ScheduleDAGRRList.cpp revision 83ec4b6711980242ef3c55a4fa36b2d7a39c1bfb
1//===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms.  The basic approach uses a priority
12// queue of available nodes to schedule.  One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "pre-RA-sched"
19#include "llvm/CodeGen/ScheduleDAG.h"
20#include "llvm/CodeGen/SchedulerRegistry.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22#include "llvm/Target/TargetData.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/ADT/STLExtras.h"
31#include <climits>
32#include <queue>
33#include "llvm/Support/CommandLine.h"
34using namespace llvm;
35
36STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
37STATISTIC(NumUnfolds,    "Number of nodes unfolded");
38STATISTIC(NumDups,       "Number of duplicated nodes");
39STATISTIC(NumCCCopies,   "Number of cross class copies");
40
41static RegisterScheduler
42  burrListDAGScheduler("list-burr",
43                       "  Bottom-up register reduction list scheduling",
44                       createBURRListDAGScheduler);
45static RegisterScheduler
46  tdrListrDAGScheduler("list-tdrr",
47                       "  Top-down register reduction list scheduling",
48                       createTDRRListDAGScheduler);
49
50namespace {
51//===----------------------------------------------------------------------===//
52/// ScheduleDAGRRList - The actual register reduction list scheduler
53/// implementation.  This supports both top-down and bottom-up scheduling.
54///
55class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAG {
56private:
57  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
58  /// it is top-down.
59  bool isBottomUp;
60
61  /// AvailableQueue - The priority queue to use for the available SUnits.
62  SchedulingPriorityQueue *AvailableQueue;
63
64  /// LiveRegs / LiveRegDefs - A set of physical registers and their definition
65  /// that are "live". These nodes must be scheduled before any other nodes that
66  /// modifies the registers can be scheduled.
67  SmallSet<unsigned, 4> LiveRegs;
68  std::vector<SUnit*> LiveRegDefs;
69  std::vector<unsigned> LiveRegCycles;
70
71public:
72  ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
73                  const TargetMachine &tm, bool isbottomup,
74                  SchedulingPriorityQueue *availqueue)
75    : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup),
76      AvailableQueue(availqueue) {
77    }
78
79  ~ScheduleDAGRRList() {
80    delete AvailableQueue;
81  }
82
83  void Schedule();
84
85  /// IsReachable - Checks if SU is reachable from TargetSU.
86  bool IsReachable(SUnit *SU, SUnit *TargetSU);
87
88  /// willCreateCycle - Returns true if adding an edge from SU to TargetSU will
89  /// create a cycle.
90  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
91
92  /// AddPred - This adds the specified node X as a predecessor of
93  /// the current node Y if not already.
94  /// This returns true if this is a new predecessor.
95  /// Updates the topological ordering if required.
96  bool AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial,
97               unsigned PhyReg = 0, int Cost = 1);
98
99  /// RemovePred - This removes the specified node N from the predecessors of
100  /// the current node M. Updates the topological ordering if required.
101  bool RemovePred(SUnit *M, SUnit *N, bool isCtrl, bool isSpecial);
102
103private:
104  void ReleasePred(SUnit*, bool, unsigned);
105  void ReleaseSucc(SUnit*, bool isChain, unsigned);
106  void CapturePred(SUnit*, SUnit*, bool);
107  void ScheduleNodeBottomUp(SUnit*, unsigned);
108  void ScheduleNodeTopDown(SUnit*, unsigned);
109  void UnscheduleNodeBottomUp(SUnit*);
110  void BacktrackBottomUp(SUnit*, unsigned, unsigned&);
111  SUnit *CopyAndMoveSuccessors(SUnit*);
112  void InsertCCCopiesAndMoveSuccs(SUnit*, unsigned,
113                                  const TargetRegisterClass*,
114                                  const TargetRegisterClass*,
115                                  SmallVector<SUnit*, 2>&);
116  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
117  void ListScheduleTopDown();
118  void ListScheduleBottomUp();
119  void CommuteNodesToReducePressure();
120
121
122  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
123  /// Updates the topological ordering if required.
124  SUnit *CreateNewSUnit(SDNode *N) {
125    SUnit *NewNode = NewSUnit(N);
126    // Update the topological ordering.
127    if (NewNode->NodeNum >= Node2Index.size())
128      InitDAGTopologicalSorting();
129    return NewNode;
130  }
131
132  /// CreateClone - Creates a new SUnit from an existing one.
133  /// Updates the topological ordering if required.
134  SUnit *CreateClone(SUnit *N) {
135    SUnit *NewNode = Clone(N);
136    // Update the topological ordering.
137    if (NewNode->NodeNum >= Node2Index.size())
138      InitDAGTopologicalSorting();
139    return NewNode;
140  }
141
142  /// Functions for preserving the topological ordering
143  /// even after dynamic insertions of new edges.
144  /// This allows a very fast implementation of IsReachable.
145
146
147  /**
148  The idea of the algorithm is taken from
149  "Online algorithms for managing the topological order of
150  a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
151  This is the MNR algorithm, which was first introduced by
152  A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
153  "Maintaining a topological order under edge insertions".
154
155  Short description of the algorithm:
156
157  Topological ordering, ord, of a DAG maps each node to a topological
158  index so that for all edges X->Y it is the case that ord(X) < ord(Y).
159
160  This means that if there is a path from the node X to the node Z,
161  then ord(X) < ord(Z).
162
163  This property can be used to check for reachability of nodes:
164  if Z is reachable from X, then an insertion of the edge Z->X would
165  create a cycle.
166
167  The algorithm first computes a topological ordering for the DAG by initializing
168  the Index2Node and Node2Index arrays and then tries to keep the ordering
169  up-to-date after edge insertions by reordering the DAG.
170
171  On insertion of the edge X->Y, the algorithm first marks by calling DFS the
172  nodes reachable from Y, and then shifts them using Shift to lie immediately
173  after X in Index2Node.
174  */
175
176  /// InitDAGTopologicalSorting - create the initial topological
177  /// ordering from the DAG to be scheduled.
178  void InitDAGTopologicalSorting();
179
180  /// DFS - make a DFS traversal and mark all nodes affected by the
181  /// edge insertion. These nodes will later get new topological indexes
182  /// by means of the Shift method.
183  void DFS(SUnit *SU, int UpperBound, bool& HasLoop);
184
185  /// Shift - reassign topological indexes for the nodes in the DAG
186  /// to preserve the topological ordering.
187  void Shift(BitVector& Visited, int LowerBound, int UpperBound);
188
189  /// Allocate - assign the topological index to the node n.
190  void Allocate(int n, int index);
191
192  /// Index2Node - Maps topological index to the node number.
193  std::vector<int> Index2Node;
194  /// Node2Index - Maps the node number to its topological index.
195  std::vector<int> Node2Index;
196  /// Visited - a set of nodes visited during a DFS traversal.
197  BitVector Visited;
198};
199}  // end anonymous namespace
200
201
202/// Schedule - Schedule the DAG using list scheduling.
203void ScheduleDAGRRList::Schedule() {
204  DOUT << "********** List Scheduling **********\n";
205
206  LiveRegDefs.resize(TRI->getNumRegs(), NULL);
207  LiveRegCycles.resize(TRI->getNumRegs(), 0);
208
209  // Build scheduling units.
210  BuildSchedUnits();
211
212  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
213          SUnits[su].dumpAll(&DAG));
214  CalculateDepths();
215  CalculateHeights();
216  InitDAGTopologicalSorting();
217
218  AvailableQueue->initNodes(SUnitMap, SUnits);
219
220  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
221  if (isBottomUp)
222    ListScheduleBottomUp();
223  else
224    ListScheduleTopDown();
225
226  AvailableQueue->releaseState();
227
228  CommuteNodesToReducePressure();
229
230  DOUT << "*** Final schedule ***\n";
231  DEBUG(dumpSchedule());
232  DOUT << "\n";
233
234  // Emit in scheduled order
235  EmitSchedule();
236}
237
238/// CommuteNodesToReducePressure - If a node is two-address and commutable, and
239/// it is not the last use of its first operand, add it to the CommuteSet if
240/// possible. It will be commuted when it is translated to a MI.
241void ScheduleDAGRRList::CommuteNodesToReducePressure() {
242  SmallPtrSet<SUnit*, 4> OperandSeen;
243  for (unsigned i = Sequence.size(); i != 0; ) {
244    --i;
245    SUnit *SU = Sequence[i];
246    if (!SU || !SU->Node) continue;
247    if (SU->isCommutable) {
248      unsigned Opc = SU->Node->getTargetOpcode();
249      const TargetInstrDesc &TID = TII->get(Opc);
250      unsigned NumRes = TID.getNumDefs();
251      unsigned NumOps = TID.getNumOperands() - NumRes;
252      for (unsigned j = 0; j != NumOps; ++j) {
253        if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
254          continue;
255
256        SDNode *OpN = SU->Node->getOperand(j).Val;
257        SUnit *OpSU = isPassiveNode(OpN) ? NULL : SUnitMap[OpN][SU->InstanceNo];
258        if (OpSU && OperandSeen.count(OpSU) == 1) {
259          // Ok, so SU is not the last use of OpSU, but SU is two-address so
260          // it will clobber OpSU. Try to commute SU if no other source operands
261          // are live below.
262          bool DoCommute = true;
263          for (unsigned k = 0; k < NumOps; ++k) {
264            if (k != j) {
265              OpN = SU->Node->getOperand(k).Val;
266              OpSU = isPassiveNode(OpN) ? NULL : SUnitMap[OpN][SU->InstanceNo];
267              if (OpSU && OperandSeen.count(OpSU) == 1) {
268                DoCommute = false;
269                break;
270              }
271            }
272          }
273          if (DoCommute)
274            CommuteSet.insert(SU->Node);
275        }
276
277        // Only look at the first use&def node for now.
278        break;
279      }
280    }
281
282    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
283         I != E; ++I) {
284      if (!I->isCtrl)
285        OperandSeen.insert(I->Dep);
286    }
287  }
288}
289
290//===----------------------------------------------------------------------===//
291//  Bottom-Up Scheduling
292//===----------------------------------------------------------------------===//
293
294/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
295/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
296void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain,
297                                    unsigned CurCycle) {
298  // FIXME: the distance between two nodes is not always == the predecessor's
299  // latency. For example, the reader can very well read the register written
300  // by the predecessor later than the issue cycle. It also depends on the
301  // interrupt model (drain vs. freeze).
302  PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
303
304  --PredSU->NumSuccsLeft;
305
306#ifndef NDEBUG
307  if (PredSU->NumSuccsLeft < 0) {
308    cerr << "*** List scheduling failed! ***\n";
309    PredSU->dump(&DAG);
310    cerr << " has been released too many times!\n";
311    assert(0);
312  }
313#endif
314
315  if (PredSU->NumSuccsLeft == 0) {
316    PredSU->isAvailable = true;
317    AvailableQueue->push(PredSU);
318  }
319}
320
321/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
322/// count of its predecessors. If a predecessor pending count is zero, add it to
323/// the Available queue.
324void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
325  DOUT << "*** Scheduling [" << CurCycle << "]: ";
326  DEBUG(SU->dump(&DAG));
327  SU->Cycle = CurCycle;
328
329  AvailableQueue->ScheduledNode(SU);
330
331  // Bottom up: release predecessors
332  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
333       I != E; ++I) {
334    ReleasePred(I->Dep, I->isCtrl, CurCycle);
335    if (I->Cost < 0)  {
336      // This is a physical register dependency and it's impossible or
337      // expensive to copy the register. Make sure nothing that can
338      // clobber the register is scheduled between the predecessor and
339      // this node.
340      if (LiveRegs.insert(I->Reg)) {
341        LiveRegDefs[I->Reg] = I->Dep;
342        LiveRegCycles[I->Reg] = CurCycle;
343      }
344    }
345  }
346
347  // Release all the implicit physical register defs that are live.
348  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
349       I != E; ++I) {
350    if (I->Cost < 0)  {
351      if (LiveRegCycles[I->Reg] == I->Dep->Cycle) {
352        LiveRegs.erase(I->Reg);
353        assert(LiveRegDefs[I->Reg] == SU &&
354               "Physical register dependency violated?");
355        LiveRegDefs[I->Reg] = NULL;
356        LiveRegCycles[I->Reg] = 0;
357      }
358    }
359  }
360
361  SU->isScheduled = true;
362}
363
364/// CapturePred - This does the opposite of ReleasePred. Since SU is being
365/// unscheduled, incrcease the succ left count of its predecessors. Remove
366/// them from AvailableQueue if necessary.
367void ScheduleDAGRRList::CapturePred(SUnit *PredSU, SUnit *SU, bool isChain) {
368  unsigned CycleBound = 0;
369  for (SUnit::succ_iterator I = PredSU->Succs.begin(), E = PredSU->Succs.end();
370       I != E; ++I) {
371    if (I->Dep == SU)
372      continue;
373    CycleBound = std::max(CycleBound,
374                          I->Dep->Cycle + PredSU->Latency);
375  }
376
377  if (PredSU->isAvailable) {
378    PredSU->isAvailable = false;
379    if (!PredSU->isPending)
380      AvailableQueue->remove(PredSU);
381  }
382
383  PredSU->CycleBound = CycleBound;
384  ++PredSU->NumSuccsLeft;
385}
386
387/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
388/// its predecessor states to reflect the change.
389void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
390  DOUT << "*** Unscheduling [" << SU->Cycle << "]: ";
391  DEBUG(SU->dump(&DAG));
392
393  AvailableQueue->UnscheduledNode(SU);
394
395  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
396       I != E; ++I) {
397    CapturePred(I->Dep, SU, I->isCtrl);
398    if (I->Cost < 0 && SU->Cycle == LiveRegCycles[I->Reg])  {
399      LiveRegs.erase(I->Reg);
400      assert(LiveRegDefs[I->Reg] == I->Dep &&
401             "Physical register dependency violated?");
402      LiveRegDefs[I->Reg] = NULL;
403      LiveRegCycles[I->Reg] = 0;
404    }
405  }
406
407  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
408       I != E; ++I) {
409    if (I->Cost < 0)  {
410      if (LiveRegs.insert(I->Reg)) {
411        assert(!LiveRegDefs[I->Reg] &&
412               "Physical register dependency violated?");
413        LiveRegDefs[I->Reg] = SU;
414      }
415      if (I->Dep->Cycle < LiveRegCycles[I->Reg])
416        LiveRegCycles[I->Reg] = I->Dep->Cycle;
417    }
418  }
419
420  SU->Cycle = 0;
421  SU->isScheduled = false;
422  SU->isAvailable = true;
423  AvailableQueue->push(SU);
424}
425
426/// IsReachable - Checks if SU is reachable from TargetSU.
427bool ScheduleDAGRRList::IsReachable(SUnit *SU, SUnit *TargetSU) {
428  // If insertion of the edge SU->TargetSU would create a cycle
429  // then there is a path from TargetSU to SU.
430  int UpperBound, LowerBound;
431  LowerBound = Node2Index[TargetSU->NodeNum];
432  UpperBound = Node2Index[SU->NodeNum];
433  bool HasLoop = false;
434  // Is Ord(TargetSU) < Ord(SU) ?
435  if (LowerBound < UpperBound) {
436    Visited.reset();
437    // There may be a path from TargetSU to SU. Check for it.
438    DFS(TargetSU, UpperBound, HasLoop);
439  }
440  return HasLoop;
441}
442
443/// Allocate - assign the topological index to the node n.
444inline void ScheduleDAGRRList::Allocate(int n, int index) {
445  Node2Index[n] = index;
446  Index2Node[index] = n;
447}
448
449/// InitDAGTopologicalSorting - create the initial topological
450/// ordering from the DAG to be scheduled.
451void ScheduleDAGRRList::InitDAGTopologicalSorting() {
452  unsigned DAGSize = SUnits.size();
453  std::vector<unsigned> InDegree(DAGSize);
454  std::vector<SUnit*> WorkList;
455  WorkList.reserve(DAGSize);
456  std::vector<SUnit*> TopOrder;
457  TopOrder.reserve(DAGSize);
458
459  // Initialize the data structures.
460  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
461    SUnit *SU = &SUnits[i];
462    int NodeNum = SU->NodeNum;
463    unsigned Degree = SU->Succs.size();
464    InDegree[NodeNum] = Degree;
465
466    // Is it a node without dependencies?
467    if (Degree == 0) {
468        assert(SU->Succs.empty() && "SUnit should have no successors");
469        // Collect leaf nodes.
470        WorkList.push_back(SU);
471    }
472  }
473
474  while (!WorkList.empty()) {
475    SUnit *SU = WorkList.back();
476    WorkList.pop_back();
477    TopOrder.push_back(SU);
478    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
479         I != E; ++I) {
480      SUnit *SU = I->Dep;
481      if (!--InDegree[SU->NodeNum])
482        // If all dependencies of the node are processed already,
483        // then the node can be computed now.
484        WorkList.push_back(SU);
485    }
486  }
487
488  // Second pass, assign the actual topological order as node ids.
489  int Id = 0;
490
491  Index2Node.clear();
492  Node2Index.clear();
493  Index2Node.resize(DAGSize);
494  Node2Index.resize(DAGSize);
495  Visited.resize(DAGSize);
496
497  for (std::vector<SUnit*>::reverse_iterator TI = TopOrder.rbegin(),
498       TE = TopOrder.rend();TI != TE; ++TI) {
499    Allocate((*TI)->NodeNum, Id);
500    Id++;
501  }
502
503#ifndef NDEBUG
504  // Check correctness of the ordering
505  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
506    SUnit *SU = &SUnits[i];
507    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
508         I != E; ++I) {
509       assert(Node2Index[SU->NodeNum] > Node2Index[I->Dep->NodeNum] &&
510       "Wrong topological sorting");
511    }
512  }
513#endif
514}
515
516/// AddPred - adds an edge from SUnit X to SUnit Y.
517/// Updates the topological ordering if required.
518bool ScheduleDAGRRList::AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial,
519                 unsigned PhyReg, int Cost) {
520  int UpperBound, LowerBound;
521  LowerBound = Node2Index[Y->NodeNum];
522  UpperBound = Node2Index[X->NodeNum];
523  bool HasLoop = false;
524  // Is Ord(X) < Ord(Y) ?
525  if (LowerBound < UpperBound) {
526    // Update the topological order.
527    Visited.reset();
528    DFS(Y, UpperBound, HasLoop);
529    assert(!HasLoop && "Inserted edge creates a loop!");
530    // Recompute topological indexes.
531    Shift(Visited, LowerBound, UpperBound);
532  }
533  // Now really insert the edge.
534  return Y->addPred(X, isCtrl, isSpecial, PhyReg, Cost);
535}
536
537/// RemovePred - This removes the specified node N from the predecessors of
538/// the current node M. Updates the topological ordering if required.
539bool ScheduleDAGRRList::RemovePred(SUnit *M, SUnit *N,
540                                   bool isCtrl, bool isSpecial) {
541  // InitDAGTopologicalSorting();
542  return M->removePred(N, isCtrl, isSpecial);
543}
544
545/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
546/// all nodes affected by the edge insertion. These nodes will later get new
547/// topological indexes by means of the Shift method.
548void ScheduleDAGRRList::DFS(SUnit *SU, int UpperBound, bool& HasLoop) {
549  std::vector<SUnit*> WorkList;
550  WorkList.reserve(SUnits.size());
551
552  WorkList.push_back(SU);
553  while (!WorkList.empty()) {
554    SU = WorkList.back();
555    WorkList.pop_back();
556    Visited.set(SU->NodeNum);
557    for (int I = SU->Succs.size()-1; I >= 0; --I) {
558      int s = SU->Succs[I].Dep->NodeNum;
559      if (Node2Index[s] == UpperBound) {
560        HasLoop = true;
561        return;
562      }
563      // Visit successors if not already and in affected region.
564      if (!Visited.test(s) && Node2Index[s] < UpperBound) {
565        WorkList.push_back(SU->Succs[I].Dep);
566      }
567    }
568  }
569}
570
571/// Shift - Renumber the nodes so that the topological ordering is
572/// preserved.
573void ScheduleDAGRRList::Shift(BitVector& Visited, int LowerBound,
574                              int UpperBound) {
575  std::vector<int> L;
576  int shift = 0;
577  int i;
578
579  for (i = LowerBound; i <= UpperBound; ++i) {
580    // w is node at topological index i.
581    int w = Index2Node[i];
582    if (Visited.test(w)) {
583      // Unmark.
584      Visited.reset(w);
585      L.push_back(w);
586      shift = shift + 1;
587    } else {
588      Allocate(w, i - shift);
589    }
590  }
591
592  for (unsigned j = 0; j < L.size(); ++j) {
593    Allocate(L[j], i - shift);
594    i = i + 1;
595  }
596}
597
598
599/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
600/// create a cycle.
601bool ScheduleDAGRRList::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
602  if (IsReachable(TargetSU, SU))
603    return true;
604  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
605       I != E; ++I)
606    if (I->Cost < 0 && IsReachable(TargetSU, I->Dep))
607      return true;
608  return false;
609}
610
611/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
612/// BTCycle in order to schedule a specific node. Returns the last unscheduled
613/// SUnit. Also returns if a successor is unscheduled in the process.
614void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle,
615                                          unsigned &CurCycle) {
616  SUnit *OldSU = NULL;
617  while (CurCycle > BtCycle) {
618    OldSU = Sequence.back();
619    Sequence.pop_back();
620    if (SU->isSucc(OldSU))
621      // Don't try to remove SU from AvailableQueue.
622      SU->isAvailable = false;
623    UnscheduleNodeBottomUp(OldSU);
624    --CurCycle;
625  }
626
627
628  if (SU->isSucc(OldSU)) {
629    assert(false && "Something is wrong!");
630    abort();
631  }
632
633  ++NumBacktracks;
634}
635
636/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
637/// successors to the newly created node.
638SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
639  if (SU->FlaggedNodes.size())
640    return NULL;
641
642  SDNode *N = SU->Node;
643  if (!N)
644    return NULL;
645
646  SUnit *NewSU;
647  bool TryUnfold = false;
648  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
649    MVT VT = N->getValueType(i);
650    if (VT == MVT::Flag)
651      return NULL;
652    else if (VT == MVT::Other)
653      TryUnfold = true;
654  }
655  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
656    const SDOperand &Op = N->getOperand(i);
657    MVT VT = Op.Val->getValueType(Op.ResNo);
658    if (VT == MVT::Flag)
659      return NULL;
660  }
661
662  if (TryUnfold) {
663    SmallVector<SDNode*, 4> NewNodes;
664    if (!TII->unfoldMemoryOperand(DAG, N, NewNodes))
665      return NULL;
666
667    DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
668    assert(NewNodes.size() == 2 && "Expected a load folding node!");
669
670    N = NewNodes[1];
671    SDNode *LoadNode = NewNodes[0];
672    unsigned NumVals = N->getNumValues();
673    unsigned OldNumVals = SU->Node->getNumValues();
674    for (unsigned i = 0; i != NumVals; ++i)
675      DAG.ReplaceAllUsesOfValueWith(SDOperand(SU->Node, i), SDOperand(N, i));
676    DAG.ReplaceAllUsesOfValueWith(SDOperand(SU->Node, OldNumVals-1),
677                                  SDOperand(LoadNode, 1));
678
679    SUnit *NewSU = CreateNewSUnit(N);
680    SUnitMap[N].push_back(NewSU);
681    const TargetInstrDesc &TID = TII->get(N->getTargetOpcode());
682    for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
683      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
684        NewSU->isTwoAddress = true;
685        break;
686      }
687    }
688    if (TID.isCommutable())
689      NewSU->isCommutable = true;
690    // FIXME: Calculate height / depth and propagate the changes?
691    NewSU->Depth = SU->Depth;
692    NewSU->Height = SU->Height;
693    ComputeLatency(NewSU);
694
695    // LoadNode may already exist. This can happen when there is another
696    // load from the same location and producing the same type of value
697    // but it has different alignment or volatileness.
698    bool isNewLoad = true;
699    SUnit *LoadSU;
700    DenseMap<SDNode*, std::vector<SUnit*> >::iterator SMI =
701      SUnitMap.find(LoadNode);
702    if (SMI != SUnitMap.end()) {
703      LoadSU = SMI->second.front();
704      isNewLoad = false;
705    } else {
706      LoadSU = CreateNewSUnit(LoadNode);
707      SUnitMap[LoadNode].push_back(LoadSU);
708
709      LoadSU->Depth = SU->Depth;
710      LoadSU->Height = SU->Height;
711      ComputeLatency(LoadSU);
712    }
713
714    SUnit *ChainPred = NULL;
715    SmallVector<SDep, 4> ChainSuccs;
716    SmallVector<SDep, 4> LoadPreds;
717    SmallVector<SDep, 4> NodePreds;
718    SmallVector<SDep, 4> NodeSuccs;
719    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
720         I != E; ++I) {
721      if (I->isCtrl)
722        ChainPred = I->Dep;
723      else if (I->Dep->Node && I->Dep->Node->isOperandOf(LoadNode))
724        LoadPreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
725      else
726        NodePreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
727    }
728    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
729         I != E; ++I) {
730      if (I->isCtrl)
731        ChainSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
732                                  I->isCtrl, I->isSpecial));
733      else
734        NodeSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
735                                 I->isCtrl, I->isSpecial));
736    }
737
738    if (ChainPred) {
739      RemovePred(SU, ChainPred, true, false);
740      if (isNewLoad)
741        AddPred(LoadSU, ChainPred, true, false);
742    }
743    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
744      SDep *Pred = &LoadPreds[i];
745      RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial);
746      if (isNewLoad) {
747        AddPred(LoadSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial,
748                Pred->Reg, Pred->Cost);
749      }
750    }
751    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
752      SDep *Pred = &NodePreds[i];
753      RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial);
754      AddPred(NewSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial,
755              Pred->Reg, Pred->Cost);
756    }
757    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
758      SDep *Succ = &NodeSuccs[i];
759      RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial);
760      AddPred(Succ->Dep, NewSU, Succ->isCtrl, Succ->isSpecial,
761              Succ->Reg, Succ->Cost);
762    }
763    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
764      SDep *Succ = &ChainSuccs[i];
765      RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial);
766      if (isNewLoad) {
767        AddPred(Succ->Dep, LoadSU, Succ->isCtrl, Succ->isSpecial,
768                Succ->Reg, Succ->Cost);
769      }
770    }
771    if (isNewLoad) {
772      AddPred(NewSU, LoadSU, false, false);
773    }
774
775    if (isNewLoad)
776      AvailableQueue->addNode(LoadSU);
777    AvailableQueue->addNode(NewSU);
778
779    ++NumUnfolds;
780
781    if (NewSU->NumSuccsLeft == 0) {
782      NewSU->isAvailable = true;
783      return NewSU;
784    }
785    SU = NewSU;
786  }
787
788  DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
789  NewSU = CreateClone(SU);
790
791  // New SUnit has the exact same predecessors.
792  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
793       I != E; ++I)
794    if (!I->isSpecial) {
795      AddPred(NewSU, I->Dep, I->isCtrl, false, I->Reg, I->Cost);
796      NewSU->Depth = std::max(NewSU->Depth, I->Dep->Depth+1);
797    }
798
799  // Only copy scheduled successors. Cut them from old node's successor
800  // list and move them over.
801  SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
802  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
803       I != E; ++I) {
804    if (I->isSpecial)
805      continue;
806    if (I->Dep->isScheduled) {
807      NewSU->Height = std::max(NewSU->Height, I->Dep->Height+1);
808      AddPred(I->Dep, NewSU, I->isCtrl, false, I->Reg, I->Cost);
809      DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
810    }
811  }
812  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
813    SUnit *Succ = DelDeps[i].first;
814    bool isCtrl = DelDeps[i].second;
815    RemovePred(Succ, SU, isCtrl, false);
816  }
817
818  AvailableQueue->updateNode(SU);
819  AvailableQueue->addNode(NewSU);
820
821  ++NumDups;
822  return NewSU;
823}
824
825/// InsertCCCopiesAndMoveSuccs - Insert expensive cross register class copies
826/// and move all scheduled successors of the given SUnit to the last copy.
827void ScheduleDAGRRList::InsertCCCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
828                                              const TargetRegisterClass *DestRC,
829                                              const TargetRegisterClass *SrcRC,
830                                               SmallVector<SUnit*, 2> &Copies) {
831  SUnit *CopyFromSU = CreateNewSUnit(NULL);
832  CopyFromSU->CopySrcRC = SrcRC;
833  CopyFromSU->CopyDstRC = DestRC;
834  CopyFromSU->Depth = SU->Depth;
835  CopyFromSU->Height = SU->Height;
836
837  SUnit *CopyToSU = CreateNewSUnit(NULL);
838  CopyToSU->CopySrcRC = DestRC;
839  CopyToSU->CopyDstRC = SrcRC;
840
841  // Only copy scheduled successors. Cut them from old node's successor
842  // list and move them over.
843  SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
844  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
845       I != E; ++I) {
846    if (I->isSpecial)
847      continue;
848    if (I->Dep->isScheduled) {
849      CopyToSU->Height = std::max(CopyToSU->Height, I->Dep->Height+1);
850      AddPred(I->Dep, CopyToSU, I->isCtrl, false, I->Reg, I->Cost);
851      DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
852    }
853  }
854  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
855    SUnit *Succ = DelDeps[i].first;
856    bool isCtrl = DelDeps[i].second;
857    RemovePred(Succ, SU, isCtrl, false);
858  }
859
860  AddPred(CopyFromSU, SU, false, false, Reg, -1);
861  AddPred(CopyToSU, CopyFromSU, false, false, Reg, 1);
862
863  AvailableQueue->updateNode(SU);
864  AvailableQueue->addNode(CopyFromSU);
865  AvailableQueue->addNode(CopyToSU);
866  Copies.push_back(CopyFromSU);
867  Copies.push_back(CopyToSU);
868
869  ++NumCCCopies;
870}
871
872/// getPhysicalRegisterVT - Returns the ValueType of the physical register
873/// definition of the specified node.
874/// FIXME: Move to SelectionDAG?
875static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
876                                 const TargetInstrInfo *TII) {
877  const TargetInstrDesc &TID = TII->get(N->getTargetOpcode());
878  assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
879  unsigned NumRes = TID.getNumDefs();
880  for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
881    if (Reg == *ImpDef)
882      break;
883    ++NumRes;
884  }
885  return N->getValueType(NumRes);
886}
887
888/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
889/// scheduling of the given node to satisfy live physical register dependencies.
890/// If the specific node is the last one that's available to schedule, do
891/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
892bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
893                                                 SmallVector<unsigned, 4> &LRegs){
894  if (LiveRegs.empty())
895    return false;
896
897  SmallSet<unsigned, 4> RegAdded;
898  // If this node would clobber any "live" register, then it's not ready.
899  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
900       I != E; ++I) {
901    if (I->Cost < 0)  {
902      unsigned Reg = I->Reg;
903      if (LiveRegs.count(Reg) && LiveRegDefs[Reg] != I->Dep) {
904        if (RegAdded.insert(Reg))
905          LRegs.push_back(Reg);
906      }
907      for (const unsigned *Alias = TRI->getAliasSet(Reg);
908           *Alias; ++Alias)
909        if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != I->Dep) {
910          if (RegAdded.insert(*Alias))
911            LRegs.push_back(*Alias);
912        }
913    }
914  }
915
916  for (unsigned i = 0, e = SU->FlaggedNodes.size()+1; i != e; ++i) {
917    SDNode *Node = (i == 0) ? SU->Node : SU->FlaggedNodes[i-1];
918    if (!Node || !Node->isTargetOpcode())
919      continue;
920    const TargetInstrDesc &TID = TII->get(Node->getTargetOpcode());
921    if (!TID.ImplicitDefs)
922      continue;
923    for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
924      if (LiveRegs.count(*Reg) && LiveRegDefs[*Reg] != SU) {
925        if (RegAdded.insert(*Reg))
926          LRegs.push_back(*Reg);
927      }
928      for (const unsigned *Alias = TRI->getAliasSet(*Reg);
929           *Alias; ++Alias)
930        if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != SU) {
931          if (RegAdded.insert(*Alias))
932            LRegs.push_back(*Alias);
933        }
934    }
935  }
936  return !LRegs.empty();
937}
938
939
940/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
941/// schedulers.
942void ScheduleDAGRRList::ListScheduleBottomUp() {
943  unsigned CurCycle = 0;
944  // Add root to Available queue.
945  if (!SUnits.empty()) {
946    SUnit *RootSU = SUnitMap[DAG.getRoot().Val].front();
947    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
948    RootSU->isAvailable = true;
949    AvailableQueue->push(RootSU);
950  }
951
952  // While Available queue is not empty, grab the node with the highest
953  // priority. If it is not ready put it back.  Schedule the node.
954  SmallVector<SUnit*, 4> NotReady;
955  while (!AvailableQueue->empty()) {
956    bool Delayed = false;
957    DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
958    SUnit *CurSU = AvailableQueue->pop();
959    while (CurSU) {
960      if (CurSU->CycleBound <= CurCycle) {
961        SmallVector<unsigned, 4> LRegs;
962        if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
963          break;
964        Delayed = true;
965        LRegsMap.insert(std::make_pair(CurSU, LRegs));
966      }
967
968      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
969      NotReady.push_back(CurSU);
970      CurSU = AvailableQueue->pop();
971    }
972
973    // All candidates are delayed due to live physical reg dependencies.
974    // Try backtracking, code duplication, or inserting cross class copies
975    // to resolve it.
976    if (Delayed && !CurSU) {
977      for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
978        SUnit *TrySU = NotReady[i];
979        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
980
981        // Try unscheduling up to the point where it's safe to schedule
982        // this node.
983        unsigned LiveCycle = CurCycle;
984        for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
985          unsigned Reg = LRegs[j];
986          unsigned LCycle = LiveRegCycles[Reg];
987          LiveCycle = std::min(LiveCycle, LCycle);
988        }
989        SUnit *OldSU = Sequence[LiveCycle];
990        if (!WillCreateCycle(TrySU, OldSU))  {
991          BacktrackBottomUp(TrySU, LiveCycle, CurCycle);
992          // Force the current node to be scheduled before the node that
993          // requires the physical reg dep.
994          if (OldSU->isAvailable) {
995            OldSU->isAvailable = false;
996            AvailableQueue->remove(OldSU);
997          }
998          AddPred(TrySU, OldSU, true, true);
999          // If one or more successors has been unscheduled, then the current
1000          // node is no longer avaialable. Schedule a successor that's now
1001          // available instead.
1002          if (!TrySU->isAvailable)
1003            CurSU = AvailableQueue->pop();
1004          else {
1005            CurSU = TrySU;
1006            TrySU->isPending = false;
1007            NotReady.erase(NotReady.begin()+i);
1008          }
1009          break;
1010        }
1011      }
1012
1013      if (!CurSU) {
1014        // Can't backtrack. Try duplicating the nodes that produces these
1015        // "expensive to copy" values to break the dependency. In case even
1016        // that doesn't work, insert cross class copies.
1017        SUnit *TrySU = NotReady[0];
1018        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
1019        assert(LRegs.size() == 1 && "Can't handle this yet!");
1020        unsigned Reg = LRegs[0];
1021        SUnit *LRDef = LiveRegDefs[Reg];
1022        SUnit *NewDef = CopyAndMoveSuccessors(LRDef);
1023        if (!NewDef) {
1024          // Issue expensive cross register class copies.
1025          MVT VT = getPhysicalRegisterVT(LRDef->Node, Reg, TII);
1026          const TargetRegisterClass *RC =
1027            TRI->getPhysicalRegisterRegClass(Reg, VT);
1028          const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1029          if (!DestRC) {
1030            assert(false && "Don't know how to copy this physical register!");
1031            abort();
1032          }
1033          SmallVector<SUnit*, 2> Copies;
1034          InsertCCCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1035          DOUT << "Adding an edge from SU # " << TrySU->NodeNum
1036               << " to SU #" << Copies.front()->NodeNum << "\n";
1037          AddPred(TrySU, Copies.front(), true, true);
1038          NewDef = Copies.back();
1039        }
1040
1041        DOUT << "Adding an edge from SU # " << NewDef->NodeNum
1042             << " to SU #" << TrySU->NodeNum << "\n";
1043        LiveRegDefs[Reg] = NewDef;
1044        AddPred(NewDef, TrySU, true, true);
1045        TrySU->isAvailable = false;
1046        CurSU = NewDef;
1047      }
1048
1049      if (!CurSU) {
1050        assert(false && "Unable to resolve live physical register dependencies!");
1051        abort();
1052      }
1053    }
1054
1055    // Add the nodes that aren't ready back onto the available list.
1056    for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
1057      NotReady[i]->isPending = false;
1058      // May no longer be available due to backtracking.
1059      if (NotReady[i]->isAvailable)
1060        AvailableQueue->push(NotReady[i]);
1061    }
1062    NotReady.clear();
1063
1064    if (!CurSU)
1065      Sequence.push_back(0);
1066    else {
1067      ScheduleNodeBottomUp(CurSU, CurCycle);
1068      Sequence.push_back(CurSU);
1069    }
1070    ++CurCycle;
1071  }
1072
1073  // Reverse the order if it is bottom up.
1074  std::reverse(Sequence.begin(), Sequence.end());
1075
1076
1077#ifndef NDEBUG
1078  // Verify that all SUnits were scheduled.
1079  bool AnyNotSched = false;
1080  unsigned DeadNodes = 0;
1081  unsigned Noops = 0;
1082  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1083    if (!SUnits[i].isScheduled) {
1084      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
1085        ++DeadNodes;
1086        continue;
1087      }
1088      if (!AnyNotSched)
1089        cerr << "*** List scheduling failed! ***\n";
1090      SUnits[i].dump(&DAG);
1091      cerr << "has not been scheduled!\n";
1092      AnyNotSched = true;
1093    }
1094    if (SUnits[i].NumSuccsLeft != 0) {
1095      if (!AnyNotSched)
1096        cerr << "*** List scheduling failed! ***\n";
1097      SUnits[i].dump(&DAG);
1098      cerr << "has successors left!\n";
1099      AnyNotSched = true;
1100    }
1101  }
1102  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
1103    if (!Sequence[i])
1104      ++Noops;
1105  assert(!AnyNotSched);
1106  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
1107         "The number of nodes scheduled doesn't match the expected number!");
1108#endif
1109}
1110
1111//===----------------------------------------------------------------------===//
1112//  Top-Down Scheduling
1113//===----------------------------------------------------------------------===//
1114
1115/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
1116/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
1117void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain,
1118                                    unsigned CurCycle) {
1119  // FIXME: the distance between two nodes is not always == the predecessor's
1120  // latency. For example, the reader can very well read the register written
1121  // by the predecessor later than the issue cycle. It also depends on the
1122  // interrupt model (drain vs. freeze).
1123  SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
1124
1125  --SuccSU->NumPredsLeft;
1126
1127#ifndef NDEBUG
1128  if (SuccSU->NumPredsLeft < 0) {
1129    cerr << "*** List scheduling failed! ***\n";
1130    SuccSU->dump(&DAG);
1131    cerr << " has been released too many times!\n";
1132    assert(0);
1133  }
1134#endif
1135
1136  if (SuccSU->NumPredsLeft == 0) {
1137    SuccSU->isAvailable = true;
1138    AvailableQueue->push(SuccSU);
1139  }
1140}
1141
1142
1143/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
1144/// count of its successors. If a successor pending count is zero, add it to
1145/// the Available queue.
1146void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
1147  DOUT << "*** Scheduling [" << CurCycle << "]: ";
1148  DEBUG(SU->dump(&DAG));
1149  SU->Cycle = CurCycle;
1150
1151  AvailableQueue->ScheduledNode(SU);
1152
1153  // Top down: release successors
1154  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1155       I != E; ++I)
1156    ReleaseSucc(I->Dep, I->isCtrl, CurCycle);
1157  SU->isScheduled = true;
1158}
1159
1160/// ListScheduleTopDown - The main loop of list scheduling for top-down
1161/// schedulers.
1162void ScheduleDAGRRList::ListScheduleTopDown() {
1163  unsigned CurCycle = 0;
1164
1165  // All leaves to Available queue.
1166  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1167    // It is available if it has no predecessors.
1168    if (SUnits[i].Preds.empty()) {
1169      AvailableQueue->push(&SUnits[i]);
1170      SUnits[i].isAvailable = true;
1171    }
1172  }
1173
1174  // While Available queue is not empty, grab the node with the highest
1175  // priority. If it is not ready put it back.  Schedule the node.
1176  std::vector<SUnit*> NotReady;
1177  while (!AvailableQueue->empty()) {
1178    SUnit *CurSU = AvailableQueue->pop();
1179    while (CurSU && CurSU->CycleBound > CurCycle) {
1180      NotReady.push_back(CurSU);
1181      CurSU = AvailableQueue->pop();
1182    }
1183
1184    // Add the nodes that aren't ready back onto the available list.
1185    AvailableQueue->push_all(NotReady);
1186    NotReady.clear();
1187
1188    if (!CurSU)
1189      Sequence.push_back(0);
1190    else {
1191      ScheduleNodeTopDown(CurSU, CurCycle);
1192      Sequence.push_back(CurSU);
1193    }
1194    ++CurCycle;
1195  }
1196
1197
1198#ifndef NDEBUG
1199  // Verify that all SUnits were scheduled.
1200  bool AnyNotSched = false;
1201  unsigned DeadNodes = 0;
1202  unsigned Noops = 0;
1203  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1204    if (!SUnits[i].isScheduled) {
1205      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
1206        ++DeadNodes;
1207        continue;
1208      }
1209      if (!AnyNotSched)
1210        cerr << "*** List scheduling failed! ***\n";
1211      SUnits[i].dump(&DAG);
1212      cerr << "has not been scheduled!\n";
1213      AnyNotSched = true;
1214    }
1215    if (SUnits[i].NumPredsLeft != 0) {
1216      if (!AnyNotSched)
1217        cerr << "*** List scheduling failed! ***\n";
1218      SUnits[i].dump(&DAG);
1219      cerr << "has predecessors left!\n";
1220      AnyNotSched = true;
1221    }
1222  }
1223  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
1224    if (!Sequence[i])
1225      ++Noops;
1226  assert(!AnyNotSched);
1227  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
1228         "The number of nodes scheduled doesn't match the expected number!");
1229#endif
1230}
1231
1232
1233
1234//===----------------------------------------------------------------------===//
1235//                RegReductionPriorityQueue Implementation
1236//===----------------------------------------------------------------------===//
1237//
1238// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1239// to reduce register pressure.
1240//
1241namespace {
1242  template<class SF>
1243  class RegReductionPriorityQueue;
1244
1245  /// Sorting functions for the Available queue.
1246  struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1247    RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
1248    bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
1249    bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1250
1251    bool operator()(const SUnit* left, const SUnit* right) const;
1252  };
1253
1254  struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1255    RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
1256    td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
1257    td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1258
1259    bool operator()(const SUnit* left, const SUnit* right) const;
1260  };
1261}  // end anonymous namespace
1262
1263static inline bool isCopyFromLiveIn(const SUnit *SU) {
1264  SDNode *N = SU->Node;
1265  return N && N->getOpcode() == ISD::CopyFromReg &&
1266    N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
1267}
1268
1269namespace {
1270  template<class SF>
1271  class VISIBILITY_HIDDEN RegReductionPriorityQueue
1272   : public SchedulingPriorityQueue {
1273    std::set<SUnit*, SF> Queue;
1274    unsigned currentQueueId;
1275
1276  public:
1277    RegReductionPriorityQueue() :
1278    Queue(SF(this)), currentQueueId(0) {}
1279
1280    virtual void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
1281                           std::vector<SUnit> &sunits) {}
1282
1283    virtual void addNode(const SUnit *SU) {}
1284
1285    virtual void updateNode(const SUnit *SU) {}
1286
1287    virtual void releaseState() {}
1288
1289    virtual unsigned getNodePriority(const SUnit *SU) const {
1290      return 0;
1291    }
1292
1293    unsigned size() const { return Queue.size(); }
1294
1295    bool empty() const { return Queue.empty(); }
1296
1297    void push(SUnit *U) {
1298      assert(!U->NodeQueueId && "Node in the queue already");
1299      U->NodeQueueId = ++currentQueueId;
1300      Queue.insert(U);
1301    }
1302
1303    void push_all(const std::vector<SUnit *> &Nodes) {
1304      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
1305        push(Nodes[i]);
1306    }
1307
1308    SUnit *pop() {
1309      if (empty()) return NULL;
1310      typename std::set<SUnit*, SF>::iterator i = prior(Queue.end());
1311      SUnit *V = *i;
1312      Queue.erase(i);
1313      V->NodeQueueId = 0;
1314      return V;
1315    }
1316
1317    void remove(SUnit *SU) {
1318      assert(!Queue.empty() && "Queue is empty!");
1319      size_t RemovedNum = Queue.erase(SU);
1320      RemovedNum = RemovedNum; // Silence compiler warning.
1321      assert(RemovedNum > 0 && "Not in queue!");
1322      assert(RemovedNum == 1 && "Multiple times in the queue!");
1323      SU->NodeQueueId = 0;
1324    }
1325  };
1326
1327  template<class SF>
1328  class VISIBILITY_HIDDEN BURegReductionPriorityQueue
1329   : public RegReductionPriorityQueue<SF> {
1330    // SUnitMap SDNode to SUnit mapping (n -> n).
1331    DenseMap<SDNode*, std::vector<SUnit*> > *SUnitMap;
1332
1333    // SUnits - The SUnits for the current graph.
1334    const std::vector<SUnit> *SUnits;
1335
1336    // SethiUllmanNumbers - The SethiUllman number for each node.
1337    std::vector<unsigned> SethiUllmanNumbers;
1338
1339    const TargetInstrInfo *TII;
1340    const TargetRegisterInfo *TRI;
1341    ScheduleDAGRRList *scheduleDAG;
1342  public:
1343    explicit BURegReductionPriorityQueue(const TargetInstrInfo *tii,
1344                                         const TargetRegisterInfo *tri)
1345      : TII(tii), TRI(tri), scheduleDAG(NULL) {}
1346
1347    void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
1348                   std::vector<SUnit> &sunits) {
1349      SUnitMap = &sumap;
1350      SUnits = &sunits;
1351      // Add pseudo dependency edges for two-address nodes.
1352      AddPseudoTwoAddrDeps();
1353      // Calculate node priorities.
1354      CalculateSethiUllmanNumbers();
1355    }
1356
1357    void addNode(const SUnit *SU) {
1358      SethiUllmanNumbers.resize(SUnits->size(), 0);
1359      CalcNodeSethiUllmanNumber(SU);
1360    }
1361
1362    void updateNode(const SUnit *SU) {
1363      SethiUllmanNumbers[SU->NodeNum] = 0;
1364      CalcNodeSethiUllmanNumber(SU);
1365    }
1366
1367    void releaseState() {
1368      SUnits = 0;
1369      SethiUllmanNumbers.clear();
1370    }
1371
1372    unsigned getNodePriority(const SUnit *SU) const {
1373      assert(SU->NodeNum < SethiUllmanNumbers.size());
1374      unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
1375      if (Opc == ISD::CopyFromReg && !isCopyFromLiveIn(SU))
1376        // CopyFromReg should be close to its def because it restricts
1377        // allocation choices. But if it is a livein then perhaps we want it
1378        // closer to its uses so it can be coalesced.
1379        return 0xffff;
1380      else if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1381        // CopyToReg should be close to its uses to facilitate coalescing and
1382        // avoid spilling.
1383        return 0;
1384      else if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
1385               Opc == TargetInstrInfo::INSERT_SUBREG)
1386        // EXTRACT_SUBREG / INSERT_SUBREG should be close to its use to
1387        // facilitate coalescing.
1388        return 0;
1389      else if (SU->NumSuccs == 0)
1390        // If SU does not have a use, i.e. it doesn't produce a value that would
1391        // be consumed (e.g. store), then it terminates a chain of computation.
1392        // Give it a large SethiUllman number so it will be scheduled right
1393        // before its predecessors that it doesn't lengthen their live ranges.
1394        return 0xffff;
1395      else if (SU->NumPreds == 0)
1396        // If SU does not have a def, schedule it close to its uses because it
1397        // does not lengthen any live ranges.
1398        return 0;
1399      else
1400        return SethiUllmanNumbers[SU->NodeNum];
1401    }
1402
1403    void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1404      scheduleDAG = scheduleDag;
1405    }
1406
1407  private:
1408    bool canClobber(const SUnit *SU, const SUnit *Op);
1409    void AddPseudoTwoAddrDeps();
1410    void CalculateSethiUllmanNumbers();
1411    unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
1412  };
1413
1414
1415  template<class SF>
1416  class VISIBILITY_HIDDEN TDRegReductionPriorityQueue
1417   : public RegReductionPriorityQueue<SF> {
1418    // SUnitMap SDNode to SUnit mapping (n -> n).
1419    DenseMap<SDNode*, std::vector<SUnit*> > *SUnitMap;
1420
1421    // SUnits - The SUnits for the current graph.
1422    const std::vector<SUnit> *SUnits;
1423
1424    // SethiUllmanNumbers - The SethiUllman number for each node.
1425    std::vector<unsigned> SethiUllmanNumbers;
1426
1427  public:
1428    TDRegReductionPriorityQueue() {}
1429
1430    void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
1431                   std::vector<SUnit> &sunits) {
1432      SUnitMap = &sumap;
1433      SUnits = &sunits;
1434      // Calculate node priorities.
1435      CalculateSethiUllmanNumbers();
1436    }
1437
1438    void addNode(const SUnit *SU) {
1439      SethiUllmanNumbers.resize(SUnits->size(), 0);
1440      CalcNodeSethiUllmanNumber(SU);
1441    }
1442
1443    void updateNode(const SUnit *SU) {
1444      SethiUllmanNumbers[SU->NodeNum] = 0;
1445      CalcNodeSethiUllmanNumber(SU);
1446    }
1447
1448    void releaseState() {
1449      SUnits = 0;
1450      SethiUllmanNumbers.clear();
1451    }
1452
1453    unsigned getNodePriority(const SUnit *SU) const {
1454      assert(SU->NodeNum < SethiUllmanNumbers.size());
1455      return SethiUllmanNumbers[SU->NodeNum];
1456    }
1457
1458  private:
1459    void CalculateSethiUllmanNumbers();
1460    unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
1461  };
1462}
1463
1464/// closestSucc - Returns the scheduled cycle of the successor which is
1465/// closet to the current cycle.
1466static unsigned closestSucc(const SUnit *SU) {
1467  unsigned MaxCycle = 0;
1468  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1469       I != E; ++I) {
1470    unsigned Cycle = I->Dep->Cycle;
1471    // If there are bunch of CopyToRegs stacked up, they should be considered
1472    // to be at the same position.
1473    if (I->Dep->Node && I->Dep->Node->getOpcode() == ISD::CopyToReg)
1474      Cycle = closestSucc(I->Dep)+1;
1475    if (Cycle > MaxCycle)
1476      MaxCycle = Cycle;
1477  }
1478  return MaxCycle;
1479}
1480
1481/// calcMaxScratches - Returns an cost estimate of the worse case requirement
1482/// for scratch registers. Live-in operands and live-out results don't count
1483/// since they are "fixed".
1484static unsigned calcMaxScratches(const SUnit *SU) {
1485  unsigned Scratches = 0;
1486  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1487       I != E; ++I) {
1488    if (I->isCtrl) continue;  // ignore chain preds
1489    if (!I->Dep->Node || I->Dep->Node->getOpcode() != ISD::CopyFromReg)
1490      Scratches++;
1491  }
1492  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1493       I != E; ++I) {
1494    if (I->isCtrl) continue;  // ignore chain succs
1495    if (!I->Dep->Node || I->Dep->Node->getOpcode() != ISD::CopyToReg)
1496      Scratches += 10;
1497  }
1498  return Scratches;
1499}
1500
1501// Bottom up
1502bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1503
1504  unsigned LPriority = SPQ->getNodePriority(left);
1505  unsigned RPriority = SPQ->getNodePriority(right);
1506  if (LPriority != RPriority)
1507    return LPriority > RPriority;
1508
1509  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
1510  // e.g.
1511  // t1 = op t2, c1
1512  // t3 = op t4, c2
1513  //
1514  // and the following instructions are both ready.
1515  // t2 = op c3
1516  // t4 = op c4
1517  //
1518  // Then schedule t2 = op first.
1519  // i.e.
1520  // t4 = op c4
1521  // t2 = op c3
1522  // t1 = op t2, c1
1523  // t3 = op t4, c2
1524  //
1525  // This creates more short live intervals.
1526  unsigned LDist = closestSucc(left);
1527  unsigned RDist = closestSucc(right);
1528  if (LDist != RDist)
1529    return LDist < RDist;
1530
1531  // Intuitively, it's good to push down instructions whose results are
1532  // liveout so their long live ranges won't conflict with other values
1533  // which are needed inside the BB. Further prioritize liveout instructions
1534  // by the number of operands which are calculated within the BB.
1535  unsigned LScratch = calcMaxScratches(left);
1536  unsigned RScratch = calcMaxScratches(right);
1537  if (LScratch != RScratch)
1538    return LScratch > RScratch;
1539
1540  if (left->Height != right->Height)
1541    return left->Height > right->Height;
1542
1543  if (left->Depth != right->Depth)
1544    return left->Depth < right->Depth;
1545
1546  if (left->CycleBound != right->CycleBound)
1547    return left->CycleBound > right->CycleBound;
1548
1549  assert(left->NodeQueueId && right->NodeQueueId &&
1550         "NodeQueueId cannot be zero");
1551  return (left->NodeQueueId > right->NodeQueueId);
1552}
1553
1554template<class SF> bool
1555BURegReductionPriorityQueue<SF>::canClobber(const SUnit *SU, const SUnit *Op) {
1556  if (SU->isTwoAddress) {
1557    unsigned Opc = SU->Node->getTargetOpcode();
1558    const TargetInstrDesc &TID = TII->get(Opc);
1559    unsigned NumRes = TID.getNumDefs();
1560    unsigned NumOps = TID.getNumOperands() - NumRes;
1561    for (unsigned i = 0; i != NumOps; ++i) {
1562      if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) {
1563        SDNode *DU = SU->Node->getOperand(i).Val;
1564        if ((*SUnitMap).find(DU) != (*SUnitMap).end() &&
1565            Op == (*SUnitMap)[DU][SU->InstanceNo])
1566          return true;
1567      }
1568    }
1569  }
1570  return false;
1571}
1572
1573
1574/// hasCopyToRegUse - Return true if SU has a value successor that is a
1575/// CopyToReg node.
1576static bool hasCopyToRegUse(SUnit *SU) {
1577  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1578       I != E; ++I) {
1579    if (I->isCtrl) continue;
1580    SUnit *SuccSU = I->Dep;
1581    if (SuccSU->Node && SuccSU->Node->getOpcode() == ISD::CopyToReg)
1582      return true;
1583  }
1584  return false;
1585}
1586
1587/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
1588/// physical register def.
1589static bool canClobberPhysRegDefs(SUnit *SuccSU, SUnit *SU,
1590                                  const TargetInstrInfo *TII,
1591                                  const TargetRegisterInfo *TRI) {
1592  SDNode *N = SuccSU->Node;
1593  unsigned NumDefs = TII->get(N->getTargetOpcode()).getNumDefs();
1594  const unsigned *ImpDefs = TII->get(N->getTargetOpcode()).getImplicitDefs();
1595  if (!ImpDefs)
1596    return false;
1597  const unsigned *SUImpDefs =
1598    TII->get(SU->Node->getTargetOpcode()).getImplicitDefs();
1599  if (!SUImpDefs)
1600    return false;
1601  for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
1602    MVT VT = N->getValueType(i);
1603    if (VT == MVT::Flag || VT == MVT::Other)
1604      continue;
1605    unsigned Reg = ImpDefs[i - NumDefs];
1606    for (;*SUImpDefs; ++SUImpDefs) {
1607      unsigned SUReg = *SUImpDefs;
1608      if (TRI->regsOverlap(Reg, SUReg))
1609        return true;
1610    }
1611  }
1612  return false;
1613}
1614
1615/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
1616/// it as a def&use operand. Add a pseudo control edge from it to the other
1617/// node (if it won't create a cycle) so the two-address one will be scheduled
1618/// first (lower in the schedule). If both nodes are two-address, favor the
1619/// one that has a CopyToReg use (more likely to be a loop induction update).
1620/// If both are two-address, but one is commutable while the other is not
1621/// commutable, favor the one that's not commutable.
1622template<class SF>
1623void BURegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
1624  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
1625    SUnit *SU = (SUnit *)&((*SUnits)[i]);
1626    if (!SU->isTwoAddress)
1627      continue;
1628
1629    SDNode *Node = SU->Node;
1630    if (!Node || !Node->isTargetOpcode() || SU->FlaggedNodes.size() > 0)
1631      continue;
1632
1633    unsigned Opc = Node->getTargetOpcode();
1634    const TargetInstrDesc &TID = TII->get(Opc);
1635    unsigned NumRes = TID.getNumDefs();
1636    unsigned NumOps = TID.getNumOperands() - NumRes;
1637    for (unsigned j = 0; j != NumOps; ++j) {
1638      if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) != -1) {
1639        SDNode *DU = SU->Node->getOperand(j).Val;
1640        if ((*SUnitMap).find(DU) == (*SUnitMap).end())
1641          continue;
1642        SUnit *DUSU = (*SUnitMap)[DU][SU->InstanceNo];
1643        if (!DUSU) continue;
1644        for (SUnit::succ_iterator I = DUSU->Succs.begin(),E = DUSU->Succs.end();
1645             I != E; ++I) {
1646          if (I->isCtrl) continue;
1647          SUnit *SuccSU = I->Dep;
1648          if (SuccSU == SU)
1649            continue;
1650          // Be conservative. Ignore if nodes aren't at roughly the same
1651          // depth and height.
1652          if (SuccSU->Height < SU->Height && (SU->Height - SuccSU->Height) > 1)
1653            continue;
1654          if (!SuccSU->Node || !SuccSU->Node->isTargetOpcode())
1655            continue;
1656          // Don't constrain nodes with physical register defs if the
1657          // predecessor can clobber them.
1658          if (SuccSU->hasPhysRegDefs) {
1659            if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
1660              continue;
1661          }
1662          // Don't constraint extract_subreg / insert_subreg these may be
1663          // coalesced away. We don't them close to their uses.
1664          unsigned SuccOpc = SuccSU->Node->getTargetOpcode();
1665          if (SuccOpc == TargetInstrInfo::EXTRACT_SUBREG ||
1666              SuccOpc == TargetInstrInfo::INSERT_SUBREG)
1667            continue;
1668          if ((!canClobber(SuccSU, DUSU) ||
1669               (hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
1670               (!SU->isCommutable && SuccSU->isCommutable)) &&
1671              !scheduleDAG->IsReachable(SuccSU, SU)) {
1672            DOUT << "Adding an edge from SU # " << SU->NodeNum
1673                 << " to SU #" << SuccSU->NodeNum << "\n";
1674            scheduleDAG->AddPred(SU, SuccSU, true, true);
1675          }
1676        }
1677      }
1678    }
1679  }
1680}
1681
1682/// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number.
1683/// Smaller number is the higher priority.
1684template<class SF>
1685unsigned BURegReductionPriorityQueue<SF>::
1686CalcNodeSethiUllmanNumber(const SUnit *SU) {
1687  unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
1688  if (SethiUllmanNumber != 0)
1689    return SethiUllmanNumber;
1690
1691  unsigned Extra = 0;
1692  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1693       I != E; ++I) {
1694    if (I->isCtrl) continue;  // ignore chain preds
1695    SUnit *PredSU = I->Dep;
1696    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
1697    if (PredSethiUllman > SethiUllmanNumber) {
1698      SethiUllmanNumber = PredSethiUllman;
1699      Extra = 0;
1700    } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
1701      ++Extra;
1702  }
1703
1704  SethiUllmanNumber += Extra;
1705
1706  if (SethiUllmanNumber == 0)
1707    SethiUllmanNumber = 1;
1708
1709  return SethiUllmanNumber;
1710}
1711
1712/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1713/// scheduling units.
1714template<class SF>
1715void BURegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
1716  SethiUllmanNumbers.assign(SUnits->size(), 0);
1717
1718  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1719    CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
1720}
1721
1722/// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled
1723/// predecessors of the successors of the SUnit SU. Stop when the provided
1724/// limit is exceeded.
1725static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU,
1726                                                    unsigned Limit) {
1727  unsigned Sum = 0;
1728  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1729       I != E; ++I) {
1730    SUnit *SuccSU = I->Dep;
1731    for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
1732         EE = SuccSU->Preds.end(); II != EE; ++II) {
1733      SUnit *PredSU = II->Dep;
1734      if (!PredSU->isScheduled)
1735        if (++Sum > Limit)
1736          return Sum;
1737    }
1738  }
1739  return Sum;
1740}
1741
1742
1743// Top down
1744bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1745  unsigned LPriority = SPQ->getNodePriority(left);
1746  unsigned RPriority = SPQ->getNodePriority(right);
1747  bool LIsTarget = left->Node && left->Node->isTargetOpcode();
1748  bool RIsTarget = right->Node && right->Node->isTargetOpcode();
1749  bool LIsFloater = LIsTarget && left->NumPreds == 0;
1750  bool RIsFloater = RIsTarget && right->NumPreds == 0;
1751  unsigned LBonus = (LimitedSumOfUnscheduledPredsOfSuccs(left,1) == 1) ? 2 : 0;
1752  unsigned RBonus = (LimitedSumOfUnscheduledPredsOfSuccs(right,1) == 1) ? 2 : 0;
1753
1754  if (left->NumSuccs == 0 && right->NumSuccs != 0)
1755    return false;
1756  else if (left->NumSuccs != 0 && right->NumSuccs == 0)
1757    return true;
1758
1759  if (LIsFloater)
1760    LBonus -= 2;
1761  if (RIsFloater)
1762    RBonus -= 2;
1763  if (left->NumSuccs == 1)
1764    LBonus += 2;
1765  if (right->NumSuccs == 1)
1766    RBonus += 2;
1767
1768  if (LPriority+LBonus != RPriority+RBonus)
1769    return LPriority+LBonus < RPriority+RBonus;
1770
1771  if (left->Depth != right->Depth)
1772    return left->Depth < right->Depth;
1773
1774  if (left->NumSuccsLeft != right->NumSuccsLeft)
1775    return left->NumSuccsLeft > right->NumSuccsLeft;
1776
1777  if (left->CycleBound != right->CycleBound)
1778    return left->CycleBound > right->CycleBound;
1779
1780  assert(left->NodeQueueId && right->NodeQueueId &&
1781         "NodeQueueId cannot be zero");
1782  return (left->NodeQueueId > right->NodeQueueId);
1783}
1784
1785/// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number.
1786/// Smaller number is the higher priority.
1787template<class SF>
1788unsigned TDRegReductionPriorityQueue<SF>::
1789CalcNodeSethiUllmanNumber(const SUnit *SU) {
1790  unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
1791  if (SethiUllmanNumber != 0)
1792    return SethiUllmanNumber;
1793
1794  unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
1795  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1796    SethiUllmanNumber = 0xffff;
1797  else if (SU->NumSuccsLeft == 0)
1798    // If SU does not have a use, i.e. it doesn't produce a value that would
1799    // be consumed (e.g. store), then it terminates a chain of computation.
1800    // Give it a small SethiUllman number so it will be scheduled right before
1801    // its predecessors that it doesn't lengthen their live ranges.
1802    SethiUllmanNumber = 0;
1803  else if (SU->NumPredsLeft == 0 &&
1804           (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
1805    SethiUllmanNumber = 0xffff;
1806  else {
1807    int Extra = 0;
1808    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1809         I != E; ++I) {
1810      if (I->isCtrl) continue;  // ignore chain preds
1811      SUnit *PredSU = I->Dep;
1812      unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
1813      if (PredSethiUllman > SethiUllmanNumber) {
1814        SethiUllmanNumber = PredSethiUllman;
1815        Extra = 0;
1816      } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
1817        ++Extra;
1818    }
1819
1820    SethiUllmanNumber += Extra;
1821  }
1822
1823  return SethiUllmanNumber;
1824}
1825
1826/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1827/// scheduling units.
1828template<class SF>
1829void TDRegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
1830  SethiUllmanNumbers.assign(SUnits->size(), 0);
1831
1832  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1833    CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
1834}
1835
1836//===----------------------------------------------------------------------===//
1837//                         Public Constructor Functions
1838//===----------------------------------------------------------------------===//
1839
1840llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
1841                                                    SelectionDAG *DAG,
1842                                                    MachineBasicBlock *BB) {
1843  const TargetInstrInfo *TII = DAG->getTarget().getInstrInfo();
1844  const TargetRegisterInfo *TRI = DAG->getTarget().getRegisterInfo();
1845
1846  BURegReductionPriorityQueue<bu_ls_rr_sort> *priorityQueue =
1847    new BURegReductionPriorityQueue<bu_ls_rr_sort>(TII, TRI);
1848
1849  ScheduleDAGRRList * scheduleDAG =
1850    new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), true, priorityQueue);
1851  priorityQueue->setScheduleDAG(scheduleDAG);
1852  return scheduleDAG;
1853}
1854
1855llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
1856                                                    SelectionDAG *DAG,
1857                                                    MachineBasicBlock *BB) {
1858  return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), false,
1859                              new TDRegReductionPriorityQueue<td_ls_rr_sort>());
1860}
1861
1862