ScheduleDAGRRList.cpp revision 8181bd1f95ae9994edb390dd9acd0b7b12375219
1//===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms.  The basic approach uses a priority
12// queue of available nodes to schedule.  One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "pre-RA-sched"
19#include "llvm/CodeGen/ScheduleDAG.h"
20#include "llvm/CodeGen/SchedulerRegistry.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22#include "llvm/Target/TargetData.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/PriorityQueue.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/STLExtras.h"
33#include <climits>
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
38STATISTIC(NumUnfolds,    "Number of nodes unfolded");
39STATISTIC(NumDups,       "Number of duplicated nodes");
40STATISTIC(NumCCCopies,   "Number of cross class copies");
41
42static RegisterScheduler
43  burrListDAGScheduler("list-burr",
44                       "  Bottom-up register reduction list scheduling",
45                       createBURRListDAGScheduler);
46static RegisterScheduler
47  tdrListrDAGScheduler("list-tdrr",
48                       "  Top-down register reduction list scheduling",
49                       createTDRRListDAGScheduler);
50
51namespace {
52//===----------------------------------------------------------------------===//
53/// ScheduleDAGRRList - The actual register reduction list scheduler
54/// implementation.  This supports both top-down and bottom-up scheduling.
55///
56class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAG {
57private:
58  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
59  /// it is top-down.
60  bool isBottomUp;
61
62  /// Fast - True if we are performing fast scheduling.
63  ///
64  bool Fast;
65
66  /// AvailableQueue - The priority queue to use for the available SUnits.
67  SchedulingPriorityQueue *AvailableQueue;
68
69  /// LiveRegs / LiveRegDefs - A set of physical registers and their definition
70  /// that are "live". These nodes must be scheduled before any other nodes that
71  /// modifies the registers can be scheduled.
72  SmallSet<unsigned, 4> LiveRegs;
73  std::vector<SUnit*> LiveRegDefs;
74  std::vector<unsigned> LiveRegCycles;
75
76public:
77  ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
78                    const TargetMachine &tm, bool isbottomup, bool f,
79                    SchedulingPriorityQueue *availqueue)
80    : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup), Fast(f),
81      AvailableQueue(availqueue) {
82    }
83
84  ~ScheduleDAGRRList() {
85    delete AvailableQueue;
86  }
87
88  void Schedule();
89
90  /// IsReachable - Checks if SU is reachable from TargetSU.
91  bool IsReachable(SUnit *SU, SUnit *TargetSU);
92
93  /// willCreateCycle - Returns true if adding an edge from SU to TargetSU will
94  /// create a cycle.
95  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
96
97  /// AddPred - This adds the specified node X as a predecessor of
98  /// the current node Y if not already.
99  /// This returns true if this is a new predecessor.
100  /// Updates the topological ordering if required.
101  bool AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial,
102               unsigned PhyReg = 0, int Cost = 1);
103
104  /// RemovePred - This removes the specified node N from the predecessors of
105  /// the current node M. Updates the topological ordering if required.
106  bool RemovePred(SUnit *M, SUnit *N, bool isCtrl, bool isSpecial);
107
108private:
109  void ReleasePred(SUnit*, bool, unsigned);
110  void ReleaseSucc(SUnit*, bool isChain, unsigned);
111  void CapturePred(SUnit*, SUnit*, bool);
112  void ScheduleNodeBottomUp(SUnit*, unsigned);
113  void ScheduleNodeTopDown(SUnit*, unsigned);
114  void UnscheduleNodeBottomUp(SUnit*);
115  void BacktrackBottomUp(SUnit*, unsigned, unsigned&);
116  SUnit *CopyAndMoveSuccessors(SUnit*);
117  void InsertCCCopiesAndMoveSuccs(SUnit*, unsigned,
118                                  const TargetRegisterClass*,
119                                  const TargetRegisterClass*,
120                                  SmallVector<SUnit*, 2>&);
121  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
122  void ListScheduleTopDown();
123  void ListScheduleBottomUp();
124  void CommuteNodesToReducePressure();
125
126
127  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
128  /// Updates the topological ordering if required.
129  SUnit *CreateNewSUnit(SDNode *N) {
130    SUnit *NewNode = NewSUnit(N);
131    // Update the topological ordering.
132    if (NewNode->NodeNum >= Node2Index.size())
133      InitDAGTopologicalSorting();
134    return NewNode;
135  }
136
137  /// CreateClone - Creates a new SUnit from an existing one.
138  /// Updates the topological ordering if required.
139  SUnit *CreateClone(SUnit *N) {
140    SUnit *NewNode = Clone(N);
141    // Update the topological ordering.
142    if (NewNode->NodeNum >= Node2Index.size())
143      InitDAGTopologicalSorting();
144    return NewNode;
145  }
146
147  /// Functions for preserving the topological ordering
148  /// even after dynamic insertions of new edges.
149  /// This allows a very fast implementation of IsReachable.
150
151  /// InitDAGTopologicalSorting - create the initial topological
152  /// ordering from the DAG to be scheduled.
153  void InitDAGTopologicalSorting();
154
155  /// DFS - make a DFS traversal and mark all nodes affected by the
156  /// edge insertion. These nodes will later get new topological indexes
157  /// by means of the Shift method.
158  void DFS(SUnit *SU, int UpperBound, bool& HasLoop);
159
160  /// Shift - reassign topological indexes for the nodes in the DAG
161  /// to preserve the topological ordering.
162  void Shift(BitVector& Visited, int LowerBound, int UpperBound);
163
164  /// Allocate - assign the topological index to the node n.
165  void Allocate(int n, int index);
166
167  /// Index2Node - Maps topological index to the node number.
168  std::vector<int> Index2Node;
169  /// Node2Index - Maps the node number to its topological index.
170  std::vector<int> Node2Index;
171  /// Visited - a set of nodes visited during a DFS traversal.
172  BitVector Visited;
173};
174}  // end anonymous namespace
175
176
177/// Schedule - Schedule the DAG using list scheduling.
178void ScheduleDAGRRList::Schedule() {
179  DOUT << "********** List Scheduling **********\n";
180
181  LiveRegDefs.resize(TRI->getNumRegs(), NULL);
182  LiveRegCycles.resize(TRI->getNumRegs(), 0);
183
184  // Build scheduling units.
185  BuildSchedUnits();
186
187  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
188          SUnits[su].dumpAll(&DAG));
189  if (!Fast) {
190    CalculateDepths();
191    CalculateHeights();
192  }
193  InitDAGTopologicalSorting();
194
195  AvailableQueue->initNodes(SUnits);
196
197  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
198  if (isBottomUp)
199    ListScheduleBottomUp();
200  else
201    ListScheduleTopDown();
202
203  AvailableQueue->releaseState();
204
205  if (!Fast)
206    CommuteNodesToReducePressure();
207}
208
209/// CommuteNodesToReducePressure - If a node is two-address and commutable, and
210/// it is not the last use of its first operand, add it to the CommuteSet if
211/// possible. It will be commuted when it is translated to a MI.
212void ScheduleDAGRRList::CommuteNodesToReducePressure() {
213  SmallPtrSet<SUnit*, 4> OperandSeen;
214  for (unsigned i = Sequence.size(); i != 0; ) {
215    --i;
216    SUnit *SU = Sequence[i];
217    if (!SU || !SU->Node) continue;
218    if (SU->isCommutable) {
219      unsigned Opc = SU->Node->getMachineOpcode();
220      const TargetInstrDesc &TID = TII->get(Opc);
221      unsigned NumRes = TID.getNumDefs();
222      unsigned NumOps = TID.getNumOperands() - NumRes;
223      for (unsigned j = 0; j != NumOps; ++j) {
224        if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
225          continue;
226
227        SDNode *OpN = SU->Node->getOperand(j).Val;
228        SUnit *OpSU = isPassiveNode(OpN) ? NULL : &SUnits[OpN->getNodeId()];
229        if (OpSU && OperandSeen.count(OpSU) == 1) {
230          // Ok, so SU is not the last use of OpSU, but SU is two-address so
231          // it will clobber OpSU. Try to commute SU if no other source operands
232          // are live below.
233          bool DoCommute = true;
234          for (unsigned k = 0; k < NumOps; ++k) {
235            if (k != j) {
236              OpN = SU->Node->getOperand(k).Val;
237              OpSU = isPassiveNode(OpN) ? NULL : &SUnits[OpN->getNodeId()];
238              if (OpSU && OperandSeen.count(OpSU) == 1) {
239                DoCommute = false;
240                break;
241              }
242            }
243          }
244          if (DoCommute)
245            CommuteSet.insert(SU->Node);
246        }
247
248        // Only look at the first use&def node for now.
249        break;
250      }
251    }
252
253    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
254         I != E; ++I) {
255      if (!I->isCtrl)
256        OperandSeen.insert(I->Dep->OrigNode);
257    }
258  }
259}
260
261//===----------------------------------------------------------------------===//
262//  Bottom-Up Scheduling
263//===----------------------------------------------------------------------===//
264
265/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
266/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
267void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain,
268                                    unsigned CurCycle) {
269  // FIXME: the distance between two nodes is not always == the predecessor's
270  // latency. For example, the reader can very well read the register written
271  // by the predecessor later than the issue cycle. It also depends on the
272  // interrupt model (drain vs. freeze).
273  PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
274
275  --PredSU->NumSuccsLeft;
276
277#ifndef NDEBUG
278  if (PredSU->NumSuccsLeft < 0) {
279    cerr << "*** List scheduling failed! ***\n";
280    PredSU->dump(&DAG);
281    cerr << " has been released too many times!\n";
282    assert(0);
283  }
284#endif
285
286  if (PredSU->NumSuccsLeft == 0) {
287    PredSU->isAvailable = true;
288    AvailableQueue->push(PredSU);
289  }
290}
291
292/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
293/// count of its predecessors. If a predecessor pending count is zero, add it to
294/// the Available queue.
295void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
296  DOUT << "*** Scheduling [" << CurCycle << "]: ";
297  DEBUG(SU->dump(&DAG));
298  SU->Cycle = CurCycle;
299
300  AvailableQueue->ScheduledNode(SU);
301
302  // Bottom up: release predecessors
303  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
304       I != E; ++I) {
305    ReleasePred(I->Dep, I->isCtrl, CurCycle);
306    if (I->Cost < 0)  {
307      // This is a physical register dependency and it's impossible or
308      // expensive to copy the register. Make sure nothing that can
309      // clobber the register is scheduled between the predecessor and
310      // this node.
311      if (LiveRegs.insert(I->Reg)) {
312        LiveRegDefs[I->Reg] = I->Dep;
313        LiveRegCycles[I->Reg] = CurCycle;
314      }
315    }
316  }
317
318  // Release all the implicit physical register defs that are live.
319  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
320       I != E; ++I) {
321    if (I->Cost < 0)  {
322      if (LiveRegCycles[I->Reg] == I->Dep->Cycle) {
323        LiveRegs.erase(I->Reg);
324        assert(LiveRegDefs[I->Reg] == SU &&
325               "Physical register dependency violated?");
326        LiveRegDefs[I->Reg] = NULL;
327        LiveRegCycles[I->Reg] = 0;
328      }
329    }
330  }
331
332  SU->isScheduled = true;
333}
334
335/// CapturePred - This does the opposite of ReleasePred. Since SU is being
336/// unscheduled, incrcease the succ left count of its predecessors. Remove
337/// them from AvailableQueue if necessary.
338void ScheduleDAGRRList::CapturePred(SUnit *PredSU, SUnit *SU, bool isChain) {
339  unsigned CycleBound = 0;
340  for (SUnit::succ_iterator I = PredSU->Succs.begin(), E = PredSU->Succs.end();
341       I != E; ++I) {
342    if (I->Dep == SU)
343      continue;
344    CycleBound = std::max(CycleBound,
345                          I->Dep->Cycle + PredSU->Latency);
346  }
347
348  if (PredSU->isAvailable) {
349    PredSU->isAvailable = false;
350    if (!PredSU->isPending)
351      AvailableQueue->remove(PredSU);
352  }
353
354  PredSU->CycleBound = CycleBound;
355  ++PredSU->NumSuccsLeft;
356}
357
358/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
359/// its predecessor states to reflect the change.
360void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
361  DOUT << "*** Unscheduling [" << SU->Cycle << "]: ";
362  DEBUG(SU->dump(&DAG));
363
364  AvailableQueue->UnscheduledNode(SU);
365
366  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
367       I != E; ++I) {
368    CapturePred(I->Dep, SU, I->isCtrl);
369    if (I->Cost < 0 && SU->Cycle == LiveRegCycles[I->Reg])  {
370      LiveRegs.erase(I->Reg);
371      assert(LiveRegDefs[I->Reg] == I->Dep &&
372             "Physical register dependency violated?");
373      LiveRegDefs[I->Reg] = NULL;
374      LiveRegCycles[I->Reg] = 0;
375    }
376  }
377
378  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
379       I != E; ++I) {
380    if (I->Cost < 0)  {
381      if (LiveRegs.insert(I->Reg)) {
382        assert(!LiveRegDefs[I->Reg] &&
383               "Physical register dependency violated?");
384        LiveRegDefs[I->Reg] = SU;
385      }
386      if (I->Dep->Cycle < LiveRegCycles[I->Reg])
387        LiveRegCycles[I->Reg] = I->Dep->Cycle;
388    }
389  }
390
391  SU->Cycle = 0;
392  SU->isScheduled = false;
393  SU->isAvailable = true;
394  AvailableQueue->push(SU);
395}
396
397/// IsReachable - Checks if SU is reachable from TargetSU.
398bool ScheduleDAGRRList::IsReachable(SUnit *SU, SUnit *TargetSU) {
399  // If insertion of the edge SU->TargetSU would create a cycle
400  // then there is a path from TargetSU to SU.
401  int UpperBound, LowerBound;
402  LowerBound = Node2Index[TargetSU->NodeNum];
403  UpperBound = Node2Index[SU->NodeNum];
404  bool HasLoop = false;
405  // Is Ord(TargetSU) < Ord(SU) ?
406  if (LowerBound < UpperBound) {
407    Visited.reset();
408    // There may be a path from TargetSU to SU. Check for it.
409    DFS(TargetSU, UpperBound, HasLoop);
410  }
411  return HasLoop;
412}
413
414/// Allocate - assign the topological index to the node n.
415inline void ScheduleDAGRRList::Allocate(int n, int index) {
416  Node2Index[n] = index;
417  Index2Node[index] = n;
418}
419
420/// InitDAGTopologicalSorting - create the initial topological
421/// ordering from the DAG to be scheduled.
422
423/// The idea of the algorithm is taken from
424/// "Online algorithms for managing the topological order of
425/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
426/// This is the MNR algorithm, which was first introduced by
427/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
428/// "Maintaining a topological order under edge insertions".
429///
430/// Short description of the algorithm:
431///
432/// Topological ordering, ord, of a DAG maps each node to a topological
433/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
434///
435/// This means that if there is a path from the node X to the node Z,
436/// then ord(X) < ord(Z).
437///
438/// This property can be used to check for reachability of nodes:
439/// if Z is reachable from X, then an insertion of the edge Z->X would
440/// create a cycle.
441///
442/// The algorithm first computes a topological ordering for the DAG by
443/// initializing the Index2Node and Node2Index arrays and then tries to keep
444/// the ordering up-to-date after edge insertions by reordering the DAG.
445///
446/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
447/// the nodes reachable from Y, and then shifts them using Shift to lie
448/// immediately after X in Index2Node.
449void ScheduleDAGRRList::InitDAGTopologicalSorting() {
450  unsigned DAGSize = SUnits.size();
451  std::vector<unsigned> InDegree(DAGSize);
452  std::vector<SUnit*> WorkList;
453  WorkList.reserve(DAGSize);
454  std::vector<SUnit*> TopOrder;
455  TopOrder.reserve(DAGSize);
456
457  // Initialize the data structures.
458  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
459    SUnit *SU = &SUnits[i];
460    int NodeNum = SU->NodeNum;
461    unsigned Degree = SU->Succs.size();
462    InDegree[NodeNum] = Degree;
463
464    // Is it a node without dependencies?
465    if (Degree == 0) {
466        assert(SU->Succs.empty() && "SUnit should have no successors");
467        // Collect leaf nodes.
468        WorkList.push_back(SU);
469    }
470  }
471
472  while (!WorkList.empty()) {
473    SUnit *SU = WorkList.back();
474    WorkList.pop_back();
475    TopOrder.push_back(SU);
476    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
477         I != E; ++I) {
478      SUnit *SU = I->Dep;
479      if (!--InDegree[SU->NodeNum])
480        // If all dependencies of the node are processed already,
481        // then the node can be computed now.
482        WorkList.push_back(SU);
483    }
484  }
485
486  // Second pass, assign the actual topological order as node ids.
487  int Id = 0;
488
489  Index2Node.clear();
490  Node2Index.clear();
491  Index2Node.resize(DAGSize);
492  Node2Index.resize(DAGSize);
493  Visited.resize(DAGSize);
494
495  for (std::vector<SUnit*>::reverse_iterator TI = TopOrder.rbegin(),
496       TE = TopOrder.rend();TI != TE; ++TI) {
497    Allocate((*TI)->NodeNum, Id);
498    Id++;
499  }
500
501#ifndef NDEBUG
502  // Check correctness of the ordering
503  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
504    SUnit *SU = &SUnits[i];
505    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
506         I != E; ++I) {
507       assert(Node2Index[SU->NodeNum] > Node2Index[I->Dep->NodeNum] &&
508       "Wrong topological sorting");
509    }
510  }
511#endif
512}
513
514/// AddPred - adds an edge from SUnit X to SUnit Y.
515/// Updates the topological ordering if required.
516bool ScheduleDAGRRList::AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial,
517                 unsigned PhyReg, int Cost) {
518  int UpperBound, LowerBound;
519  LowerBound = Node2Index[Y->NodeNum];
520  UpperBound = Node2Index[X->NodeNum];
521  bool HasLoop = false;
522  // Is Ord(X) < Ord(Y) ?
523  if (LowerBound < UpperBound) {
524    // Update the topological order.
525    Visited.reset();
526    DFS(Y, UpperBound, HasLoop);
527    assert(!HasLoop && "Inserted edge creates a loop!");
528    // Recompute topological indexes.
529    Shift(Visited, LowerBound, UpperBound);
530  }
531  // Now really insert the edge.
532  return Y->addPred(X, isCtrl, isSpecial, PhyReg, Cost);
533}
534
535/// RemovePred - This removes the specified node N from the predecessors of
536/// the current node M. Updates the topological ordering if required.
537bool ScheduleDAGRRList::RemovePred(SUnit *M, SUnit *N,
538                                   bool isCtrl, bool isSpecial) {
539  // InitDAGTopologicalSorting();
540  return M->removePred(N, isCtrl, isSpecial);
541}
542
543/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
544/// all nodes affected by the edge insertion. These nodes will later get new
545/// topological indexes by means of the Shift method.
546void ScheduleDAGRRList::DFS(SUnit *SU, int UpperBound, bool& HasLoop) {
547  std::vector<SUnit*> WorkList;
548  WorkList.reserve(SUnits.size());
549
550  WorkList.push_back(SU);
551  while (!WorkList.empty()) {
552    SU = WorkList.back();
553    WorkList.pop_back();
554    Visited.set(SU->NodeNum);
555    for (int I = SU->Succs.size()-1; I >= 0; --I) {
556      int s = SU->Succs[I].Dep->NodeNum;
557      if (Node2Index[s] == UpperBound) {
558        HasLoop = true;
559        return;
560      }
561      // Visit successors if not already and in affected region.
562      if (!Visited.test(s) && Node2Index[s] < UpperBound) {
563        WorkList.push_back(SU->Succs[I].Dep);
564      }
565    }
566  }
567}
568
569/// Shift - Renumber the nodes so that the topological ordering is
570/// preserved.
571void ScheduleDAGRRList::Shift(BitVector& Visited, int LowerBound,
572                              int UpperBound) {
573  std::vector<int> L;
574  int shift = 0;
575  int i;
576
577  for (i = LowerBound; i <= UpperBound; ++i) {
578    // w is node at topological index i.
579    int w = Index2Node[i];
580    if (Visited.test(w)) {
581      // Unmark.
582      Visited.reset(w);
583      L.push_back(w);
584      shift = shift + 1;
585    } else {
586      Allocate(w, i - shift);
587    }
588  }
589
590  for (unsigned j = 0; j < L.size(); ++j) {
591    Allocate(L[j], i - shift);
592    i = i + 1;
593  }
594}
595
596
597/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
598/// create a cycle.
599bool ScheduleDAGRRList::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
600  if (IsReachable(TargetSU, SU))
601    return true;
602  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
603       I != E; ++I)
604    if (I->Cost < 0 && IsReachable(TargetSU, I->Dep))
605      return true;
606  return false;
607}
608
609/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
610/// BTCycle in order to schedule a specific node. Returns the last unscheduled
611/// SUnit. Also returns if a successor is unscheduled in the process.
612void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle,
613                                          unsigned &CurCycle) {
614  SUnit *OldSU = NULL;
615  while (CurCycle > BtCycle) {
616    OldSU = Sequence.back();
617    Sequence.pop_back();
618    if (SU->isSucc(OldSU))
619      // Don't try to remove SU from AvailableQueue.
620      SU->isAvailable = false;
621    UnscheduleNodeBottomUp(OldSU);
622    --CurCycle;
623  }
624
625
626  if (SU->isSucc(OldSU)) {
627    assert(false && "Something is wrong!");
628    abort();
629  }
630
631  ++NumBacktracks;
632}
633
634/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
635/// successors to the newly created node.
636SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
637  if (SU->FlaggedNodes.size())
638    return NULL;
639
640  SDNode *N = SU->Node;
641  if (!N)
642    return NULL;
643
644  SUnit *NewSU;
645  bool TryUnfold = false;
646  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
647    MVT VT = N->getValueType(i);
648    if (VT == MVT::Flag)
649      return NULL;
650    else if (VT == MVT::Other)
651      TryUnfold = true;
652  }
653  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
654    const SDValue &Op = N->getOperand(i);
655    MVT VT = Op.Val->getValueType(Op.ResNo);
656    if (VT == MVT::Flag)
657      return NULL;
658  }
659
660  if (TryUnfold) {
661    SmallVector<SDNode*, 2> NewNodes;
662    if (!TII->unfoldMemoryOperand(DAG, N, NewNodes))
663      return NULL;
664
665    DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
666    assert(NewNodes.size() == 2 && "Expected a load folding node!");
667
668    N = NewNodes[1];
669    SDNode *LoadNode = NewNodes[0];
670    unsigned NumVals = N->getNumValues();
671    unsigned OldNumVals = SU->Node->getNumValues();
672    for (unsigned i = 0; i != NumVals; ++i)
673      DAG.ReplaceAllUsesOfValueWith(SDValue(SU->Node, i), SDValue(N, i));
674    DAG.ReplaceAllUsesOfValueWith(SDValue(SU->Node, OldNumVals-1),
675                                  SDValue(LoadNode, 1));
676
677    SUnit *NewSU = CreateNewSUnit(N);
678    assert(N->getNodeId() == -1 && "Node already inserted!");
679    N->setNodeId(NewSU->NodeNum);
680
681    const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
682    for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
683      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
684        NewSU->isTwoAddress = true;
685        break;
686      }
687    }
688    if (TID.isCommutable())
689      NewSU->isCommutable = true;
690    // FIXME: Calculate height / depth and propagate the changes?
691    NewSU->Depth = SU->Depth;
692    NewSU->Height = SU->Height;
693    ComputeLatency(NewSU);
694
695    // LoadNode may already exist. This can happen when there is another
696    // load from the same location and producing the same type of value
697    // but it has different alignment or volatileness.
698    bool isNewLoad = true;
699    SUnit *LoadSU;
700    if (LoadNode->getNodeId() != -1) {
701      LoadSU = &SUnits[LoadNode->getNodeId()];
702      isNewLoad = false;
703    } else {
704      LoadSU = CreateNewSUnit(LoadNode);
705      LoadNode->setNodeId(LoadSU->NodeNum);
706
707      LoadSU->Depth = SU->Depth;
708      LoadSU->Height = SU->Height;
709      ComputeLatency(LoadSU);
710    }
711
712    SUnit *ChainPred = NULL;
713    SmallVector<SDep, 4> ChainSuccs;
714    SmallVector<SDep, 4> LoadPreds;
715    SmallVector<SDep, 4> NodePreds;
716    SmallVector<SDep, 4> NodeSuccs;
717    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
718         I != E; ++I) {
719      if (I->isCtrl)
720        ChainPred = I->Dep;
721      else if (I->Dep->Node && I->Dep->Node->isOperandOf(LoadNode))
722        LoadPreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
723      else
724        NodePreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
725    }
726    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
727         I != E; ++I) {
728      if (I->isCtrl)
729        ChainSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
730                                  I->isCtrl, I->isSpecial));
731      else
732        NodeSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
733                                 I->isCtrl, I->isSpecial));
734    }
735
736    if (ChainPred) {
737      RemovePred(SU, ChainPred, true, false);
738      if (isNewLoad)
739        AddPred(LoadSU, ChainPred, true, false);
740    }
741    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
742      SDep *Pred = &LoadPreds[i];
743      RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial);
744      if (isNewLoad) {
745        AddPred(LoadSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial,
746                Pred->Reg, Pred->Cost);
747      }
748    }
749    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
750      SDep *Pred = &NodePreds[i];
751      RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial);
752      AddPred(NewSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial,
753              Pred->Reg, Pred->Cost);
754    }
755    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
756      SDep *Succ = &NodeSuccs[i];
757      RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial);
758      AddPred(Succ->Dep, NewSU, Succ->isCtrl, Succ->isSpecial,
759              Succ->Reg, Succ->Cost);
760    }
761    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
762      SDep *Succ = &ChainSuccs[i];
763      RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial);
764      if (isNewLoad) {
765        AddPred(Succ->Dep, LoadSU, Succ->isCtrl, Succ->isSpecial,
766                Succ->Reg, Succ->Cost);
767      }
768    }
769    if (isNewLoad) {
770      AddPred(NewSU, LoadSU, false, false);
771    }
772
773    if (isNewLoad)
774      AvailableQueue->addNode(LoadSU);
775    AvailableQueue->addNode(NewSU);
776
777    ++NumUnfolds;
778
779    if (NewSU->NumSuccsLeft == 0) {
780      NewSU->isAvailable = true;
781      return NewSU;
782    }
783    SU = NewSU;
784  }
785
786  DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
787  NewSU = CreateClone(SU);
788
789  // New SUnit has the exact same predecessors.
790  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
791       I != E; ++I)
792    if (!I->isSpecial) {
793      AddPred(NewSU, I->Dep, I->isCtrl, false, I->Reg, I->Cost);
794      NewSU->Depth = std::max(NewSU->Depth, I->Dep->Depth+1);
795    }
796
797  // Only copy scheduled successors. Cut them from old node's successor
798  // list and move them over.
799  SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
800  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
801       I != E; ++I) {
802    if (I->isSpecial)
803      continue;
804    if (I->Dep->isScheduled) {
805      NewSU->Height = std::max(NewSU->Height, I->Dep->Height+1);
806      AddPred(I->Dep, NewSU, I->isCtrl, false, I->Reg, I->Cost);
807      DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
808    }
809  }
810  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
811    SUnit *Succ = DelDeps[i].first;
812    bool isCtrl = DelDeps[i].second;
813    RemovePred(Succ, SU, isCtrl, false);
814  }
815
816  AvailableQueue->updateNode(SU);
817  AvailableQueue->addNode(NewSU);
818
819  ++NumDups;
820  return NewSU;
821}
822
823/// InsertCCCopiesAndMoveSuccs - Insert expensive cross register class copies
824/// and move all scheduled successors of the given SUnit to the last copy.
825void ScheduleDAGRRList::InsertCCCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
826                                              const TargetRegisterClass *DestRC,
827                                              const TargetRegisterClass *SrcRC,
828                                               SmallVector<SUnit*, 2> &Copies) {
829  SUnit *CopyFromSU = CreateNewSUnit(NULL);
830  CopyFromSU->CopySrcRC = SrcRC;
831  CopyFromSU->CopyDstRC = DestRC;
832  CopyFromSU->Depth = SU->Depth;
833  CopyFromSU->Height = SU->Height;
834
835  SUnit *CopyToSU = CreateNewSUnit(NULL);
836  CopyToSU->CopySrcRC = DestRC;
837  CopyToSU->CopyDstRC = SrcRC;
838
839  // Only copy scheduled successors. Cut them from old node's successor
840  // list and move them over.
841  SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
842  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
843       I != E; ++I) {
844    if (I->isSpecial)
845      continue;
846    if (I->Dep->isScheduled) {
847      CopyToSU->Height = std::max(CopyToSU->Height, I->Dep->Height+1);
848      AddPred(I->Dep, CopyToSU, I->isCtrl, false, I->Reg, I->Cost);
849      DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
850    }
851  }
852  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
853    SUnit *Succ = DelDeps[i].first;
854    bool isCtrl = DelDeps[i].second;
855    RemovePred(Succ, SU, isCtrl, false);
856  }
857
858  AddPred(CopyFromSU, SU, false, false, Reg, -1);
859  AddPred(CopyToSU, CopyFromSU, false, false, Reg, 1);
860
861  AvailableQueue->updateNode(SU);
862  AvailableQueue->addNode(CopyFromSU);
863  AvailableQueue->addNode(CopyToSU);
864  Copies.push_back(CopyFromSU);
865  Copies.push_back(CopyToSU);
866
867  ++NumCCCopies;
868}
869
870/// getPhysicalRegisterVT - Returns the ValueType of the physical register
871/// definition of the specified node.
872/// FIXME: Move to SelectionDAG?
873static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
874                                 const TargetInstrInfo *TII) {
875  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
876  assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
877  unsigned NumRes = TID.getNumDefs();
878  for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
879    if (Reg == *ImpDef)
880      break;
881    ++NumRes;
882  }
883  return N->getValueType(NumRes);
884}
885
886/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
887/// scheduling of the given node to satisfy live physical register dependencies.
888/// If the specific node is the last one that's available to schedule, do
889/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
890bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
891                                                 SmallVector<unsigned, 4> &LRegs){
892  if (LiveRegs.empty())
893    return false;
894
895  SmallSet<unsigned, 4> RegAdded;
896  // If this node would clobber any "live" register, then it's not ready.
897  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
898       I != E; ++I) {
899    if (I->Cost < 0)  {
900      unsigned Reg = I->Reg;
901      if (LiveRegs.count(Reg) && LiveRegDefs[Reg] != I->Dep) {
902        if (RegAdded.insert(Reg))
903          LRegs.push_back(Reg);
904      }
905      for (const unsigned *Alias = TRI->getAliasSet(Reg);
906           *Alias; ++Alias)
907        if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != I->Dep) {
908          if (RegAdded.insert(*Alias))
909            LRegs.push_back(*Alias);
910        }
911    }
912  }
913
914  for (unsigned i = 0, e = SU->FlaggedNodes.size()+1; i != e; ++i) {
915    SDNode *Node = (i == 0) ? SU->Node : SU->FlaggedNodes[i-1];
916    if (!Node || !Node->isMachineOpcode())
917      continue;
918    const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
919    if (!TID.ImplicitDefs)
920      continue;
921    for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
922      if (LiveRegs.count(*Reg) && LiveRegDefs[*Reg] != SU) {
923        if (RegAdded.insert(*Reg))
924          LRegs.push_back(*Reg);
925      }
926      for (const unsigned *Alias = TRI->getAliasSet(*Reg);
927           *Alias; ++Alias)
928        if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != SU) {
929          if (RegAdded.insert(*Alias))
930            LRegs.push_back(*Alias);
931        }
932    }
933  }
934  return !LRegs.empty();
935}
936
937
938/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
939/// schedulers.
940void ScheduleDAGRRList::ListScheduleBottomUp() {
941  unsigned CurCycle = 0;
942  // Add root to Available queue.
943  if (!SUnits.empty()) {
944    SUnit *RootSU = &SUnits[DAG.getRoot().Val->getNodeId()];
945    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
946    RootSU->isAvailable = true;
947    AvailableQueue->push(RootSU);
948  }
949
950  // While Available queue is not empty, grab the node with the highest
951  // priority. If it is not ready put it back.  Schedule the node.
952  SmallVector<SUnit*, 4> NotReady;
953  DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
954  Sequence.reserve(SUnits.size());
955  while (!AvailableQueue->empty()) {
956    bool Delayed = false;
957    LRegsMap.clear();
958    SUnit *CurSU = AvailableQueue->pop();
959    while (CurSU) {
960      if (CurSU->CycleBound <= CurCycle) {
961        SmallVector<unsigned, 4> LRegs;
962        if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
963          break;
964        Delayed = true;
965        LRegsMap.insert(std::make_pair(CurSU, LRegs));
966      }
967
968      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
969      NotReady.push_back(CurSU);
970      CurSU = AvailableQueue->pop();
971    }
972
973    // All candidates are delayed due to live physical reg dependencies.
974    // Try backtracking, code duplication, or inserting cross class copies
975    // to resolve it.
976    if (Delayed && !CurSU) {
977      for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
978        SUnit *TrySU = NotReady[i];
979        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
980
981        // Try unscheduling up to the point where it's safe to schedule
982        // this node.
983        unsigned LiveCycle = CurCycle;
984        for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
985          unsigned Reg = LRegs[j];
986          unsigned LCycle = LiveRegCycles[Reg];
987          LiveCycle = std::min(LiveCycle, LCycle);
988        }
989        SUnit *OldSU = Sequence[LiveCycle];
990        if (!WillCreateCycle(TrySU, OldSU))  {
991          BacktrackBottomUp(TrySU, LiveCycle, CurCycle);
992          // Force the current node to be scheduled before the node that
993          // requires the physical reg dep.
994          if (OldSU->isAvailable) {
995            OldSU->isAvailable = false;
996            AvailableQueue->remove(OldSU);
997          }
998          AddPred(TrySU, OldSU, true, true);
999          // If one or more successors has been unscheduled, then the current
1000          // node is no longer avaialable. Schedule a successor that's now
1001          // available instead.
1002          if (!TrySU->isAvailable)
1003            CurSU = AvailableQueue->pop();
1004          else {
1005            CurSU = TrySU;
1006            TrySU->isPending = false;
1007            NotReady.erase(NotReady.begin()+i);
1008          }
1009          break;
1010        }
1011      }
1012
1013      if (!CurSU) {
1014        // Can't backtrack. Try duplicating the nodes that produces these
1015        // "expensive to copy" values to break the dependency. In case even
1016        // that doesn't work, insert cross class copies.
1017        SUnit *TrySU = NotReady[0];
1018        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
1019        assert(LRegs.size() == 1 && "Can't handle this yet!");
1020        unsigned Reg = LRegs[0];
1021        SUnit *LRDef = LiveRegDefs[Reg];
1022        SUnit *NewDef = CopyAndMoveSuccessors(LRDef);
1023        if (!NewDef) {
1024          // Issue expensive cross register class copies.
1025          MVT VT = getPhysicalRegisterVT(LRDef->Node, Reg, TII);
1026          const TargetRegisterClass *RC =
1027            TRI->getPhysicalRegisterRegClass(Reg, VT);
1028          const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1029          if (!DestRC) {
1030            assert(false && "Don't know how to copy this physical register!");
1031            abort();
1032          }
1033          SmallVector<SUnit*, 2> Copies;
1034          InsertCCCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1035          DOUT << "Adding an edge from SU # " << TrySU->NodeNum
1036               << " to SU #" << Copies.front()->NodeNum << "\n";
1037          AddPred(TrySU, Copies.front(), true, true);
1038          NewDef = Copies.back();
1039        }
1040
1041        DOUT << "Adding an edge from SU # " << NewDef->NodeNum
1042             << " to SU #" << TrySU->NodeNum << "\n";
1043        LiveRegDefs[Reg] = NewDef;
1044        AddPred(NewDef, TrySU, true, true);
1045        TrySU->isAvailable = false;
1046        CurSU = NewDef;
1047      }
1048
1049      if (!CurSU) {
1050        assert(false && "Unable to resolve live physical register dependencies!");
1051        abort();
1052      }
1053    }
1054
1055    // Add the nodes that aren't ready back onto the available list.
1056    for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
1057      NotReady[i]->isPending = false;
1058      // May no longer be available due to backtracking.
1059      if (NotReady[i]->isAvailable)
1060        AvailableQueue->push(NotReady[i]);
1061    }
1062    NotReady.clear();
1063
1064    if (!CurSU)
1065      Sequence.push_back(0);
1066    else {
1067      ScheduleNodeBottomUp(CurSU, CurCycle);
1068      Sequence.push_back(CurSU);
1069    }
1070    ++CurCycle;
1071  }
1072
1073  // Reverse the order if it is bottom up.
1074  std::reverse(Sequence.begin(), Sequence.end());
1075
1076
1077#ifndef NDEBUG
1078  // Verify that all SUnits were scheduled.
1079  bool AnyNotSched = false;
1080  unsigned DeadNodes = 0;
1081  unsigned Noops = 0;
1082  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1083    if (!SUnits[i].isScheduled) {
1084      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
1085        ++DeadNodes;
1086        continue;
1087      }
1088      if (!AnyNotSched)
1089        cerr << "*** List scheduling failed! ***\n";
1090      SUnits[i].dump(&DAG);
1091      cerr << "has not been scheduled!\n";
1092      AnyNotSched = true;
1093    }
1094    if (SUnits[i].NumSuccsLeft != 0) {
1095      if (!AnyNotSched)
1096        cerr << "*** List scheduling failed! ***\n";
1097      SUnits[i].dump(&DAG);
1098      cerr << "has successors left!\n";
1099      AnyNotSched = true;
1100    }
1101  }
1102  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
1103    if (!Sequence[i])
1104      ++Noops;
1105  assert(!AnyNotSched);
1106  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
1107         "The number of nodes scheduled doesn't match the expected number!");
1108#endif
1109}
1110
1111//===----------------------------------------------------------------------===//
1112//  Top-Down Scheduling
1113//===----------------------------------------------------------------------===//
1114
1115/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
1116/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
1117void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain,
1118                                    unsigned CurCycle) {
1119  // FIXME: the distance between two nodes is not always == the predecessor's
1120  // latency. For example, the reader can very well read the register written
1121  // by the predecessor later than the issue cycle. It also depends on the
1122  // interrupt model (drain vs. freeze).
1123  SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
1124
1125  --SuccSU->NumPredsLeft;
1126
1127#ifndef NDEBUG
1128  if (SuccSU->NumPredsLeft < 0) {
1129    cerr << "*** List scheduling failed! ***\n";
1130    SuccSU->dump(&DAG);
1131    cerr << " has been released too many times!\n";
1132    assert(0);
1133  }
1134#endif
1135
1136  if (SuccSU->NumPredsLeft == 0) {
1137    SuccSU->isAvailable = true;
1138    AvailableQueue->push(SuccSU);
1139  }
1140}
1141
1142
1143/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
1144/// count of its successors. If a successor pending count is zero, add it to
1145/// the Available queue.
1146void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
1147  DOUT << "*** Scheduling [" << CurCycle << "]: ";
1148  DEBUG(SU->dump(&DAG));
1149  SU->Cycle = CurCycle;
1150
1151  AvailableQueue->ScheduledNode(SU);
1152
1153  // Top down: release successors
1154  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1155       I != E; ++I)
1156    ReleaseSucc(I->Dep, I->isCtrl, CurCycle);
1157  SU->isScheduled = true;
1158}
1159
1160/// ListScheduleTopDown - The main loop of list scheduling for top-down
1161/// schedulers.
1162void ScheduleDAGRRList::ListScheduleTopDown() {
1163  unsigned CurCycle = 0;
1164
1165  // All leaves to Available queue.
1166  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1167    // It is available if it has no predecessors.
1168    if (SUnits[i].Preds.empty()) {
1169      AvailableQueue->push(&SUnits[i]);
1170      SUnits[i].isAvailable = true;
1171    }
1172  }
1173
1174  // While Available queue is not empty, grab the node with the highest
1175  // priority. If it is not ready put it back.  Schedule the node.
1176  std::vector<SUnit*> NotReady;
1177  Sequence.reserve(SUnits.size());
1178  while (!AvailableQueue->empty()) {
1179    SUnit *CurSU = AvailableQueue->pop();
1180    while (CurSU && CurSU->CycleBound > CurCycle) {
1181      NotReady.push_back(CurSU);
1182      CurSU = AvailableQueue->pop();
1183    }
1184
1185    // Add the nodes that aren't ready back onto the available list.
1186    AvailableQueue->push_all(NotReady);
1187    NotReady.clear();
1188
1189    if (!CurSU)
1190      Sequence.push_back(0);
1191    else {
1192      ScheduleNodeTopDown(CurSU, CurCycle);
1193      Sequence.push_back(CurSU);
1194    }
1195    ++CurCycle;
1196  }
1197
1198
1199#ifndef NDEBUG
1200  // Verify that all SUnits were scheduled.
1201  bool AnyNotSched = false;
1202  unsigned DeadNodes = 0;
1203  unsigned Noops = 0;
1204  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1205    if (!SUnits[i].isScheduled) {
1206      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
1207        ++DeadNodes;
1208        continue;
1209      }
1210      if (!AnyNotSched)
1211        cerr << "*** List scheduling failed! ***\n";
1212      SUnits[i].dump(&DAG);
1213      cerr << "has not been scheduled!\n";
1214      AnyNotSched = true;
1215    }
1216    if (SUnits[i].NumPredsLeft != 0) {
1217      if (!AnyNotSched)
1218        cerr << "*** List scheduling failed! ***\n";
1219      SUnits[i].dump(&DAG);
1220      cerr << "has predecessors left!\n";
1221      AnyNotSched = true;
1222    }
1223  }
1224  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
1225    if (!Sequence[i])
1226      ++Noops;
1227  assert(!AnyNotSched);
1228  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
1229         "The number of nodes scheduled doesn't match the expected number!");
1230#endif
1231}
1232
1233
1234
1235//===----------------------------------------------------------------------===//
1236//                RegReductionPriorityQueue Implementation
1237//===----------------------------------------------------------------------===//
1238//
1239// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1240// to reduce register pressure.
1241//
1242namespace {
1243  template<class SF>
1244  class RegReductionPriorityQueue;
1245
1246  /// Sorting functions for the Available queue.
1247  struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1248    RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
1249    bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
1250    bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1251
1252    bool operator()(const SUnit* left, const SUnit* right) const;
1253  };
1254
1255  struct bu_ls_rr_fast_sort : public std::binary_function<SUnit*, SUnit*, bool>{
1256    RegReductionPriorityQueue<bu_ls_rr_fast_sort> *SPQ;
1257    bu_ls_rr_fast_sort(RegReductionPriorityQueue<bu_ls_rr_fast_sort> *spq)
1258      : SPQ(spq) {}
1259    bu_ls_rr_fast_sort(const bu_ls_rr_fast_sort &RHS) : SPQ(RHS.SPQ) {}
1260
1261    bool operator()(const SUnit* left, const SUnit* right) const;
1262  };
1263
1264  struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1265    RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
1266    td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
1267    td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1268
1269    bool operator()(const SUnit* left, const SUnit* right) const;
1270  };
1271}  // end anonymous namespace
1272
1273static inline bool isCopyFromLiveIn(const SUnit *SU) {
1274  SDNode *N = SU->Node;
1275  return N && N->getOpcode() == ISD::CopyFromReg &&
1276    N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
1277}
1278
1279/// CalcNodeBUSethiUllmanNumber - Compute Sethi Ullman number for bottom up
1280/// scheduling. Smaller number is the higher priority.
1281static unsigned
1282CalcNodeBUSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1283  unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
1284  if (SethiUllmanNumber != 0)
1285    return SethiUllmanNumber;
1286
1287  unsigned Extra = 0;
1288  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1289       I != E; ++I) {
1290    if (I->isCtrl) continue;  // ignore chain preds
1291    SUnit *PredSU = I->Dep;
1292    unsigned PredSethiUllman = CalcNodeBUSethiUllmanNumber(PredSU, SUNumbers);
1293    if (PredSethiUllman > SethiUllmanNumber) {
1294      SethiUllmanNumber = PredSethiUllman;
1295      Extra = 0;
1296    } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
1297      ++Extra;
1298  }
1299
1300  SethiUllmanNumber += Extra;
1301
1302  if (SethiUllmanNumber == 0)
1303    SethiUllmanNumber = 1;
1304
1305  return SethiUllmanNumber;
1306}
1307
1308/// CalcNodeTDSethiUllmanNumber - Compute Sethi Ullman number for top down
1309/// scheduling. Smaller number is the higher priority.
1310static unsigned
1311CalcNodeTDSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1312  unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
1313  if (SethiUllmanNumber != 0)
1314    return SethiUllmanNumber;
1315
1316  unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
1317  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1318    SethiUllmanNumber = 0xffff;
1319  else if (SU->NumSuccsLeft == 0)
1320    // If SU does not have a use, i.e. it doesn't produce a value that would
1321    // be consumed (e.g. store), then it terminates a chain of computation.
1322    // Give it a small SethiUllman number so it will be scheduled right before
1323    // its predecessors that it doesn't lengthen their live ranges.
1324    SethiUllmanNumber = 0;
1325  else if (SU->NumPredsLeft == 0 &&
1326           (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
1327    SethiUllmanNumber = 0xffff;
1328  else {
1329    int Extra = 0;
1330    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1331         I != E; ++I) {
1332      if (I->isCtrl) continue;  // ignore chain preds
1333      SUnit *PredSU = I->Dep;
1334      unsigned PredSethiUllman = CalcNodeTDSethiUllmanNumber(PredSU, SUNumbers);
1335      if (PredSethiUllman > SethiUllmanNumber) {
1336        SethiUllmanNumber = PredSethiUllman;
1337        Extra = 0;
1338      } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
1339        ++Extra;
1340    }
1341
1342    SethiUllmanNumber += Extra;
1343  }
1344
1345  return SethiUllmanNumber;
1346}
1347
1348
1349namespace {
1350  template<class SF>
1351  class VISIBILITY_HIDDEN RegReductionPriorityQueue
1352   : public SchedulingPriorityQueue {
1353    PriorityQueue<SUnit*, std::vector<SUnit*>, SF> Queue;
1354    unsigned currentQueueId;
1355
1356  public:
1357    RegReductionPriorityQueue() :
1358    Queue(SF(this)), currentQueueId(0) {}
1359
1360    virtual void initNodes(std::vector<SUnit> &sunits) {}
1361
1362    virtual void addNode(const SUnit *SU) {}
1363
1364    virtual void updateNode(const SUnit *SU) {}
1365
1366    virtual void releaseState() {}
1367
1368    virtual unsigned getNodePriority(const SUnit *SU) const {
1369      return 0;
1370    }
1371
1372    unsigned size() const { return Queue.size(); }
1373
1374    bool empty() const { return Queue.empty(); }
1375
1376    void push(SUnit *U) {
1377      assert(!U->NodeQueueId && "Node in the queue already");
1378      U->NodeQueueId = ++currentQueueId;
1379      Queue.push(U);
1380    }
1381
1382    void push_all(const std::vector<SUnit *> &Nodes) {
1383      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
1384        push(Nodes[i]);
1385    }
1386
1387    SUnit *pop() {
1388      if (empty()) return NULL;
1389      SUnit *V = Queue.top();
1390      Queue.pop();
1391      V->NodeQueueId = 0;
1392      return V;
1393    }
1394
1395    void remove(SUnit *SU) {
1396      assert(!Queue.empty() && "Queue is empty!");
1397      assert(SU->NodeQueueId != 0 && "Not in queue!");
1398      Queue.erase_one(SU);
1399      SU->NodeQueueId = 0;
1400    }
1401  };
1402
1403  class VISIBILITY_HIDDEN BURegReductionPriorityQueue
1404   : public RegReductionPriorityQueue<bu_ls_rr_sort> {
1405    // SUnits - The SUnits for the current graph.
1406    const std::vector<SUnit> *SUnits;
1407
1408    // SethiUllmanNumbers - The SethiUllman number for each node.
1409    std::vector<unsigned> SethiUllmanNumbers;
1410
1411    const TargetInstrInfo *TII;
1412    const TargetRegisterInfo *TRI;
1413    ScheduleDAGRRList *scheduleDAG;
1414
1415  public:
1416    explicit BURegReductionPriorityQueue(const TargetInstrInfo *tii,
1417                                         const TargetRegisterInfo *tri)
1418      : TII(tii), TRI(tri), scheduleDAG(NULL) {}
1419
1420    void initNodes(std::vector<SUnit> &sunits) {
1421      SUnits = &sunits;
1422      // Add pseudo dependency edges for two-address nodes.
1423      AddPseudoTwoAddrDeps();
1424      // Calculate node priorities.
1425      CalculateSethiUllmanNumbers();
1426    }
1427
1428    void addNode(const SUnit *SU) {
1429      unsigned SUSize = SethiUllmanNumbers.size();
1430      if (SUnits->size() > SUSize)
1431        SethiUllmanNumbers.resize(SUSize*2, 0);
1432      CalcNodeBUSethiUllmanNumber(SU, SethiUllmanNumbers);
1433    }
1434
1435    void updateNode(const SUnit *SU) {
1436      SethiUllmanNumbers[SU->NodeNum] = 0;
1437      CalcNodeBUSethiUllmanNumber(SU, SethiUllmanNumbers);
1438    }
1439
1440    void releaseState() {
1441      SUnits = 0;
1442      SethiUllmanNumbers.clear();
1443    }
1444
1445    unsigned getNodePriority(const SUnit *SU) const {
1446      assert(SU->NodeNum < SethiUllmanNumbers.size());
1447      unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
1448      if (Opc == ISD::CopyFromReg && !isCopyFromLiveIn(SU))
1449        // CopyFromReg should be close to its def because it restricts
1450        // allocation choices. But if it is a livein then perhaps we want it
1451        // closer to its uses so it can be coalesced.
1452        return 0xffff;
1453      else if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1454        // CopyToReg should be close to its uses to facilitate coalescing and
1455        // avoid spilling.
1456        return 0;
1457      else if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
1458               Opc == TargetInstrInfo::INSERT_SUBREG)
1459        // EXTRACT_SUBREG / INSERT_SUBREG should be close to its use to
1460        // facilitate coalescing.
1461        return 0;
1462      else if (SU->NumSuccs == 0)
1463        // If SU does not have a use, i.e. it doesn't produce a value that would
1464        // be consumed (e.g. store), then it terminates a chain of computation.
1465        // Give it a large SethiUllman number so it will be scheduled right
1466        // before its predecessors that it doesn't lengthen their live ranges.
1467        return 0xffff;
1468      else if (SU->NumPreds == 0)
1469        // If SU does not have a def, schedule it close to its uses because it
1470        // does not lengthen any live ranges.
1471        return 0;
1472      else
1473        return SethiUllmanNumbers[SU->NodeNum];
1474    }
1475
1476    void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1477      scheduleDAG = scheduleDag;
1478    }
1479
1480  private:
1481    bool canClobber(const SUnit *SU, const SUnit *Op);
1482    void AddPseudoTwoAddrDeps();
1483    void CalculateSethiUllmanNumbers();
1484  };
1485
1486
1487  class VISIBILITY_HIDDEN BURegReductionFastPriorityQueue
1488   : public RegReductionPriorityQueue<bu_ls_rr_fast_sort> {
1489    // SUnits - The SUnits for the current graph.
1490    const std::vector<SUnit> *SUnits;
1491
1492    // SethiUllmanNumbers - The SethiUllman number for each node.
1493    std::vector<unsigned> SethiUllmanNumbers;
1494  public:
1495    explicit BURegReductionFastPriorityQueue() {}
1496
1497    void initNodes(std::vector<SUnit> &sunits) {
1498      SUnits = &sunits;
1499      // Calculate node priorities.
1500      CalculateSethiUllmanNumbers();
1501    }
1502
1503    void addNode(const SUnit *SU) {
1504      unsigned SUSize = SethiUllmanNumbers.size();
1505      if (SUnits->size() > SUSize)
1506        SethiUllmanNumbers.resize(SUSize*2, 0);
1507      CalcNodeBUSethiUllmanNumber(SU, SethiUllmanNumbers);
1508    }
1509
1510    void updateNode(const SUnit *SU) {
1511      SethiUllmanNumbers[SU->NodeNum] = 0;
1512      CalcNodeBUSethiUllmanNumber(SU, SethiUllmanNumbers);
1513    }
1514
1515    void releaseState() {
1516      SUnits = 0;
1517      SethiUllmanNumbers.clear();
1518    }
1519
1520    unsigned getNodePriority(const SUnit *SU) const {
1521      return SethiUllmanNumbers[SU->NodeNum];
1522    }
1523
1524  private:
1525    void CalculateSethiUllmanNumbers();
1526  };
1527
1528
1529  class VISIBILITY_HIDDEN TDRegReductionPriorityQueue
1530   : public RegReductionPriorityQueue<td_ls_rr_sort> {
1531    // SUnits - The SUnits for the current graph.
1532    const std::vector<SUnit> *SUnits;
1533
1534    // SethiUllmanNumbers - The SethiUllman number for each node.
1535    std::vector<unsigned> SethiUllmanNumbers;
1536
1537  public:
1538    TDRegReductionPriorityQueue() {}
1539
1540    void initNodes(std::vector<SUnit> &sunits) {
1541      SUnits = &sunits;
1542      // Calculate node priorities.
1543      CalculateSethiUllmanNumbers();
1544    }
1545
1546    void addNode(const SUnit *SU) {
1547      unsigned SUSize = SethiUllmanNumbers.size();
1548      if (SUnits->size() > SUSize)
1549        SethiUllmanNumbers.resize(SUSize*2, 0);
1550      CalcNodeTDSethiUllmanNumber(SU, SethiUllmanNumbers);
1551    }
1552
1553    void updateNode(const SUnit *SU) {
1554      SethiUllmanNumbers[SU->NodeNum] = 0;
1555      CalcNodeTDSethiUllmanNumber(SU, SethiUllmanNumbers);
1556    }
1557
1558    void releaseState() {
1559      SUnits = 0;
1560      SethiUllmanNumbers.clear();
1561    }
1562
1563    unsigned getNodePriority(const SUnit *SU) const {
1564      assert(SU->NodeNum < SethiUllmanNumbers.size());
1565      return SethiUllmanNumbers[SU->NodeNum];
1566    }
1567
1568  private:
1569    void CalculateSethiUllmanNumbers();
1570  };
1571}
1572
1573/// closestSucc - Returns the scheduled cycle of the successor which is
1574/// closet to the current cycle.
1575static unsigned closestSucc(const SUnit *SU) {
1576  unsigned MaxCycle = 0;
1577  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1578       I != E; ++I) {
1579    unsigned Cycle = I->Dep->Cycle;
1580    // If there are bunch of CopyToRegs stacked up, they should be considered
1581    // to be at the same position.
1582    if (I->Dep->Node && I->Dep->Node->getOpcode() == ISD::CopyToReg)
1583      Cycle = closestSucc(I->Dep)+1;
1584    if (Cycle > MaxCycle)
1585      MaxCycle = Cycle;
1586  }
1587  return MaxCycle;
1588}
1589
1590/// calcMaxScratches - Returns an cost estimate of the worse case requirement
1591/// for scratch registers. Live-in operands and live-out results don't count
1592/// since they are "fixed".
1593static unsigned calcMaxScratches(const SUnit *SU) {
1594  unsigned Scratches = 0;
1595  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1596       I != E; ++I) {
1597    if (I->isCtrl) continue;  // ignore chain preds
1598    if (!I->Dep->Node || I->Dep->Node->getOpcode() != ISD::CopyFromReg)
1599      Scratches++;
1600  }
1601  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1602       I != E; ++I) {
1603    if (I->isCtrl) continue;  // ignore chain succs
1604    if (!I->Dep->Node || I->Dep->Node->getOpcode() != ISD::CopyToReg)
1605      Scratches += 10;
1606  }
1607  return Scratches;
1608}
1609
1610// Bottom up
1611bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1612  unsigned LPriority = SPQ->getNodePriority(left);
1613  unsigned RPriority = SPQ->getNodePriority(right);
1614  if (LPriority != RPriority)
1615    return LPriority > RPriority;
1616
1617  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
1618  // e.g.
1619  // t1 = op t2, c1
1620  // t3 = op t4, c2
1621  //
1622  // and the following instructions are both ready.
1623  // t2 = op c3
1624  // t4 = op c4
1625  //
1626  // Then schedule t2 = op first.
1627  // i.e.
1628  // t4 = op c4
1629  // t2 = op c3
1630  // t1 = op t2, c1
1631  // t3 = op t4, c2
1632  //
1633  // This creates more short live intervals.
1634  unsigned LDist = closestSucc(left);
1635  unsigned RDist = closestSucc(right);
1636  if (LDist != RDist)
1637    return LDist < RDist;
1638
1639  // Intuitively, it's good to push down instructions whose results are
1640  // liveout so their long live ranges won't conflict with other values
1641  // which are needed inside the BB. Further prioritize liveout instructions
1642  // by the number of operands which are calculated within the BB.
1643  unsigned LScratch = calcMaxScratches(left);
1644  unsigned RScratch = calcMaxScratches(right);
1645  if (LScratch != RScratch)
1646    return LScratch > RScratch;
1647
1648  if (left->Height != right->Height)
1649    return left->Height > right->Height;
1650
1651  if (left->Depth != right->Depth)
1652    return left->Depth < right->Depth;
1653
1654  if (left->CycleBound != right->CycleBound)
1655    return left->CycleBound > right->CycleBound;
1656
1657  assert(left->NodeQueueId && right->NodeQueueId &&
1658         "NodeQueueId cannot be zero");
1659  return (left->NodeQueueId > right->NodeQueueId);
1660}
1661
1662bool
1663bu_ls_rr_fast_sort::operator()(const SUnit *left, const SUnit *right) const {
1664  unsigned LPriority = SPQ->getNodePriority(left);
1665  unsigned RPriority = SPQ->getNodePriority(right);
1666  if (LPriority != RPriority)
1667    return LPriority > RPriority;
1668  assert(left->NodeQueueId && right->NodeQueueId &&
1669         "NodeQueueId cannot be zero");
1670  return (left->NodeQueueId > right->NodeQueueId);
1671}
1672
1673bool
1674BURegReductionPriorityQueue::canClobber(const SUnit *SU, const SUnit *Op) {
1675  if (SU->isTwoAddress) {
1676    unsigned Opc = SU->Node->getMachineOpcode();
1677    const TargetInstrDesc &TID = TII->get(Opc);
1678    unsigned NumRes = TID.getNumDefs();
1679    unsigned NumOps = TID.getNumOperands() - NumRes;
1680    for (unsigned i = 0; i != NumOps; ++i) {
1681      if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) {
1682        SDNode *DU = SU->Node->getOperand(i).Val;
1683        if (DU->getNodeId() != -1 &&
1684            Op->OrigNode == &(*SUnits)[DU->getNodeId()])
1685          return true;
1686      }
1687    }
1688  }
1689  return false;
1690}
1691
1692
1693/// hasCopyToRegUse - Return true if SU has a value successor that is a
1694/// CopyToReg node.
1695static bool hasCopyToRegUse(SUnit *SU) {
1696  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1697       I != E; ++I) {
1698    if (I->isCtrl) continue;
1699    SUnit *SuccSU = I->Dep;
1700    if (SuccSU->Node && SuccSU->Node->getOpcode() == ISD::CopyToReg)
1701      return true;
1702  }
1703  return false;
1704}
1705
1706/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
1707/// physical register defs.
1708static bool canClobberPhysRegDefs(SUnit *SuccSU, SUnit *SU,
1709                                  const TargetInstrInfo *TII,
1710                                  const TargetRegisterInfo *TRI) {
1711  SDNode *N = SuccSU->Node;
1712  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1713  const unsigned *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
1714  assert(ImpDefs && "Caller should check hasPhysRegDefs");
1715  const unsigned *SUImpDefs =
1716    TII->get(SU->Node->getMachineOpcode()).getImplicitDefs();
1717  if (!SUImpDefs)
1718    return false;
1719  for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
1720    MVT VT = N->getValueType(i);
1721    if (VT == MVT::Flag || VT == MVT::Other)
1722      continue;
1723    unsigned Reg = ImpDefs[i - NumDefs];
1724    for (;*SUImpDefs; ++SUImpDefs) {
1725      unsigned SUReg = *SUImpDefs;
1726      if (TRI->regsOverlap(Reg, SUReg))
1727        return true;
1728    }
1729  }
1730  return false;
1731}
1732
1733/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
1734/// it as a def&use operand. Add a pseudo control edge from it to the other
1735/// node (if it won't create a cycle) so the two-address one will be scheduled
1736/// first (lower in the schedule). If both nodes are two-address, favor the
1737/// one that has a CopyToReg use (more likely to be a loop induction update).
1738/// If both are two-address, but one is commutable while the other is not
1739/// commutable, favor the one that's not commutable.
1740void BURegReductionPriorityQueue::AddPseudoTwoAddrDeps() {
1741  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
1742    SUnit *SU = (SUnit *)&((*SUnits)[i]);
1743    if (!SU->isTwoAddress)
1744      continue;
1745
1746    SDNode *Node = SU->Node;
1747    if (!Node || !Node->isMachineOpcode() || SU->FlaggedNodes.size() > 0)
1748      continue;
1749
1750    unsigned Opc = Node->getMachineOpcode();
1751    const TargetInstrDesc &TID = TII->get(Opc);
1752    unsigned NumRes = TID.getNumDefs();
1753    unsigned NumOps = TID.getNumOperands() - NumRes;
1754    for (unsigned j = 0; j != NumOps; ++j) {
1755      if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) != -1) {
1756        SDNode *DU = SU->Node->getOperand(j).Val;
1757        if (DU->getNodeId() == -1)
1758          continue;
1759        const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
1760        if (!DUSU) continue;
1761        for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
1762             E = DUSU->Succs.end(); I != E; ++I) {
1763          if (I->isCtrl) continue;
1764          SUnit *SuccSU = I->Dep;
1765          if (SuccSU == SU)
1766            continue;
1767          // Be conservative. Ignore if nodes aren't at roughly the same
1768          // depth and height.
1769          if (SuccSU->Height < SU->Height && (SU->Height - SuccSU->Height) > 1)
1770            continue;
1771          if (!SuccSU->Node || !SuccSU->Node->isMachineOpcode())
1772            continue;
1773          // Don't constrain nodes with physical register defs if the
1774          // predecessor can clobber them.
1775          if (SuccSU->hasPhysRegDefs) {
1776            if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
1777              continue;
1778          }
1779          // Don't constraint extract_subreg / insert_subreg these may be
1780          // coalesced away. We don't them close to their uses.
1781          unsigned SuccOpc = SuccSU->Node->getMachineOpcode();
1782          if (SuccOpc == TargetInstrInfo::EXTRACT_SUBREG ||
1783              SuccOpc == TargetInstrInfo::INSERT_SUBREG)
1784            continue;
1785          if ((!canClobber(SuccSU, DUSU) ||
1786               (hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
1787               (!SU->isCommutable && SuccSU->isCommutable)) &&
1788              !scheduleDAG->IsReachable(SuccSU, SU)) {
1789            DOUT << "Adding an edge from SU # " << SU->NodeNum
1790                 << " to SU #" << SuccSU->NodeNum << "\n";
1791            scheduleDAG->AddPred(SU, SuccSU, true, true);
1792          }
1793        }
1794      }
1795    }
1796  }
1797}
1798
1799/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1800/// scheduling units.
1801void BURegReductionPriorityQueue::CalculateSethiUllmanNumbers() {
1802  SethiUllmanNumbers.assign(SUnits->size(), 0);
1803
1804  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1805    CalcNodeBUSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1806}
1807void BURegReductionFastPriorityQueue::CalculateSethiUllmanNumbers() {
1808  SethiUllmanNumbers.assign(SUnits->size(), 0);
1809
1810  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1811    CalcNodeBUSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1812}
1813
1814/// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled
1815/// predecessors of the successors of the SUnit SU. Stop when the provided
1816/// limit is exceeded.
1817static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU,
1818                                                    unsigned Limit) {
1819  unsigned Sum = 0;
1820  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1821       I != E; ++I) {
1822    SUnit *SuccSU = I->Dep;
1823    for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
1824         EE = SuccSU->Preds.end(); II != EE; ++II) {
1825      SUnit *PredSU = II->Dep;
1826      if (!PredSU->isScheduled)
1827        if (++Sum > Limit)
1828          return Sum;
1829    }
1830  }
1831  return Sum;
1832}
1833
1834
1835// Top down
1836bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1837  unsigned LPriority = SPQ->getNodePriority(left);
1838  unsigned RPriority = SPQ->getNodePriority(right);
1839  bool LIsTarget = left->Node && left->Node->isMachineOpcode();
1840  bool RIsTarget = right->Node && right->Node->isMachineOpcode();
1841  bool LIsFloater = LIsTarget && left->NumPreds == 0;
1842  bool RIsFloater = RIsTarget && right->NumPreds == 0;
1843  unsigned LBonus = (LimitedSumOfUnscheduledPredsOfSuccs(left,1) == 1) ? 2 : 0;
1844  unsigned RBonus = (LimitedSumOfUnscheduledPredsOfSuccs(right,1) == 1) ? 2 : 0;
1845
1846  if (left->NumSuccs == 0 && right->NumSuccs != 0)
1847    return false;
1848  else if (left->NumSuccs != 0 && right->NumSuccs == 0)
1849    return true;
1850
1851  if (LIsFloater)
1852    LBonus -= 2;
1853  if (RIsFloater)
1854    RBonus -= 2;
1855  if (left->NumSuccs == 1)
1856    LBonus += 2;
1857  if (right->NumSuccs == 1)
1858    RBonus += 2;
1859
1860  if (LPriority+LBonus != RPriority+RBonus)
1861    return LPriority+LBonus < RPriority+RBonus;
1862
1863  if (left->Depth != right->Depth)
1864    return left->Depth < right->Depth;
1865
1866  if (left->NumSuccsLeft != right->NumSuccsLeft)
1867    return left->NumSuccsLeft > right->NumSuccsLeft;
1868
1869  if (left->CycleBound != right->CycleBound)
1870    return left->CycleBound > right->CycleBound;
1871
1872  assert(left->NodeQueueId && right->NodeQueueId &&
1873         "NodeQueueId cannot be zero");
1874  return (left->NodeQueueId > right->NodeQueueId);
1875}
1876
1877/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1878/// scheduling units.
1879void TDRegReductionPriorityQueue::CalculateSethiUllmanNumbers() {
1880  SethiUllmanNumbers.assign(SUnits->size(), 0);
1881
1882  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1883    CalcNodeTDSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1884}
1885
1886//===----------------------------------------------------------------------===//
1887//                         Public Constructor Functions
1888//===----------------------------------------------------------------------===//
1889
1890llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
1891                                                    SelectionDAG *DAG,
1892                                                    MachineBasicBlock *BB,
1893                                                    bool Fast) {
1894  if (Fast)
1895    return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), true, true,
1896                                 new BURegReductionFastPriorityQueue());
1897
1898  const TargetInstrInfo *TII = DAG->getTarget().getInstrInfo();
1899  const TargetRegisterInfo *TRI = DAG->getTarget().getRegisterInfo();
1900
1901  BURegReductionPriorityQueue *PQ = new BURegReductionPriorityQueue(TII, TRI);
1902
1903  ScheduleDAGRRList *SD =
1904    new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(),true,false, PQ);
1905  PQ->setScheduleDAG(SD);
1906  return SD;
1907}
1908
1909llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
1910                                                    SelectionDAG *DAG,
1911                                                    MachineBasicBlock *BB,
1912                                                    bool Fast) {
1913  return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), false, Fast,
1914                               new TDRegReductionPriorityQueue());
1915}
1916