Dep) {
658          if (RegAdded.insert(*Alias))
659            LRegs.push_back(*Alias);
660        }
661    }
662  }
663
664  for (unsigned i = 0, e = SU->FlaggedNodes.size()+1; i != e; ++i) {
665    SDNode *Node = (i == 0) ? SU->Node : SU->FlaggedNodes[i-1];
666    if (!Node || !Node->isTargetOpcode())
667      continue;
668    const TargetInstrDescriptor &TID = TII->get(Node->getTargetOpcode());
669    if (!TID.ImplicitDefs)
670      continue;
671    for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
672      if (LiveRegs.count(*Reg) && LiveRegDefs[*Reg] != SU) {
673        if (RegAdded.insert(*Reg))
674          LRegs.push_back(*Reg);
675      }
676      for (const unsigned *Alias = MRI->getAliasSet(*Reg);
677           *Alias; ++Alias)
678        if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != SU) {
679          if (RegAdded.insert(*Alias))
680            LRegs.push_back(*Alias);
681        }
682    }
683  }
684  return !LRegs.empty();
685}
686
687
688/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
689/// schedulers.
690void ScheduleDAGRRList::ListScheduleBottomUp() {
691  unsigned CurCycle = 0;
692  // Add root to Available queue.
693  SUnit *RootSU = SUnitMap[DAG.getRoot().Val].front();
694  RootSU->isAvailable = true;
695  AvailableQueue->push(RootSU);
696
697  // While Available queue is not empty, grab the node with the highest
698  // priority. If it is not ready put it back.  Schedule the node.
699  SmallVector<SUnit*, 4> NotReady;
700  while (!AvailableQueue->empty()) {
701    bool Delayed = false;
702    DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
703    SUnit *CurSU = AvailableQueue->pop();
704    while (CurSU) {
705      if (CurSU->CycleBound <= CurCycle) {
706        SmallVector<unsigned, 4> LRegs;
707        if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
708          break;
709        Delayed = true;
710        LRegsMap.insert(std::make_pair(CurSU, LRegs));
711      }
712
713      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
714      NotReady.push_back(CurSU);
715      CurSU = AvailableQueue->pop();
716    }
717
718    // All candidates are delayed due to live physical reg dependencies.
719    // Try backtracking, code duplication, or inserting cross class copies
720    // to resolve it.
721    if (Delayed && !CurSU) {
722      for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
723        SUnit *TrySU = NotReady[i];
724        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
725
726        // Try unscheduling up to the point where it's safe to schedule
727        // this node.
728        unsigned LiveCycle = CurCycle;
729        for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
730          unsigned Reg = LRegs[j];
731          unsigned LCycle = LiveRegCycles[Reg];
732          LiveCycle = std::min(LiveCycle, LCycle);
733        }
734        SUnit *OldSU = Sequence[LiveCycle];
735        if (!WillCreateCycle(TrySU, OldSU))  {
736          BacktrackBottomUp(TrySU, LiveCycle, CurCycle);
737          // Force the current node to be scheduled before the node that
738          // requires the physical reg dep.
739          if (OldSU->isAvailable) {
740            OldSU->isAvailable = false;
741            AvailableQueue->remove(OldSU);
742          }
743          TrySU->addPred(OldSU, true, true);
744          // If one or more successors has been unscheduled, then the current
745          // node is no longer avaialable. Schedule a successor that's now
746          // available instead.
747          if (!TrySU->isAvailable)
748            CurSU = AvailableQueue->pop();
749          else {
750            CurSU = TrySU;
751            TrySU->isPending = false;
752            NotReady.erase(NotReady.begin()+i);
753          }
754          break;
755        }
756      }
757
758      if (!CurSU) {
759        // Can't backtrace. Try duplicating the nodes that produces these
760        // "expensive to copy" values to break the dependency. In case even
761        // that doesn't work, insert cross class copies.
762        SUnit *TrySU = NotReady[0];
763        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
764        assert(LRegs.size() == 1 && "Can't handle this yet!");
765        unsigned Reg = LRegs[0];
766        SUnit *LRDef = LiveRegDefs[Reg];
767        SUnit *NewDef = CopyAndMoveSuccessors(LRDef);
768        if (!NewDef) {
769          // Issue expensive cross register class copies.
770          MVT::ValueType VT = getPhysicalRegisterVT(LRDef->Node, Reg, TII);
771          const TargetRegisterClass *RC =
772            MRI->getPhysicalRegisterRegClass(VT, Reg);
773          const TargetRegisterClass *DestRC = MRI->getCrossCopyRegClass(RC);
774          if (!DestRC) {
775            assert(false && "Don't know how to copy this physical register!");
776            abort();
777          }
778          SmallVector<SUnit*, 2> Copies;
779          InsertCCCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
780          DOUT << "Adding an edge from SU # " << TrySU->NodeNum
781               << " to SU #" << Copies.front()->NodeNum << "\n";
782          TrySU->addPred(Copies.front(), true, true);
783          NewDef = Copies.back();
784        }
785
786        DOUT << "Adding an edge from SU # " << NewDef->NodeNum
787             << " to SU #" << TrySU->NodeNum << "\n";
788        LiveRegDefs[Reg] = NewDef;
789        NewDef->addPred(TrySU, true, true);
790        TrySU->isAvailable = false;
791        CurSU = NewDef;
792      }
793
794      if (!CurSU) {
795        assert(false && "Unable to resolve live physical register dependencies!");
796        abort();
797      }
798    }
799
800    // Add the nodes that aren't ready back onto the available list.
801    for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
802      NotReady[i]->isPending = false;
803      // May no longer be available due to backtracking.
804      if (NotReady[i]->isAvailable)
805        AvailableQueue->push(NotReady[i]);
806    }
807    NotReady.clear();
808
809    if (!CurSU)
810      Sequence.push_back(0);
811    else {
812      ScheduleNodeBottomUp(CurSU, CurCycle);
813      Sequence.push_back(CurSU);
814    }
815    ++CurCycle;
816  }
817
818  // Add entry node last
819  if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
820    SUnit *Entry = SUnitMap[DAG.getEntryNode().Val].front();
821    Sequence.push_back(Entry);
822  }
823
824  // Reverse the order if it is bottom up.
825  std::reverse(Sequence.begin(), Sequence.end());
826
827
828#ifndef NDEBUG
829  // Verify that all SUnits were scheduled.
830  bool AnyNotSched = false;
831  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
832    if (SUnits[i].NumSuccsLeft != 0) {
833      if (!AnyNotSched)
834        cerr << "*** List scheduling failed! ***\n";
835      SUnits[i].dump(&DAG);
836      cerr << "has not been scheduled!\n";
837      AnyNotSched = true;
838    }
839  }
840  assert(!AnyNotSched);
841#endif
842}
843
844//===----------------------------------------------------------------------===//
845//  Top-Down Scheduling
846//===----------------------------------------------------------------------===//
847
848/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
849/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
850void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain,
851                                    unsigned CurCycle) {
852  // FIXME: the distance between two nodes is not always == the predecessor's
853  // latency. For example, the reader can very well read the register written
854  // by the predecessor later than the issue cycle. It also depends on the
855  // interrupt model (drain vs. freeze).
856  SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
857
858  --SuccSU->NumPredsLeft;
859
860#ifndef NDEBUG
861  if (SuccSU->NumPredsLeft < 0) {
862    cerr << "*** List scheduling failed! ***\n";
863    SuccSU->dump(&DAG);
864    cerr << " has been released too many times!\n";
865    assert(0);
866  }
867#endif
868
869  if (SuccSU->NumPredsLeft == 0) {
870    SuccSU->isAvailable = true;
871    AvailableQueue->push(SuccSU);
872  }
873}
874
875
876/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
877/// count of its successors. If a successor pending count is zero, add it to
878/// the Available queue.
879void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
880  DOUT << "*** Scheduling [" << CurCycle << "]: ";
881  DEBUG(SU->dump(&DAG));
882  SU->Cycle = CurCycle;
883
884  AvailableQueue->ScheduledNode(SU);
885
886  // Top down: release successors
887  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
888       I != E; ++I)
889    ReleaseSucc(I->Dep, I->isCtrl, CurCycle);
890  SU->isScheduled = true;
891}
892
893/// ListScheduleTopDown - The main loop of list scheduling for top-down
894/// schedulers.
895void ScheduleDAGRRList::ListScheduleTopDown() {
896  unsigned CurCycle = 0;
897  SUnit *Entry = SUnitMap[DAG.getEntryNode().Val].front();
898
899  // All leaves to Available queue.
900  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
901    // It is available if it has no predecessors.
902    if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
903      AvailableQueue->push(&SUnits[i]);
904      SUnits[i].isAvailable = true;
905    }
906  }
907
908  // Emit the entry node first.
909  ScheduleNodeTopDown(Entry, CurCycle);
910  Sequence.push_back(Entry);
911  ++CurCycle;
912
913  // While Available queue is not empty, grab the node with the highest
914  // priority. If it is not ready put it back.  Schedule the node.
915  std::vector<SUnit*> NotReady;
916  while (!AvailableQueue->empty()) {
917    SUnit *CurSU = AvailableQueue->pop();
918    while (CurSU && CurSU->CycleBound > CurCycle) {
919      NotReady.push_back(CurSU);
920      CurSU = AvailableQueue->pop();
921    }
922
923    // Add the nodes that aren't ready back onto the available list.
924    AvailableQueue->push_all(NotReady);
925    NotReady.clear();
926
927    if (!CurSU)
928      Sequence.push_back(0);
929    else {
930      ScheduleNodeTopDown(CurSU, CurCycle);
931      Sequence.push_back(CurSU);
932    }
933    CurCycle++;
934  }
935
936
937#ifndef NDEBUG
938  // Verify that all SUnits were scheduled.
939  bool AnyNotSched = false;
940  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
941    if (!SUnits[i].isScheduled) {
942      if (!AnyNotSched)
943        cerr << "*** List scheduling failed! ***\n";
944      SUnits[i].dump(&DAG);
945      cerr << "has not been scheduled!\n";
946      AnyNotSched = true;
947    }
948  }
949  assert(!AnyNotSched);
950#endif
951}
952
953
954
955//===----------------------------------------------------------------------===//
956//                RegReductionPriorityQueue Implementation
957//===----------------------------------------------------------------------===//
958//
959// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
960// to reduce register pressure.
961//
962namespace {
963  template<class SF>
964  class RegReductionPriorityQueue;
965
966  /// Sorting functions for the Available queue.
967  struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
968    RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
969    bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
970    bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
971
972    bool operator()(const SUnit* left, const SUnit* right) const;
973  };
974
975  struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
976    RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
977    td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
978    td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
979
980    bool operator()(const SUnit* left, const SUnit* right) const;
981  };
982}  // end anonymous namespace
983
984static inline bool isCopyFromLiveIn(const SUnit *SU) {
985  SDNode *N = SU->Node;
986  return N && N->getOpcode() == ISD::CopyFromReg &&
987    N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
988}
989
990namespace {
991  template<class SF>
992  class VISIBILITY_HIDDEN RegReductionPriorityQueue
993   : public SchedulingPriorityQueue {
994    std::priority_queue<SUnit*, std::vector<SUnit*>, SF> Queue;
995
996  public:
997    RegReductionPriorityQueue() :
998    Queue(SF(this)) {}
999
1000    virtual void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
1001                           std::vector<SUnit> &sunits) {}
1002
1003    virtual void addNode(const SUnit *SU) {}
1004
1005    virtual void updateNode(const SUnit *SU) {}
1006
1007    virtual void releaseState() {}
1008
1009    virtual unsigned getNodePriority(const SUnit *SU) const {
1010      return 0;
1011    }
1012
1013    unsigned size() const { return Queue.size(); }
1014
1015    bool empty() const { return Queue.empty(); }
1016
1017    void push(SUnit *U) {
1018      Queue.push(U);
1019    }
1020    void push_all(const std::vector<SUnit *> &Nodes) {
1021      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
1022        Queue.push(Nodes[i]);
1023    }
1024
1025    SUnit *pop() {
1026      if (empty()) return NULL;
1027      SUnit *V = Queue.top();
1028      Queue.pop();
1029      return V;
1030    }
1031
1032    /// remove - This is a really inefficient way to remove a node from a
1033    /// priority queue.  We should roll our own heap to make this better or
1034    /// something.
1035    void remove(SUnit *SU) {
1036      std::vector<SUnit*> Temp;
1037
1038      assert(!Queue.empty() && "Not in queue!");
1039      while (Queue.top() != SU) {
1040        Temp.push_back(Queue.top());
1041        Queue.pop();
1042        assert(!Queue.empty() && "Not in queue!");
1043      }
1044
1045      // Remove the node from the PQ.
1046      Queue.pop();
1047
1048      // Add all the other nodes back.
1049      for (unsigned i = 0, e = Temp.size(); i != e; ++i)
1050        Queue.push(Temp[i]);
1051    }
1052  };
1053
1054  template<class SF>
1055  class VISIBILITY_HIDDEN BURegReductionPriorityQueue
1056   : public RegReductionPriorityQueue<SF> {
1057    // SUnitMap SDNode to SUnit mapping (n -> n).
1058    DenseMap<SDNode*, std::vector<SUnit*> > *SUnitMap;
1059
1060    // SUnits - The SUnits for the current graph.
1061    const std::vector<SUnit> *SUnits;
1062
1063    // SethiUllmanNumbers - The SethiUllman number for each node.
1064    std::vector<unsigned> SethiUllmanNumbers;
1065
1066    const TargetInstrInfo *TII;
1067  public:
1068    explicit BURegReductionPriorityQueue(const TargetInstrInfo *tii)
1069      : TII(tii) {}
1070
1071    void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
1072                   std::vector<SUnit> &sunits) {
1073      SUnitMap = &sumap;
1074      SUnits = &sunits;
1075      // Add pseudo dependency edges for two-address nodes.
1076      AddPseudoTwoAddrDeps();
1077      // Calculate node priorities.
1078      CalculateSethiUllmanNumbers();
1079    }
1080
1081    void addNode(const SUnit *SU) {
1082      SethiUllmanNumbers.resize(SUnits->size(), 0);
1083      CalcNodeSethiUllmanNumber(SU);
1084    }
1085
1086    void updateNode(const SUnit *SU) {
1087      SethiUllmanNumbers[SU->NodeNum] = 0;
1088      CalcNodeSethiUllmanNumber(SU);
1089    }
1090
1091    void releaseState() {
1092      SUnits = 0;
1093      SethiUllmanNumbers.clear();
1094    }
1095
1096    unsigned getNodePriority(const SUnit *SU) const {
1097      assert(SU->NodeNum < SethiUllmanNumbers.size());
1098      unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
1099      if (Opc == ISD::CopyFromReg && !isCopyFromLiveIn(SU))
1100        // CopyFromReg should be close to its def because it restricts
1101        // allocation choices. But if it is a livein then perhaps we want it
1102        // closer to its uses so it can be coalesced.
1103        return 0xffff;
1104      else if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1105        // CopyToReg should be close to its uses to facilitate coalescing and
1106        // avoid spilling.
1107        return 0;
1108      else if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
1109               Opc == TargetInstrInfo::INSERT_SUBREG)
1110        // EXTRACT_SUBREG / INSERT_SUBREG should be close to its use to
1111        // facilitate coalescing.
1112        return 0;
1113      else if (SU->NumSuccs == 0)
1114        // If SU does not have a use, i.e. it doesn't produce a value that would
1115        // be consumed (e.g. store), then it terminates a chain of computation.
1116        // Give it a large SethiUllman number so it will be scheduled right
1117        // before its predecessors that it doesn't lengthen their live ranges.
1118        return 0xffff;
1119      else if (SU->NumPreds == 0)
1120        // If SU does not have a def, schedule it close to its uses because it
1121        // does not lengthen any live ranges.
1122        return 0;
1123      else
1124        return SethiUllmanNumbers[SU->NodeNum];
1125    }
1126
1127  private:
1128    bool canClobber(SUnit *SU, SUnit *Op);
1129    void AddPseudoTwoAddrDeps();
1130    void CalculateSethiUllmanNumbers();
1131    unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
1132  };
1133
1134
1135  template<class SF>
1136  class VISIBILITY_HIDDEN TDRegReductionPriorityQueue
1137   : public RegReductionPriorityQueue<SF> {
1138    // SUnitMap SDNode to SUnit mapping (n -> n).
1139    DenseMap<SDNode*, std::vector<SUnit*> > *SUnitMap;
1140
1141    // SUnits - The SUnits for the current graph.
1142    const std::vector<SUnit> *SUnits;
1143
1144    // SethiUllmanNumbers - The SethiUllman number for each node.
1145    std::vector<unsigned> SethiUllmanNumbers;
1146
1147  public:
1148    TDRegReductionPriorityQueue() {}
1149
1150    void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
1151                   std::vector<SUnit> &sunits) {
1152      SUnitMap = &sumap;
1153      SUnits = &sunits;
1154      // Calculate node priorities.
1155      CalculateSethiUllmanNumbers();
1156    }
1157
1158    void addNode(const SUnit *SU) {
1159      SethiUllmanNumbers.resize(SUnits->size(), 0);
1160      CalcNodeSethiUllmanNumber(SU);
1161    }
1162
1163    void updateNode(const SUnit *SU) {
1164      SethiUllmanNumbers[SU->NodeNum] = 0;
1165      CalcNodeSethiUllmanNumber(SU);
1166    }
1167
1168    void releaseState() {
1169      SUnits = 0;
1170      SethiUllmanNumbers.clear();
1171    }
1172
1173    unsigned getNodePriority(const SUnit *SU) const {
1174      assert(SU->NodeNum < SethiUllmanNumbers.size());
1175      return SethiUllmanNumbers[SU->NodeNum];
1176    }
1177
1178  private:
1179    void CalculateSethiUllmanNumbers();
1180    unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
1181  };
1182}
1183
1184/// closestSucc - Returns the scheduled cycle of the successor which is
1185/// closet to the current cycle.
1186static unsigned closestSucc(const SUnit *SU) {
1187  unsigned MaxCycle = 0;
1188  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1189       I != E; ++I) {
1190    unsigned Cycle = I->Dep->Cycle;
1191    // If there are bunch of CopyToRegs stacked up, they should be considered
1192    // to be at the same position.
1193    if (I->Dep->Node && I->Dep->Node->getOpcode() == ISD::CopyToReg)
1194      Cycle = closestSucc(I->Dep)+1;
1195    if (Cycle > MaxCycle)
1196      MaxCycle = Cycle;
1197  }
1198  return MaxCycle;
1199}
1200
1201/// calcMaxScratches - Returns an cost estimate of the worse case requirement
1202/// for scratch registers. Live-in operands and live-out results don't count
1203/// since they are "fixed".
1204static unsigned calcMaxScratches(const SUnit *SU) {
1205  unsigned Scratches = 0;
1206  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1207       I != E; ++I) {
1208    if (I->isCtrl) continue;  // ignore chain preds
1209    if (I->Dep->Node->getOpcode() != ISD::CopyFromReg)
1210      Scratches++;
1211  }
1212  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1213       I != E; ++I) {
1214    if (I->isCtrl) continue;  // ignore chain succs
1215    if (I->Dep->Node->getOpcode() != ISD::CopyToReg)
1216      Scratches += 10;
1217  }
1218  return Scratches;
1219}
1220
1221// Bottom up
1222bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1223  // There used to be a special tie breaker here that looked for
1224  // two-address instructions and preferred the instruction with a
1225  // def&use operand.  The special case triggered diagnostics when
1226  // _GLIBCXX_DEBUG was enabled because it broke the strict weak
1227  // ordering that priority_queue requires. It didn't help much anyway
1228  // because AddPseudoTwoAddrDeps already covers many of the cases
1229  // where it would have applied.  In addition, it's counter-intuitive
1230  // that a tie breaker would be the first thing attempted.  There's a
1231  // "real" tie breaker below that is the operation of last resort.
1232  // The fact that the "special tie breaker" would trigger when there
1233  // wasn't otherwise a tie is what broke the strict weak ordering
1234  // constraint.
1235
1236  unsigned LPriority = SPQ->getNodePriority(left);
1237  unsigned RPriority = SPQ->getNodePriority(right);
1238  if (LPriority > RPriority)
1239    return true;
1240  else if (LPriority == RPriority) {
1241    // Try schedule def + use closer when Sethi-Ullman numbers are the same.
1242    // e.g.
1243    // t1 = op t2, c1
1244    // t3 = op t4, c2
1245    //
1246    // and the following instructions are both ready.
1247    // t2 = op c3
1248    // t4 = op c4
1249    //
1250    // Then schedule t2 = op first.
1251    // i.e.
1252    // t4 = op c4
1253    // t2 = op c3
1254    // t1 = op t2, c1
1255    // t3 = op t4, c2
1256    //
1257    // This creates more short live intervals.
1258    unsigned LDist = closestSucc(left);
1259    unsigned RDist = closestSucc(right);
1260    if (LDist < RDist)
1261      return true;
1262    else if (LDist == RDist) {
1263      // Intuitively, it's good to push down instructions whose results are
1264      // liveout so their long live ranges won't conflict with other values
1265      // which are needed inside the BB. Further prioritize liveout instructions
1266      // by the number of operands which are calculated within the BB.
1267      unsigned LScratch = calcMaxScratches(left);
1268      unsigned RScratch = calcMaxScratches(right);
1269      if (LScratch > RScratch)
1270        return true;
1271      else if (LScratch == RScratch)
1272        if (left->Height > right->Height)
1273          return true;
1274        else if (left->Height == right->Height)
1275          if (left->Depth < right->Depth)
1276            return true;
1277          else if (left->Depth == right->Depth)
1278            if (left->CycleBound > right->CycleBound)
1279              return true;
1280    }
1281  }
1282  return false;
1283}
1284
1285template<class SF>
1286bool BURegReductionPriorityQueue<SF>::canClobber(SUnit *SU, SUnit *Op) {
1287  if (SU->isTwoAddress) {
1288    unsigned Opc = SU->Node->getTargetOpcode();
1289    unsigned NumRes = TII->getNumDefs(Opc);
1290    unsigned NumOps = ScheduleDAG::CountOperands(SU->Node);
1291    for (unsigned i = 0; i != NumOps; ++i) {
1292      if (TII->getOperandConstraint(Opc, i+NumRes, TOI::TIED_TO) != -1) {
1293        SDNode *DU = SU->Node->getOperand(i).Val;
1294        if ((*SUnitMap).find(DU) != (*SUnitMap).end() &&
1295            Op == (*SUnitMap)[DU][SU->InstanceNo])
1296          return true;
1297      }
1298    }
1299  }
1300  return false;
1301}
1302
1303
1304/// hasCopyToRegUse - Return true if SU has a value successor that is a
1305/// CopyToReg node.
1306static bool hasCopyToRegUse(SUnit *SU) {
1307  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1308       I != E; ++I) {
1309    if (I->isCtrl) continue;
1310    SUnit *SuccSU = I->Dep;
1311    if (SuccSU->Node && SuccSU->Node->getOpcode() == ISD::CopyToReg)
1312      return true;
1313  }
1314  return false;
1315}
1316
1317/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
1318/// it as a def&use operand. Add a pseudo control edge from it to the other
1319/// node (if it won't create a cycle) so the two-address one will be scheduled
1320/// first (lower in the schedule). If both nodes are two-address, favor the
1321/// one that has a CopyToReg use (more likely to be a loop induction update).
1322/// If both are two-address, but one is commutable while the other is not
1323/// commutable, favor the one that's not commutable.
1324template<class SF>
1325void BURegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
1326  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
1327    SUnit *SU = (SUnit *)&((*SUnits)[i]);
1328    if (!SU->isTwoAddress)
1329      continue;
1330
1331    SDNode *Node = SU->Node;
1332    if (!Node || !Node->isTargetOpcode() || SU->FlaggedNodes.size() > 0)
1333      continue;
1334
1335    unsigned Opc = Node->getTargetOpcode();
1336    unsigned NumRes = TII->getNumDefs(Opc);
1337    unsigned NumOps = ScheduleDAG::CountOperands(Node);
1338    for (unsigned j = 0; j != NumOps; ++j) {
1339      if (TII->getOperandConstraint(Opc, j+NumRes, TOI::TIED_TO) != -1) {
1340        SDNode *DU = SU->Node->getOperand(j).Val;
1341        if ((*SUnitMap).find(DU) == (*SUnitMap).end())
1342          continue;
1343        SUnit *DUSU = (*SUnitMap)[DU][SU->InstanceNo];
1344        if (!DUSU) continue;
1345        for (SUnit::succ_iterator I = DUSU->Succs.begin(),E = DUSU->Succs.end();
1346             I != E; ++I) {
1347          if (I->isCtrl) continue;
1348          SUnit *SuccSU = I->Dep;
1349          // Don't constrain nodes with implicit defs. It can create cycles
1350          // plus it may increase register pressures.
1351          if (SuccSU == SU || SuccSU->hasPhysRegDefs)
1352            continue;
1353          // Be conservative. Ignore if nodes aren't at roughly the same
1354          // depth and height.
1355          if (SuccSU->Height < SU->Height && (SU->Height - SuccSU->Height) > 1)
1356            continue;
1357          if (SuccSU->Depth > SU->Depth && (SuccSU->Depth - SU->Depth) > 1)
1358            continue;
1359          if (!SuccSU->Node || !SuccSU->Node->isTargetOpcode())
1360            continue;
1361          // Don't constraint extract_subreg / insert_subreg these may be
1362          // coalesced away. We don't them close to their uses.
1363          unsigned SuccOpc = SuccSU->Node->getTargetOpcode();
1364          if (SuccOpc == TargetInstrInfo::EXTRACT_SUBREG ||
1365              SuccOpc == TargetInstrInfo::INSERT_SUBREG)
1366            continue;
1367          if ((!canClobber(SuccSU, DUSU) ||
1368               (hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
1369               (!SU->isCommutable && SuccSU->isCommutable)) &&
1370              !isReachable(SuccSU, SU)) {
1371            DOUT << "Adding an edge from SU # " << SU->NodeNum
1372                 << " to SU #" << SuccSU->NodeNum << "\n";
1373            SU->addPred(SuccSU, true, true);
1374          }
1375        }
1376      }
1377    }
1378  }
1379}
1380
1381/// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number.
1382/// Smaller number is the higher priority.
1383template<class SF>
1384unsigned BURegReductionPriorityQueue<SF>::
1385CalcNodeSethiUllmanNumber(const SUnit *SU) {
1386  unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
1387  if (SethiUllmanNumber != 0)
1388    return SethiUllmanNumber;
1389
1390  unsigned Extra = 0;
1391  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1392       I != E; ++I) {
1393    if (I->isCtrl) continue;  // ignore chain preds
1394    SUnit *PredSU = I->Dep;
1395    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
1396    if (PredSethiUllman > SethiUllmanNumber) {
1397      SethiUllmanNumber = PredSethiUllman;
1398      Extra = 0;
1399    } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
1400      ++Extra;
1401  }
1402
1403  SethiUllmanNumber += Extra;
1404
1405  if (SethiUllmanNumber == 0)
1406    SethiUllmanNumber = 1;
1407
1408  return SethiUllmanNumber;
1409}
1410
1411/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1412/// scheduling units.
1413template<class SF>
1414void BURegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
1415  SethiUllmanNumbers.assign(SUnits->size(), 0);
1416
1417  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1418    CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
1419}
1420
1421static unsigned SumOfUnscheduledPredsOfSuccs(const SUnit *SU) {
1422  unsigned Sum = 0;
1423  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1424       I != E; ++I) {
1425    SUnit *SuccSU = I->Dep;
1426    for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
1427         EE = SuccSU->Preds.end(); II != EE; ++II) {
1428      SUnit *PredSU = II->Dep;
1429      if (!PredSU->isScheduled)
1430        ++Sum;
1431    }
1432  }
1433
1434  return Sum;
1435}
1436
1437
1438// Top down
1439bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1440  unsigned LPriority = SPQ->getNodePriority(left);
1441  unsigned RPriority = SPQ->getNodePriority(right);
1442  bool LIsTarget = left->Node && left->Node->isTargetOpcode();
1443  bool RIsTarget = right->Node && right->Node->isTargetOpcode();
1444  bool LIsFloater = LIsTarget && left->NumPreds == 0;
1445  bool RIsFloater = RIsTarget && right->NumPreds == 0;
1446  unsigned LBonus = (SumOfUnscheduledPredsOfSuccs(left) == 1) ? 2 : 0;
1447  unsigned RBonus = (SumOfUnscheduledPredsOfSuccs(right) == 1) ? 2 : 0;
1448
1449  if (left->NumSuccs == 0 && right->NumSuccs != 0)
1450    return false;
1451  else if (left->NumSuccs != 0 && right->NumSuccs == 0)
1452    return true;
1453
1454  // Special tie breaker: if two nodes share a operand, the one that use it
1455  // as a def&use operand is preferred.
1456  if (LIsTarget && RIsTarget) {
1457    if (left->isTwoAddress && !right->isTwoAddress) {
1458      SDNode *DUNode = left->Node->getOperand(0).Val;
1459      if (DUNode->isOperand(right->Node))
1460        RBonus += 2;
1461    }
1462    if (!left->isTwoAddress && right->isTwoAddress) {
1463      SDNode *DUNode = right->Node->getOperand(0).Val;
1464      if (DUNode->isOperand(left->Node))
1465        LBonus += 2;
1466    }
1467  }
1468  if (LIsFloater)
1469    LBonus -= 2;
1470  if (RIsFloater)
1471    RBonus -= 2;
1472  if (left->NumSuccs == 1)
1473    LBonus += 2;
1474  if (right->NumSuccs == 1)
1475    RBonus += 2;
1476
1477  if (LPriority+LBonus < RPriority+RBonus)
1478    return true;
1479  else if (LPriority == RPriority)
1480    if (left->Depth < right->Depth)
1481      return true;
1482    else if (left->Depth == right->Depth)
1483      if (left->NumSuccsLeft > right->NumSuccsLeft)
1484        return true;
1485      else if (left->NumSuccsLeft == right->NumSuccsLeft)
1486        if (left->CycleBound > right->CycleBound)
1487          return true;
1488  return false;
1489}
1490
1491/// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number.
1492/// Smaller number is the higher priority.
1493template<class SF>
1494unsigned TDRegReductionPriorityQueue<SF>::
1495CalcNodeSethiUllmanNumber(const SUnit *SU) {
1496  unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
1497  if (SethiUllmanNumber != 0)
1498    return SethiUllmanNumber;
1499
1500  unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
1501  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1502    SethiUllmanNumber = 0xffff;
1503  else if (SU->NumSuccsLeft == 0)
1504    // If SU does not have a use, i.e. it doesn't produce a value that would
1505    // be consumed (e.g. store), then it terminates a chain of computation.
1506    // Give it a small SethiUllman number so it will be scheduled right before
1507    // its predecessors that it doesn't lengthen their live ranges.
1508    SethiUllmanNumber = 0;
1509  else if (SU->NumPredsLeft == 0 &&
1510           (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
1511    SethiUllmanNumber = 0xffff;
1512  else {
1513    int Extra = 0;
1514    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1515         I != E; ++I) {
1516      if (I->isCtrl) continue;  // ignore chain preds
1517      SUnit *PredSU = I->Dep;
1518      unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
1519      if (PredSethiUllman > SethiUllmanNumber) {
1520        SethiUllmanNumber = PredSethiUllman;
1521        Extra = 0;
1522      } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
1523        ++Extra;
1524    }
1525
1526    SethiUllmanNumber += Extra;
1527  }
1528
1529  return SethiUllmanNumber;
1530}
1531
1532/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1533/// scheduling units.
1534template<class SF>
1535void TDRegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
1536  SethiUllmanNumbers.assign(SUnits->size(), 0);
1537
1538  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1539    CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
1540}
1541
1542//===----------------------------------------------------------------------===//
1543//                         Public Constructor Functions
1544//===----------------------------------------------------------------------===//
1545
1546llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
1547                                                    SelectionDAG *DAG,
1548                                                    MachineBasicBlock *BB) {
1549  const TargetInstrInfo *TII = DAG->getTarget().getInstrInfo();
1550  return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), true,
1551                           new BURegReductionPriorityQueue<bu_ls_rr_sort>(TII));
1552}
1553
1554llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
1555                                                    SelectionDAG *DAG,
1556                                                    MachineBasicBlock *BB) {
1557  return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), false,
1558                              new TDRegReductionPriorityQueue<td_ls_rr_sort>());
1559}
1560
1561