ScheduleDAGRRList.cpp revision 84d4a2b4ad0874a46642bb568b45720d55e46b64
1//===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms.  The basic approach uses a priority
12// queue of available nodes to schedule.  One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "pre-RA-sched"
19#include "llvm/CodeGen/ScheduleDAG.h"
20#include "llvm/CodeGen/SchedulerRegistry.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22#include "llvm/Target/TargetData.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/Statistic.h"
30#include <climits>
31#include <queue>
32#include "llvm/Support/CommandLine.h"
33using namespace llvm;
34
35STATISTIC(NumBacktracks, "Number of times scheduler backtraced");
36STATISTIC(NumUnfolds,    "Number of nodes unfolded");
37STATISTIC(NumDups,       "Number of duplicated nodes");
38STATISTIC(NumCCCopies,   "Number of cross class copies");
39
40static RegisterScheduler
41  burrListDAGScheduler("list-burr",
42                       "  Bottom-up register reduction list scheduling",
43                       createBURRListDAGScheduler);
44static RegisterScheduler
45  tdrListrDAGScheduler("list-tdrr",
46                       "  Top-down register reduction list scheduling",
47                       createTDRRListDAGScheduler);
48
49namespace {
50//===----------------------------------------------------------------------===//
51/// ScheduleDAGRRList - The actual register reduction list scheduler
52/// implementation.  This supports both top-down and bottom-up scheduling.
53///
54class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAG {
55private:
56  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
57  /// it is top-down.
58  bool isBottomUp;
59
60  /// AvailableQueue - The priority queue to use for the available SUnits.
61  SchedulingPriorityQueue *AvailableQueue;
62
63  /// LiveRegs / LiveRegDefs - A set of physical registers and their definition
64  /// that are "live". These nodes must be scheduled before any other nodes that
65  /// modifies the registers can be scheduled.
66  SmallSet<unsigned, 4> LiveRegs;
67  std::vector<SUnit*> LiveRegDefs;
68  std::vector<unsigned> LiveRegCycles;
69
70public:
71  ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
72                  const TargetMachine &tm, bool isbottomup,
73                  SchedulingPriorityQueue *availqueue)
74    : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup),
75      AvailableQueue(availqueue) {
76    }
77
78  ~ScheduleDAGRRList() {
79    delete AvailableQueue;
80  }
81
82  void Schedule();
83
84private:
85  void ReleasePred(SUnit*, bool, unsigned);
86  void ReleaseSucc(SUnit*, bool isChain, unsigned);
87  void CapturePred(SUnit*, SUnit*, bool);
88  void ScheduleNodeBottomUp(SUnit*, unsigned);
89  void ScheduleNodeTopDown(SUnit*, unsigned);
90  void UnscheduleNodeBottomUp(SUnit*);
91  void BacktrackBottomUp(SUnit*, unsigned, unsigned&);
92  SUnit *CopyAndMoveSuccessors(SUnit*);
93  void InsertCCCopiesAndMoveSuccs(SUnit*, unsigned,
94                                  const TargetRegisterClass*,
95                                  const TargetRegisterClass*,
96                                  SmallVector<SUnit*, 2>&);
97  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
98  void ListScheduleTopDown();
99  void ListScheduleBottomUp();
100  void CommuteNodesToReducePressure();
101};
102}  // end anonymous namespace
103
104
105/// Schedule - Schedule the DAG using list scheduling.
106void ScheduleDAGRRList::Schedule() {
107  DOUT << "********** List Scheduling **********\n";
108
109  LiveRegDefs.resize(TRI->getNumRegs(), NULL);
110  LiveRegCycles.resize(TRI->getNumRegs(), 0);
111
112  // Build scheduling units.
113  BuildSchedUnits();
114
115  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
116          SUnits[su].dumpAll(&DAG));
117  CalculateDepths();
118  CalculateHeights();
119
120  AvailableQueue->initNodes(SUnitMap, SUnits);
121
122  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
123  if (isBottomUp)
124    ListScheduleBottomUp();
125  else
126    ListScheduleTopDown();
127
128  AvailableQueue->releaseState();
129
130  CommuteNodesToReducePressure();
131
132  DOUT << "*** Final schedule ***\n";
133  DEBUG(dumpSchedule());
134  DOUT << "\n";
135
136  // Emit in scheduled order
137  EmitSchedule();
138}
139
140/// CommuteNodesToReducePressure - If a node is two-address and commutable, and
141/// it is not the last use of its first operand, add it to the CommuteSet if
142/// possible. It will be commuted when it is translated to a MI.
143void ScheduleDAGRRList::CommuteNodesToReducePressure() {
144  SmallPtrSet<SUnit*, 4> OperandSeen;
145  for (unsigned i = Sequence.size()-1; i != 0; --i) {  // Ignore first node.
146    SUnit *SU = Sequence[i];
147    if (!SU || !SU->Node) continue;
148    if (SU->isCommutable) {
149      unsigned Opc = SU->Node->getTargetOpcode();
150      const TargetInstrDesc &TID = TII->get(Opc);
151      unsigned NumRes = TID.getNumDefs();
152      unsigned NumOps = TID.getNumOperands() - NumRes;
153      for (unsigned j = 0; j != NumOps; ++j) {
154        if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
155          continue;
156
157        SDNode *OpN = SU->Node->getOperand(j).Val;
158        SUnit *OpSU = isPassiveNode(OpN) ? NULL : SUnitMap[OpN][SU->InstanceNo];
159        if (OpSU && OperandSeen.count(OpSU) == 1) {
160          // Ok, so SU is not the last use of OpSU, but SU is two-address so
161          // it will clobber OpSU. Try to commute SU if no other source operands
162          // are live below.
163          bool DoCommute = true;
164          for (unsigned k = 0; k < NumOps; ++k) {
165            if (k != j) {
166              OpN = SU->Node->getOperand(k).Val;
167              OpSU = isPassiveNode(OpN) ? NULL : SUnitMap[OpN][SU->InstanceNo];
168              if (OpSU && OperandSeen.count(OpSU) == 1) {
169                DoCommute = false;
170                break;
171              }
172            }
173          }
174          if (DoCommute)
175            CommuteSet.insert(SU->Node);
176        }
177
178        // Only look at the first use&def node for now.
179        break;
180      }
181    }
182
183    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
184         I != E; ++I) {
185      if (!I->isCtrl)
186        OperandSeen.insert(I->Dep);
187    }
188  }
189}
190
191//===----------------------------------------------------------------------===//
192//  Bottom-Up Scheduling
193//===----------------------------------------------------------------------===//
194
195/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
196/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
197void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain,
198                                    unsigned CurCycle) {
199  // FIXME: the distance between two nodes is not always == the predecessor's
200  // latency. For example, the reader can very well read the register written
201  // by the predecessor later than the issue cycle. It also depends on the
202  // interrupt model (drain vs. freeze).
203  PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
204
205  --PredSU->NumSuccsLeft;
206
207#ifndef NDEBUG
208  if (PredSU->NumSuccsLeft < 0) {
209    cerr << "*** List scheduling failed! ***\n";
210    PredSU->dump(&DAG);
211    cerr << " has been released too many times!\n";
212    assert(0);
213  }
214#endif
215
216  if (PredSU->NumSuccsLeft == 0) {
217    // EntryToken has to go last!  Special case it here.
218    if (!PredSU->Node || PredSU->Node->getOpcode() != ISD::EntryToken) {
219      PredSU->isAvailable = true;
220      AvailableQueue->push(PredSU);
221    }
222  }
223}
224
225/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
226/// count of its predecessors. If a predecessor pending count is zero, add it to
227/// the Available queue.
228void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
229  DOUT << "*** Scheduling [" << CurCycle << "]: ";
230  DEBUG(SU->dump(&DAG));
231  SU->Cycle = CurCycle;
232
233  AvailableQueue->ScheduledNode(SU);
234
235  // Bottom up: release predecessors
236  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
237       I != E; ++I) {
238    ReleasePred(I->Dep, I->isCtrl, CurCycle);
239    if (I->Cost < 0)  {
240      // This is a physical register dependency and it's impossible or
241      // expensive to copy the register. Make sure nothing that can
242      // clobber the register is scheduled between the predecessor and
243      // this node.
244      if (LiveRegs.insert(I->Reg)) {
245        LiveRegDefs[I->Reg] = I->Dep;
246        LiveRegCycles[I->Reg] = CurCycle;
247      }
248    }
249  }
250
251  // Release all the implicit physical register defs that are live.
252  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
253       I != E; ++I) {
254    if (I->Cost < 0)  {
255      if (LiveRegCycles[I->Reg] == I->Dep->Cycle) {
256        LiveRegs.erase(I->Reg);
257        assert(LiveRegDefs[I->Reg] == SU &&
258               "Physical register dependency violated?");
259        LiveRegDefs[I->Reg] = NULL;
260        LiveRegCycles[I->Reg] = 0;
261      }
262    }
263  }
264
265  SU->isScheduled = true;
266}
267
268/// CapturePred - This does the opposite of ReleasePred. Since SU is being
269/// unscheduled, incrcease the succ left count of its predecessors. Remove
270/// them from AvailableQueue if necessary.
271void ScheduleDAGRRList::CapturePred(SUnit *PredSU, SUnit *SU, bool isChain) {
272  PredSU->CycleBound = 0;
273  for (SUnit::succ_iterator I = PredSU->Succs.begin(), E = PredSU->Succs.end();
274       I != E; ++I) {
275    if (I->Dep == SU)
276      continue;
277    PredSU->CycleBound = std::max(PredSU->CycleBound,
278                                  I->Dep->Cycle + PredSU->Latency);
279  }
280
281  if (PredSU->isAvailable) {
282    PredSU->isAvailable = false;
283    if (!PredSU->isPending)
284      AvailableQueue->remove(PredSU);
285  }
286
287  ++PredSU->NumSuccsLeft;
288}
289
290/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
291/// its predecessor states to reflect the change.
292void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
293  DOUT << "*** Unscheduling [" << SU->Cycle << "]: ";
294  DEBUG(SU->dump(&DAG));
295
296  AvailableQueue->UnscheduledNode(SU);
297
298  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
299       I != E; ++I) {
300    CapturePred(I->Dep, SU, I->isCtrl);
301    if (I->Cost < 0 && SU->Cycle == LiveRegCycles[I->Reg])  {
302      LiveRegs.erase(I->Reg);
303      assert(LiveRegDefs[I->Reg] == I->Dep &&
304             "Physical register dependency violated?");
305      LiveRegDefs[I->Reg] = NULL;
306      LiveRegCycles[I->Reg] = 0;
307    }
308  }
309
310  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
311       I != E; ++I) {
312    if (I->Cost < 0)  {
313      if (LiveRegs.insert(I->Reg)) {
314        assert(!LiveRegDefs[I->Reg] &&
315               "Physical register dependency violated?");
316        LiveRegDefs[I->Reg] = SU;
317      }
318      if (I->Dep->Cycle < LiveRegCycles[I->Reg])
319        LiveRegCycles[I->Reg] = I->Dep->Cycle;
320    }
321  }
322
323  SU->Cycle = 0;
324  SU->isScheduled = false;
325  SU->isAvailable = true;
326  AvailableQueue->push(SU);
327}
328
329// FIXME: This is probably too slow!
330static void isReachable(SUnit *SU, SUnit *TargetSU,
331                        SmallPtrSet<SUnit*, 32> &Visited, bool &Reached) {
332  if (Reached) return;
333  if (SU == TargetSU) {
334    Reached = true;
335    return;
336  }
337  if (!Visited.insert(SU)) return;
338
339  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E;
340       ++I)
341    isReachable(I->Dep, TargetSU, Visited, Reached);
342}
343
344static bool isReachable(SUnit *SU, SUnit *TargetSU) {
345  SmallPtrSet<SUnit*, 32> Visited;
346  bool Reached = false;
347  isReachable(SU, TargetSU, Visited, Reached);
348  return Reached;
349}
350
351/// willCreateCycle - Returns true if adding an edge from SU to TargetSU will
352/// create a cycle.
353static bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
354  if (isReachable(TargetSU, SU))
355    return true;
356  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
357       I != E; ++I)
358    if (I->Cost < 0 && isReachable(TargetSU, I->Dep))
359      return true;
360  return false;
361}
362
363/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
364/// BTCycle in order to schedule a specific node. Returns the last unscheduled
365/// SUnit. Also returns if a successor is unscheduled in the process.
366void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle,
367                                          unsigned &CurCycle) {
368  SUnit *OldSU = NULL;
369  while (CurCycle > BtCycle) {
370    OldSU = Sequence.back();
371    Sequence.pop_back();
372    if (SU->isSucc(OldSU))
373      // Don't try to remove SU from AvailableQueue.
374      SU->isAvailable = false;
375    UnscheduleNodeBottomUp(OldSU);
376    --CurCycle;
377  }
378
379
380  if (SU->isSucc(OldSU)) {
381    assert(false && "Something is wrong!");
382    abort();
383  }
384
385  ++NumBacktracks;
386}
387
388/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
389/// successors to the newly created node.
390SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
391  if (SU->FlaggedNodes.size())
392    return NULL;
393
394  SDNode *N = SU->Node;
395  if (!N)
396    return NULL;
397
398  SUnit *NewSU;
399  bool TryUnfold = false;
400  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
401    MVT::ValueType VT = N->getValueType(i);
402    if (VT == MVT::Flag)
403      return NULL;
404    else if (VT == MVT::Other)
405      TryUnfold = true;
406  }
407  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
408    const SDOperand &Op = N->getOperand(i);
409    MVT::ValueType VT = Op.Val->getValueType(Op.ResNo);
410    if (VT == MVT::Flag)
411      return NULL;
412  }
413
414  if (TryUnfold) {
415    SmallVector<SDNode*, 4> NewNodes;
416    if (!TII->unfoldMemoryOperand(DAG, N, NewNodes))
417      return NULL;
418
419    DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
420    assert(NewNodes.size() == 2 && "Expected a load folding node!");
421
422    N = NewNodes[1];
423    SDNode *LoadNode = NewNodes[0];
424    unsigned NumVals = N->getNumValues();
425    unsigned OldNumVals = SU->Node->getNumValues();
426    for (unsigned i = 0; i != NumVals; ++i)
427      DAG.ReplaceAllUsesOfValueWith(SDOperand(SU->Node, i), SDOperand(N, i));
428    DAG.ReplaceAllUsesOfValueWith(SDOperand(SU->Node, OldNumVals-1),
429                                  SDOperand(LoadNode, 1));
430
431    SUnit *NewSU = NewSUnit(N);
432    SUnitMap[N].push_back(NewSU);
433    const TargetInstrDesc &TID = TII->get(N->getTargetOpcode());
434    for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
435      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
436        NewSU->isTwoAddress = true;
437        break;
438      }
439    }
440    if (TID.isCommutable())
441      NewSU->isCommutable = true;
442    // FIXME: Calculate height / depth and propagate the changes?
443    NewSU->Depth = SU->Depth;
444    NewSU->Height = SU->Height;
445    ComputeLatency(NewSU);
446
447    // LoadNode may already exist. This can happen when there is another
448    // load from the same location and producing the same type of value
449    // but it has different alignment or volatileness.
450    bool isNewLoad = true;
451    SUnit *LoadSU;
452    DenseMap<SDNode*, std::vector<SUnit*> >::iterator SMI =
453      SUnitMap.find(LoadNode);
454    if (SMI != SUnitMap.end()) {
455      LoadSU = SMI->second.front();
456      isNewLoad = false;
457    } else {
458      LoadSU = NewSUnit(LoadNode);
459      SUnitMap[LoadNode].push_back(LoadSU);
460
461      LoadSU->Depth = SU->Depth;
462      LoadSU->Height = SU->Height;
463      ComputeLatency(LoadSU);
464    }
465
466    SUnit *ChainPred = NULL;
467    SmallVector<SDep, 4> ChainSuccs;
468    SmallVector<SDep, 4> LoadPreds;
469    SmallVector<SDep, 4> NodePreds;
470    SmallVector<SDep, 4> NodeSuccs;
471    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
472         I != E; ++I) {
473      if (I->isCtrl)
474        ChainPred = I->Dep;
475      else if (I->Dep->Node && I->Dep->Node->isOperand(LoadNode))
476        LoadPreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
477      else
478        NodePreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
479    }
480    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
481         I != E; ++I) {
482      if (I->isCtrl)
483        ChainSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
484                                  I->isCtrl, I->isSpecial));
485      else
486        NodeSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
487                                 I->isCtrl, I->isSpecial));
488    }
489
490    SU->removePred(ChainPred, true, false);
491    if (isNewLoad)
492      LoadSU->addPred(ChainPred, true, false);
493    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
494      SDep *Pred = &LoadPreds[i];
495      SU->removePred(Pred->Dep, Pred->isCtrl, Pred->isSpecial);
496      if (isNewLoad)
497        LoadSU->addPred(Pred->Dep, Pred->isCtrl, Pred->isSpecial,
498                        Pred->Reg, Pred->Cost);
499    }
500    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
501      SDep *Pred = &NodePreds[i];
502      SU->removePred(Pred->Dep, Pred->isCtrl, Pred->isSpecial);
503      NewSU->addPred(Pred->Dep, Pred->isCtrl, Pred->isSpecial,
504                     Pred->Reg, Pred->Cost);
505    }
506    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
507      SDep *Succ = &NodeSuccs[i];
508      Succ->Dep->removePred(SU, Succ->isCtrl, Succ->isSpecial);
509      Succ->Dep->addPred(NewSU, Succ->isCtrl, Succ->isSpecial,
510                         Succ->Reg, Succ->Cost);
511    }
512    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
513      SDep *Succ = &ChainSuccs[i];
514      Succ->Dep->removePred(SU, Succ->isCtrl, Succ->isSpecial);
515      if (isNewLoad)
516        Succ->Dep->addPred(LoadSU, Succ->isCtrl, Succ->isSpecial,
517                           Succ->Reg, Succ->Cost);
518    }
519    if (isNewLoad)
520      NewSU->addPred(LoadSU, false, false);
521
522    if (isNewLoad)
523      AvailableQueue->addNode(LoadSU);
524    AvailableQueue->addNode(NewSU);
525
526    ++NumUnfolds;
527
528    if (NewSU->NumSuccsLeft == 0) {
529      NewSU->isAvailable = true;
530      return NewSU;
531    }
532    SU = NewSU;
533  }
534
535  DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
536  NewSU = Clone(SU);
537
538  // New SUnit has the exact same predecessors.
539  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
540       I != E; ++I)
541    if (!I->isSpecial) {
542      NewSU->addPred(I->Dep, I->isCtrl, false, I->Reg, I->Cost);
543      NewSU->Depth = std::max(NewSU->Depth, I->Dep->Depth+1);
544    }
545
546  // Only copy scheduled successors. Cut them from old node's successor
547  // list and move them over.
548  SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
549  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
550       I != E; ++I) {
551    if (I->isSpecial)
552      continue;
553    if (I->Dep->isScheduled) {
554      NewSU->Height = std::max(NewSU->Height, I->Dep->Height+1);
555      I->Dep->addPred(NewSU, I->isCtrl, false, I->Reg, I->Cost);
556      DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
557    }
558  }
559  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
560    SUnit *Succ = DelDeps[i].first;
561    bool isCtrl = DelDeps[i].second;
562    Succ->removePred(SU, isCtrl, false);
563  }
564
565  AvailableQueue->updateNode(SU);
566  AvailableQueue->addNode(NewSU);
567
568  ++NumDups;
569  return NewSU;
570}
571
572/// InsertCCCopiesAndMoveSuccs - Insert expensive cross register class copies
573/// and move all scheduled successors of the given SUnit to the last copy.
574void ScheduleDAGRRList::InsertCCCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
575                                              const TargetRegisterClass *DestRC,
576                                              const TargetRegisterClass *SrcRC,
577                                               SmallVector<SUnit*, 2> &Copies) {
578  SUnit *CopyFromSU = NewSUnit(NULL);
579  CopyFromSU->CopySrcRC = SrcRC;
580  CopyFromSU->CopyDstRC = DestRC;
581  CopyFromSU->Depth = SU->Depth;
582  CopyFromSU->Height = SU->Height;
583
584  SUnit *CopyToSU = NewSUnit(NULL);
585  CopyToSU->CopySrcRC = DestRC;
586  CopyToSU->CopyDstRC = SrcRC;
587
588  // Only copy scheduled successors. Cut them from old node's successor
589  // list and move them over.
590  SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
591  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
592       I != E; ++I) {
593    if (I->isSpecial)
594      continue;
595    if (I->Dep->isScheduled) {
596      CopyToSU->Height = std::max(CopyToSU->Height, I->Dep->Height+1);
597      I->Dep->addPred(CopyToSU, I->isCtrl, false, I->Reg, I->Cost);
598      DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
599    }
600  }
601  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
602    SUnit *Succ = DelDeps[i].first;
603    bool isCtrl = DelDeps[i].second;
604    Succ->removePred(SU, isCtrl, false);
605  }
606
607  CopyFromSU->addPred(SU, false, false, Reg, -1);
608  CopyToSU->addPred(CopyFromSU, false, false, Reg, 1);
609
610  AvailableQueue->updateNode(SU);
611  AvailableQueue->addNode(CopyFromSU);
612  AvailableQueue->addNode(CopyToSU);
613  Copies.push_back(CopyFromSU);
614  Copies.push_back(CopyToSU);
615
616  ++NumCCCopies;
617}
618
619/// getPhysicalRegisterVT - Returns the ValueType of the physical register
620/// definition of the specified node.
621/// FIXME: Move to SelectionDAG?
622static MVT::ValueType getPhysicalRegisterVT(SDNode *N, unsigned Reg,
623                                            const TargetInstrInfo *TII) {
624  const TargetInstrDesc &TID = TII->get(N->getTargetOpcode());
625  assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
626  unsigned NumRes = TID.getNumDefs();
627  for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
628    if (Reg == *ImpDef)
629      break;
630    ++NumRes;
631  }
632  return N->getValueType(NumRes);
633}
634
635/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
636/// scheduling of the given node to satisfy live physical register dependencies.
637/// If the specific node is the last one that's available to schedule, do
638/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
639bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
640                                                 SmallVector<unsigned, 4> &LRegs){
641  if (LiveRegs.empty())
642    return false;
643
644  SmallSet<unsigned, 4> RegAdded;
645  // If this node would clobber any "live" register, then it's not ready.
646  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
647       I != E; ++I) {
648    if (I->Cost < 0)  {
649      unsigned Reg = I->Reg;
650      if (LiveRegs.count(Reg) && LiveRegDefs[Reg] != I->Dep) {
651        if (RegAdded.insert(Reg))
652          LRegs.push_back(Reg);
653      }
654      for (const unsigned *Alias = TRI->getAliasSet(Reg);
655           *Alias; ++Alias)
656        if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != I->Dep) {
657          if (RegAdded.insert(*Alias))
658            LRegs.push_back(*Alias);
659        }
660    }
661  }
662
663  for (unsigned i = 0, e = SU->FlaggedNodes.size()+1; i != e; ++i) {
664    SDNode *Node = (i == 0) ? SU->Node : SU->FlaggedNodes[i-1];
665    if (!Node || !Node->isTargetOpcode())
666      continue;
667    const TargetInstrDesc &TID = TII->get(Node->getTargetOpcode());
668    if (!TID.ImplicitDefs)
669      continue;
670    for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
671      if (LiveRegs.count(*Reg) && LiveRegDefs[*Reg] != SU) {
672        if (RegAdded.insert(*Reg))
673          LRegs.push_back(*Reg);
674      }
675      for (const unsigned *Alias = TRI->getAliasSet(*Reg);
676           *Alias; ++Alias)
677        if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != SU) {
678          if (RegAdded.insert(*Alias))
679            LRegs.push_back(*Alias);
680        }
681    }
682  }
683  return !LRegs.empty();
684}
685
686
687/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
688/// schedulers.
689void ScheduleDAGRRList::ListScheduleBottomUp() {
690  unsigned CurCycle = 0;
691  // Add root to Available queue.
692  SUnit *RootSU = SUnitMap[DAG.getRoot().Val].front();
693  RootSU->isAvailable = true;
694  AvailableQueue->push(RootSU);
695
696  // While Available queue is not empty, grab the node with the highest
697  // priority. If it is not ready put it back.  Schedule the node.
698  SmallVector<SUnit*, 4> NotReady;
699  while (!AvailableQueue->empty()) {
700    bool Delayed = false;
701    DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
702    SUnit *CurSU = AvailableQueue->pop();
703    while (CurSU) {
704      if (CurSU->CycleBound <= CurCycle) {
705        SmallVector<unsigned, 4> LRegs;
706        if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
707          break;
708        Delayed = true;
709        LRegsMap.insert(std::make_pair(CurSU, LRegs));
710      }
711
712      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
713      NotReady.push_back(CurSU);
714      CurSU = AvailableQueue->pop();
715    }
716
717    // All candidates are delayed due to live physical reg dependencies.
718    // Try backtracking, code duplication, or inserting cross class copies
719    // to resolve it.
720    if (Delayed && !CurSU) {
721      for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
722        SUnit *TrySU = NotReady[i];
723        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
724
725        // Try unscheduling up to the point where it's safe to schedule
726        // this node.
727        unsigned LiveCycle = CurCycle;
728        for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
729          unsigned Reg = LRegs[j];
730          unsigned LCycle = LiveRegCycles[Reg];
731          LiveCycle = std::min(LiveCycle, LCycle);
732        }
733        SUnit *OldSU = Sequence[LiveCycle];
734        if (!WillCreateCycle(TrySU, OldSU))  {
735          BacktrackBottomUp(TrySU, LiveCycle, CurCycle);
736          // Force the current node to be scheduled before the node that
737          // requires the physical reg dep.
738          if (OldSU->isAvailable) {
739            OldSU->isAvailable = false;
740            AvailableQueue->remove(OldSU);
741          }
742          TrySU->addPred(OldSU, true, true);
743          // If one or more successors has been unscheduled, then the current
744          // node is no longer avaialable. Schedule a successor that's now
745          // available instead.
746          if (!TrySU->isAvailable)
747            CurSU = AvailableQueue->pop();
748          else {
749            CurSU = TrySU;
750            TrySU->isPending = false;
751            NotReady.erase(NotReady.begin()+i);
752          }
753          break;
754        }
755      }
756
757      if (!CurSU) {
758        // Can't backtrace. Try duplicating the nodes that produces these
759        // "expensive to copy" values to break the dependency. In case even
760        // that doesn't work, insert cross class copies.
761        SUnit *TrySU = NotReady[0];
762        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
763        assert(LRegs.size() == 1 && "Can't handle this yet!");
764        unsigned Reg = LRegs[0];
765        SUnit *LRDef = LiveRegDefs[Reg];
766        SUnit *NewDef = CopyAndMoveSuccessors(LRDef);
767        if (!NewDef) {
768          // Issue expensive cross register class copies.
769          MVT::ValueType VT = getPhysicalRegisterVT(LRDef->Node, Reg, TII);
770          const TargetRegisterClass *RC =
771            TRI->getPhysicalRegisterRegClass(VT, Reg);
772          const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
773          if (!DestRC) {
774            assert(false && "Don't know how to copy this physical register!");
775            abort();
776          }
777          SmallVector<SUnit*, 2> Copies;
778          InsertCCCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
779          DOUT << "Adding an edge from SU # " << TrySU->NodeNum
780               << " to SU #" << Copies.front()->NodeNum << "\n";
781          TrySU->addPred(Copies.front(), true, true);
782          NewDef = Copies.back();
783        }
784
785        DOUT << "Adding an edge from SU # " << NewDef->NodeNum
786             << " to SU #" << TrySU->NodeNum << "\n";
787        LiveRegDefs[Reg] = NewDef;
788        NewDef->addPred(TrySU, true, true);
789        TrySU->isAvailable = false;
790        CurSU = NewDef;
791      }
792
793      if (!CurSU) {
794        assert(false && "Unable to resolve live physical register dependencies!");
795        abort();
796      }
797    }
798
799    // Add the nodes that aren't ready back onto the available list.
800    for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
801      NotReady[i]->isPending = false;
802      // May no longer be available due to backtracking.
803      if (NotReady[i]->isAvailable)
804        AvailableQueue->push(NotReady[i]);
805    }
806    NotReady.clear();
807
808    if (!CurSU)
809      Sequence.push_back(0);
810    else {
811      ScheduleNodeBottomUp(CurSU, CurCycle);
812      Sequence.push_back(CurSU);
813    }
814    ++CurCycle;
815  }
816
817  // Add entry node last
818  if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
819    SUnit *Entry = SUnitMap[DAG.getEntryNode().Val].front();
820    Sequence.push_back(Entry);
821  }
822
823  // Reverse the order if it is bottom up.
824  std::reverse(Sequence.begin(), Sequence.end());
825
826
827#ifndef NDEBUG
828  // Verify that all SUnits were scheduled.
829  bool AnyNotSched = false;
830  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
831    if (SUnits[i].NumSuccsLeft != 0) {
832      if (!AnyNotSched)
833        cerr << "*** List scheduling failed! ***\n";
834      SUnits[i].dump(&DAG);
835      cerr << "has not been scheduled!\n";
836      AnyNotSched = true;
837    }
838  }
839  assert(!AnyNotSched);
840#endif
841}
842
843//===----------------------------------------------------------------------===//
844//  Top-Down Scheduling
845//===----------------------------------------------------------------------===//
846
847/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
848/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
849void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain,
850                                    unsigned CurCycle) {
851  // FIXME: the distance between two nodes is not always == the predecessor's
852  // latency. For example, the reader can very well read the register written
853  // by the predecessor later than the issue cycle. It also depends on the
854  // interrupt model (drain vs. freeze).
855  SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
856
857  --SuccSU->NumPredsLeft;
858
859#ifndef NDEBUG
860  if (SuccSU->NumPredsLeft < 0) {
861    cerr << "*** List scheduling failed! ***\n";
862    SuccSU->dump(&DAG);
863    cerr << " has been released too many times!\n";
864    assert(0);
865  }
866#endif
867
868  if (SuccSU->NumPredsLeft == 0) {
869    SuccSU->isAvailable = true;
870    AvailableQueue->push(SuccSU);
871  }
872}
873
874
875/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
876/// count of its successors. If a successor pending count is zero, add it to
877/// the Available queue.
878void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
879  DOUT << "*** Scheduling [" << CurCycle << "]: ";
880  DEBUG(SU->dump(&DAG));
881  SU->Cycle = CurCycle;
882
883  AvailableQueue->ScheduledNode(SU);
884
885  // Top down: release successors
886  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
887       I != E; ++I)
888    ReleaseSucc(I->Dep, I->isCtrl, CurCycle);
889  SU->isScheduled = true;
890}
891
892/// ListScheduleTopDown - The main loop of list scheduling for top-down
893/// schedulers.
894void ScheduleDAGRRList::ListScheduleTopDown() {
895  unsigned CurCycle = 0;
896  SUnit *Entry = SUnitMap[DAG.getEntryNode().Val].front();
897
898  // All leaves to Available queue.
899  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
900    // It is available if it has no predecessors.
901    if (SUnits[i].Preds.empty() && &SUnits[i] != Entry) {
902      AvailableQueue->push(&SUnits[i]);
903      SUnits[i].isAvailable = true;
904    }
905  }
906
907  // Emit the entry node first.
908  ScheduleNodeTopDown(Entry, CurCycle);
909  Sequence.push_back(Entry);
910  ++CurCycle;
911
912  // While Available queue is not empty, grab the node with the highest
913  // priority. If it is not ready put it back.  Schedule the node.
914  std::vector<SUnit*> NotReady;
915  while (!AvailableQueue->empty()) {
916    SUnit *CurSU = AvailableQueue->pop();
917    while (CurSU && CurSU->CycleBound > CurCycle) {
918      NotReady.push_back(CurSU);
919      CurSU = AvailableQueue->pop();
920    }
921
922    // Add the nodes that aren't ready back onto the available list.
923    AvailableQueue->push_all(NotReady);
924    NotReady.clear();
925
926    if (!CurSU)
927      Sequence.push_back(0);
928    else {
929      ScheduleNodeTopDown(CurSU, CurCycle);
930      Sequence.push_back(CurSU);
931    }
932    CurCycle++;
933  }
934
935
936#ifndef NDEBUG
937  // Verify that all SUnits were scheduled.
938  bool AnyNotSched = false;
939  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
940    if (!SUnits[i].isScheduled) {
941      if (!AnyNotSched)
942        cerr << "*** List scheduling failed! ***\n";
943      SUnits[i].dump(&DAG);
944      cerr << "has not been scheduled!\n";
945      AnyNotSched = true;
946    }
947  }
948  assert(!AnyNotSched);
949#endif
950}
951
952
953
954//===----------------------------------------------------------------------===//
955//                RegReductionPriorityQueue Implementation
956//===----------------------------------------------------------------------===//
957//
958// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
959// to reduce register pressure.
960//
961namespace {
962  template<class SF>
963  class RegReductionPriorityQueue;
964
965  /// Sorting functions for the Available queue.
966  struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
967    RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
968    bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
969    bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
970
971    bool operator()(const SUnit* left, const SUnit* right) const;
972  };
973
974  struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
975    RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
976    td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
977    td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
978
979    bool operator()(const SUnit* left, const SUnit* right) const;
980  };
981}  // end anonymous namespace
982
983static inline bool isCopyFromLiveIn(const SUnit *SU) {
984  SDNode *N = SU->Node;
985  return N && N->getOpcode() == ISD::CopyFromReg &&
986    N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
987}
988
989namespace {
990  template<class SF>
991  class VISIBILITY_HIDDEN RegReductionPriorityQueue
992   : public SchedulingPriorityQueue {
993    std::priority_queue<SUnit*, std::vector<SUnit*>, SF> Queue;
994
995  public:
996    RegReductionPriorityQueue() :
997    Queue(SF(this)) {}
998
999    virtual void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
1000                           std::vector<SUnit> &sunits) {}
1001
1002    virtual void addNode(const SUnit *SU) {}
1003
1004    virtual void updateNode(const SUnit *SU) {}
1005
1006    virtual void releaseState() {}
1007
1008    virtual unsigned getNodePriority(const SUnit *SU) const {
1009      return 0;
1010    }
1011
1012    unsigned size() const { return Queue.size(); }
1013
1014    bool empty() const { return Queue.empty(); }
1015
1016    void push(SUnit *U) {
1017      Queue.push(U);
1018    }
1019    void push_all(const std::vector<SUnit *> &Nodes) {
1020      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
1021        Queue.push(Nodes[i]);
1022    }
1023
1024    SUnit *pop() {
1025      if (empty()) return NULL;
1026      SUnit *V = Queue.top();
1027      Queue.pop();
1028      return V;
1029    }
1030
1031    /// remove - This is a really inefficient way to remove a node from a
1032    /// priority queue.  We should roll our own heap to make this better or
1033    /// something.
1034    void remove(SUnit *SU) {
1035      std::vector<SUnit*> Temp;
1036
1037      assert(!Queue.empty() && "Not in queue!");
1038      while (Queue.top() != SU) {
1039        Temp.push_back(Queue.top());
1040        Queue.pop();
1041        assert(!Queue.empty() && "Not in queue!");
1042      }
1043
1044      // Remove the node from the PQ.
1045      Queue.pop();
1046
1047      // Add all the other nodes back.
1048      for (unsigned i = 0, e = Temp.size(); i != e; ++i)
1049        Queue.push(Temp[i]);
1050    }
1051  };
1052
1053  template<class SF>
1054  class VISIBILITY_HIDDEN BURegReductionPriorityQueue
1055   : public RegReductionPriorityQueue<SF> {
1056    // SUnitMap SDNode to SUnit mapping (n -> n).
1057    DenseMap<SDNode*, std::vector<SUnit*> > *SUnitMap;
1058
1059    // SUnits - The SUnits for the current graph.
1060    const std::vector<SUnit> *SUnits;
1061
1062    // SethiUllmanNumbers - The SethiUllman number for each node.
1063    std::vector<unsigned> SethiUllmanNumbers;
1064
1065    const TargetInstrInfo *TII;
1066    const TargetRegisterInfo *TRI;
1067  public:
1068    explicit BURegReductionPriorityQueue(const TargetInstrInfo *tii,
1069                                         const TargetRegisterInfo *tri)
1070      : TII(tii), TRI(tri) {}
1071
1072    void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
1073                   std::vector<SUnit> &sunits) {
1074      SUnitMap = &sumap;
1075      SUnits = &sunits;
1076      // Add pseudo dependency edges for two-address nodes.
1077      AddPseudoTwoAddrDeps();
1078      // Calculate node priorities.
1079      CalculateSethiUllmanNumbers();
1080    }
1081
1082    void addNode(const SUnit *SU) {
1083      SethiUllmanNumbers.resize(SUnits->size(), 0);
1084      CalcNodeSethiUllmanNumber(SU);
1085    }
1086
1087    void updateNode(const SUnit *SU) {
1088      SethiUllmanNumbers[SU->NodeNum] = 0;
1089      CalcNodeSethiUllmanNumber(SU);
1090    }
1091
1092    void releaseState() {
1093      SUnits = 0;
1094      SethiUllmanNumbers.clear();
1095    }
1096
1097    unsigned getNodePriority(const SUnit *SU) const {
1098      assert(SU->NodeNum < SethiUllmanNumbers.size());
1099      unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
1100      if (Opc == ISD::CopyFromReg && !isCopyFromLiveIn(SU))
1101        // CopyFromReg should be close to its def because it restricts
1102        // allocation choices. But if it is a livein then perhaps we want it
1103        // closer to its uses so it can be coalesced.
1104        return 0xffff;
1105      else if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1106        // CopyToReg should be close to its uses to facilitate coalescing and
1107        // avoid spilling.
1108        return 0;
1109      else if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
1110               Opc == TargetInstrInfo::INSERT_SUBREG)
1111        // EXTRACT_SUBREG / INSERT_SUBREG should be close to its use to
1112        // facilitate coalescing.
1113        return 0;
1114      else if (SU->NumSuccs == 0)
1115        // If SU does not have a use, i.e. it doesn't produce a value that would
1116        // be consumed (e.g. store), then it terminates a chain of computation.
1117        // Give it a large SethiUllman number so it will be scheduled right
1118        // before its predecessors that it doesn't lengthen their live ranges.
1119        return 0xffff;
1120      else if (SU->NumPreds == 0)
1121        // If SU does not have a def, schedule it close to its uses because it
1122        // does not lengthen any live ranges.
1123        return 0;
1124      else
1125        return SethiUllmanNumbers[SU->NodeNum];
1126    }
1127
1128  private:
1129    bool canClobber(const SUnit *SU, const SUnit *Op);
1130    void AddPseudoTwoAddrDeps();
1131    void CalculateSethiUllmanNumbers();
1132    unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
1133  };
1134
1135
1136  template<class SF>
1137  class VISIBILITY_HIDDEN TDRegReductionPriorityQueue
1138   : public RegReductionPriorityQueue<SF> {
1139    // SUnitMap SDNode to SUnit mapping (n -> n).
1140    DenseMap<SDNode*, std::vector<SUnit*> > *SUnitMap;
1141
1142    // SUnits - The SUnits for the current graph.
1143    const std::vector<SUnit> *SUnits;
1144
1145    // SethiUllmanNumbers - The SethiUllman number for each node.
1146    std::vector<unsigned> SethiUllmanNumbers;
1147
1148  public:
1149    TDRegReductionPriorityQueue() {}
1150
1151    void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
1152                   std::vector<SUnit> &sunits) {
1153      SUnitMap = &sumap;
1154      SUnits = &sunits;
1155      // Calculate node priorities.
1156      CalculateSethiUllmanNumbers();
1157    }
1158
1159    void addNode(const SUnit *SU) {
1160      SethiUllmanNumbers.resize(SUnits->size(), 0);
1161      CalcNodeSethiUllmanNumber(SU);
1162    }
1163
1164    void updateNode(const SUnit *SU) {
1165      SethiUllmanNumbers[SU->NodeNum] = 0;
1166      CalcNodeSethiUllmanNumber(SU);
1167    }
1168
1169    void releaseState() {
1170      SUnits = 0;
1171      SethiUllmanNumbers.clear();
1172    }
1173
1174    unsigned getNodePriority(const SUnit *SU) const {
1175      assert(SU->NodeNum < SethiUllmanNumbers.size());
1176      return SethiUllmanNumbers[SU->NodeNum];
1177    }
1178
1179  private:
1180    void CalculateSethiUllmanNumbers();
1181    unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
1182  };
1183}
1184
1185/// closestSucc - Returns the scheduled cycle of the successor which is
1186/// closet to the current cycle.
1187static unsigned closestSucc(const SUnit *SU) {
1188  unsigned MaxCycle = 0;
1189  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1190       I != E; ++I) {
1191    unsigned Cycle = I->Dep->Cycle;
1192    // If there are bunch of CopyToRegs stacked up, they should be considered
1193    // to be at the same position.
1194    if (I->Dep->Node && I->Dep->Node->getOpcode() == ISD::CopyToReg)
1195      Cycle = closestSucc(I->Dep)+1;
1196    if (Cycle > MaxCycle)
1197      MaxCycle = Cycle;
1198  }
1199  return MaxCycle;
1200}
1201
1202/// calcMaxScratches - Returns an cost estimate of the worse case requirement
1203/// for scratch registers. Live-in operands and live-out results don't count
1204/// since they are "fixed".
1205static unsigned calcMaxScratches(const SUnit *SU) {
1206  unsigned Scratches = 0;
1207  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1208       I != E; ++I) {
1209    if (I->isCtrl) continue;  // ignore chain preds
1210    if (!I->Dep->Node || I->Dep->Node->getOpcode() != ISD::CopyFromReg)
1211      Scratches++;
1212  }
1213  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1214       I != E; ++I) {
1215    if (I->isCtrl) continue;  // ignore chain succs
1216    if (!I->Dep->Node || I->Dep->Node->getOpcode() != ISD::CopyToReg)
1217      Scratches += 10;
1218  }
1219  return Scratches;
1220}
1221
1222// Bottom up
1223bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1224  // There used to be a special tie breaker here that looked for
1225  // two-address instructions and preferred the instruction with a
1226  // def&use operand.  The special case triggered diagnostics when
1227  // _GLIBCXX_DEBUG was enabled because it broke the strict weak
1228  // ordering that priority_queue requires. It didn't help much anyway
1229  // because AddPseudoTwoAddrDeps already covers many of the cases
1230  // where it would have applied.  In addition, it's counter-intuitive
1231  // that a tie breaker would be the first thing attempted.  There's a
1232  // "real" tie breaker below that is the operation of last resort.
1233  // The fact that the "special tie breaker" would trigger when there
1234  // wasn't otherwise a tie is what broke the strict weak ordering
1235  // constraint.
1236
1237  unsigned LPriority = SPQ->getNodePriority(left);
1238  unsigned RPriority = SPQ->getNodePriority(right);
1239  if (LPriority != RPriority)
1240    return LPriority > RPriority;
1241
1242  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
1243  // e.g.
1244  // t1 = op t2, c1
1245  // t3 = op t4, c2
1246  //
1247  // and the following instructions are both ready.
1248  // t2 = op c3
1249  // t4 = op c4
1250  //
1251  // Then schedule t2 = op first.
1252  // i.e.
1253  // t4 = op c4
1254  // t2 = op c3
1255  // t1 = op t2, c1
1256  // t3 = op t4, c2
1257  //
1258  // This creates more short live intervals.
1259  unsigned LDist = closestSucc(left);
1260  unsigned RDist = closestSucc(right);
1261  if (LDist != RDist)
1262    return LDist < RDist;
1263
1264  // Intuitively, it's good to push down instructions whose results are
1265  // liveout so their long live ranges won't conflict with other values
1266  // which are needed inside the BB. Further prioritize liveout instructions
1267  // by the number of operands which are calculated within the BB.
1268  unsigned LScratch = calcMaxScratches(left);
1269  unsigned RScratch = calcMaxScratches(right);
1270  if (LScratch != RScratch)
1271    return LScratch > RScratch;
1272
1273  if (left->Height != right->Height)
1274    return left->Height > right->Height;
1275
1276  if (left->Depth != right->Depth)
1277    return left->Depth < right->Depth;
1278
1279  if (left->CycleBound != right->CycleBound)
1280    return left->CycleBound > right->CycleBound;
1281
1282  // FIXME: No strict ordering.
1283  return false;
1284}
1285
1286template<class SF> bool
1287BURegReductionPriorityQueue<SF>::canClobber(const SUnit *SU, const SUnit *Op) {
1288  if (SU->isTwoAddress) {
1289    unsigned Opc = SU->Node->getTargetOpcode();
1290    const TargetInstrDesc &TID = TII->get(Opc);
1291    unsigned NumRes = TID.getNumDefs();
1292    unsigned NumOps = TID.getNumOperands() - NumRes;
1293    for (unsigned i = 0; i != NumOps; ++i) {
1294      if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) {
1295        SDNode *DU = SU->Node->getOperand(i).Val;
1296        if ((*SUnitMap).find(DU) != (*SUnitMap).end() &&
1297            Op == (*SUnitMap)[DU][SU->InstanceNo])
1298          return true;
1299      }
1300    }
1301  }
1302  return false;
1303}
1304
1305
1306/// hasCopyToRegUse - Return true if SU has a value successor that is a
1307/// CopyToReg node.
1308static bool hasCopyToRegUse(SUnit *SU) {
1309  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1310       I != E; ++I) {
1311    if (I->isCtrl) continue;
1312    SUnit *SuccSU = I->Dep;
1313    if (SuccSU->Node && SuccSU->Node->getOpcode() == ISD::CopyToReg)
1314      return true;
1315  }
1316  return false;
1317}
1318
1319/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
1320/// physical register def.
1321static bool canClobberPhysRegDefs(SUnit *SuccSU, SUnit *SU,
1322                                  const TargetInstrInfo *TII,
1323                                  const TargetRegisterInfo *TRI) {
1324  SDNode *N = SuccSU->Node;
1325  unsigned NumDefs = TII->get(N->getTargetOpcode()).getNumDefs();
1326  const unsigned *ImpDefs = TII->get(N->getTargetOpcode()).getImplicitDefs();
1327  if (!ImpDefs)
1328    return false;
1329  const unsigned *SUImpDefs =
1330    TII->get(SU->Node->getTargetOpcode()).getImplicitDefs();
1331  if (!SUImpDefs)
1332    return false;
1333  for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
1334    MVT::ValueType VT = N->getValueType(i);
1335    if (VT == MVT::Flag || VT == MVT::Other)
1336      continue;
1337    unsigned Reg = ImpDefs[i - NumDefs];
1338    for (;*SUImpDefs; ++SUImpDefs) {
1339      unsigned SUReg = *SUImpDefs;
1340      if (TRI->regsOverlap(Reg, SUReg))
1341        return true;
1342    }
1343  }
1344  return false;
1345}
1346
1347/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
1348/// it as a def&use operand. Add a pseudo control edge from it to the other
1349/// node (if it won't create a cycle) so the two-address one will be scheduled
1350/// first (lower in the schedule). If both nodes are two-address, favor the
1351/// one that has a CopyToReg use (more likely to be a loop induction update).
1352/// If both are two-address, but one is commutable while the other is not
1353/// commutable, favor the one that's not commutable.
1354template<class SF>
1355void BURegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
1356  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
1357    SUnit *SU = (SUnit *)&((*SUnits)[i]);
1358    if (!SU->isTwoAddress)
1359      continue;
1360
1361    SDNode *Node = SU->Node;
1362    if (!Node || !Node->isTargetOpcode() || SU->FlaggedNodes.size() > 0)
1363      continue;
1364
1365    unsigned Opc = Node->getTargetOpcode();
1366    const TargetInstrDesc &TID = TII->get(Opc);
1367    unsigned NumRes = TID.getNumDefs();
1368    unsigned NumOps = TID.getNumOperands() - NumRes;
1369    for (unsigned j = 0; j != NumOps; ++j) {
1370      if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) != -1) {
1371        SDNode *DU = SU->Node->getOperand(j).Val;
1372        if ((*SUnitMap).find(DU) == (*SUnitMap).end())
1373          continue;
1374        SUnit *DUSU = (*SUnitMap)[DU][SU->InstanceNo];
1375        if (!DUSU) continue;
1376        for (SUnit::succ_iterator I = DUSU->Succs.begin(),E = DUSU->Succs.end();
1377             I != E; ++I) {
1378          if (I->isCtrl) continue;
1379          SUnit *SuccSU = I->Dep;
1380          if (SuccSU == SU)
1381            continue;
1382          // Be conservative. Ignore if nodes aren't at roughly the same
1383          // depth and height.
1384          if (SuccSU->Height < SU->Height && (SU->Height - SuccSU->Height) > 1)
1385            continue;
1386          if (!SuccSU->Node || !SuccSU->Node->isTargetOpcode())
1387            continue;
1388          // Don't constrain nodes with physical register defs if the
1389          // predecessor can clobber them.
1390          if (SuccSU->hasPhysRegDefs) {
1391            if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
1392              continue;
1393          }
1394          // Don't constraint extract_subreg / insert_subreg these may be
1395          // coalesced away. We don't them close to their uses.
1396          unsigned SuccOpc = SuccSU->Node->getTargetOpcode();
1397          if (SuccOpc == TargetInstrInfo::EXTRACT_SUBREG ||
1398              SuccOpc == TargetInstrInfo::INSERT_SUBREG)
1399            continue;
1400          if ((!canClobber(SuccSU, DUSU) ||
1401               (hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
1402               (!SU->isCommutable && SuccSU->isCommutable)) &&
1403              !isReachable(SuccSU, SU)) {
1404            DOUT << "Adding an edge from SU # " << SU->NodeNum
1405                 << " to SU #" << SuccSU->NodeNum << "\n";
1406            SU->addPred(SuccSU, true, true);
1407          }
1408        }
1409      }
1410    }
1411  }
1412}
1413
1414/// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number.
1415/// Smaller number is the higher priority.
1416template<class SF>
1417unsigned BURegReductionPriorityQueue<SF>::
1418CalcNodeSethiUllmanNumber(const SUnit *SU) {
1419  unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
1420  if (SethiUllmanNumber != 0)
1421    return SethiUllmanNumber;
1422
1423  unsigned Extra = 0;
1424  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1425       I != E; ++I) {
1426    if (I->isCtrl) continue;  // ignore chain preds
1427    SUnit *PredSU = I->Dep;
1428    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
1429    if (PredSethiUllman > SethiUllmanNumber) {
1430      SethiUllmanNumber = PredSethiUllman;
1431      Extra = 0;
1432    } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
1433      ++Extra;
1434  }
1435
1436  SethiUllmanNumber += Extra;
1437
1438  if (SethiUllmanNumber == 0)
1439    SethiUllmanNumber = 1;
1440
1441  return SethiUllmanNumber;
1442}
1443
1444/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1445/// scheduling units.
1446template<class SF>
1447void BURegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
1448  SethiUllmanNumbers.assign(SUnits->size(), 0);
1449
1450  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1451    CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
1452}
1453
1454static unsigned SumOfUnscheduledPredsOfSuccs(const SUnit *SU) {
1455  unsigned Sum = 0;
1456  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1457       I != E; ++I) {
1458    SUnit *SuccSU = I->Dep;
1459    for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
1460         EE = SuccSU->Preds.end(); II != EE; ++II) {
1461      SUnit *PredSU = II->Dep;
1462      if (!PredSU->isScheduled)
1463        ++Sum;
1464    }
1465  }
1466
1467  return Sum;
1468}
1469
1470
1471// Top down
1472bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1473  unsigned LPriority = SPQ->getNodePriority(left);
1474  unsigned RPriority = SPQ->getNodePriority(right);
1475  bool LIsTarget = left->Node && left->Node->isTargetOpcode();
1476  bool RIsTarget = right->Node && right->Node->isTargetOpcode();
1477  bool LIsFloater = LIsTarget && left->NumPreds == 0;
1478  bool RIsFloater = RIsTarget && right->NumPreds == 0;
1479  unsigned LBonus = (SumOfUnscheduledPredsOfSuccs(left) == 1) ? 2 : 0;
1480  unsigned RBonus = (SumOfUnscheduledPredsOfSuccs(right) == 1) ? 2 : 0;
1481
1482  if (left->NumSuccs == 0 && right->NumSuccs != 0)
1483    return false;
1484  else if (left->NumSuccs != 0 && right->NumSuccs == 0)
1485    return true;
1486
1487  if (LIsFloater)
1488    LBonus -= 2;
1489  if (RIsFloater)
1490    RBonus -= 2;
1491  if (left->NumSuccs == 1)
1492    LBonus += 2;
1493  if (right->NumSuccs == 1)
1494    RBonus += 2;
1495
1496  if (LPriority+LBonus != RPriority+RBonus)
1497    return LPriority+LBonus < RPriority+RBonus;
1498
1499  if (left->Depth != right->Depth)
1500    return left->Depth < right->Depth;
1501
1502  if (left->NumSuccsLeft != right->NumSuccsLeft)
1503    return left->NumSuccsLeft > right->NumSuccsLeft;
1504
1505  if (left->CycleBound != right->CycleBound)
1506    return left->CycleBound > right->CycleBound;
1507
1508  // FIXME: No strict ordering.
1509  return false;
1510}
1511
1512/// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number.
1513/// Smaller number is the higher priority.
1514template<class SF>
1515unsigned TDRegReductionPriorityQueue<SF>::
1516CalcNodeSethiUllmanNumber(const SUnit *SU) {
1517  unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
1518  if (SethiUllmanNumber != 0)
1519    return SethiUllmanNumber;
1520
1521  unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
1522  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1523    SethiUllmanNumber = 0xffff;
1524  else if (SU->NumSuccsLeft == 0)
1525    // If SU does not have a use, i.e. it doesn't produce a value that would
1526    // be consumed (e.g. store), then it terminates a chain of computation.
1527    // Give it a small SethiUllman number so it will be scheduled right before
1528    // its predecessors that it doesn't lengthen their live ranges.
1529    SethiUllmanNumber = 0;
1530  else if (SU->NumPredsLeft == 0 &&
1531           (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
1532    SethiUllmanNumber = 0xffff;
1533  else {
1534    int Extra = 0;
1535    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1536         I != E; ++I) {
1537      if (I->isCtrl) continue;  // ignore chain preds
1538      SUnit *PredSU = I->Dep;
1539      unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
1540      if (PredSethiUllman > SethiUllmanNumber) {
1541        SethiUllmanNumber = PredSethiUllman;
1542        Extra = 0;
1543      } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
1544        ++Extra;
1545    }
1546
1547    SethiUllmanNumber += Extra;
1548  }
1549
1550  return SethiUllmanNumber;
1551}
1552
1553/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1554/// scheduling units.
1555template<class SF>
1556void TDRegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
1557  SethiUllmanNumbers.assign(SUnits->size(), 0);
1558
1559  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1560    CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
1561}
1562
1563//===----------------------------------------------------------------------===//
1564//                         Public Constructor Functions
1565//===----------------------------------------------------------------------===//
1566
1567llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
1568                                                    SelectionDAG *DAG,
1569                                                    MachineBasicBlock *BB) {
1570  const TargetInstrInfo *TII = DAG->getTarget().getInstrInfo();
1571  const TargetRegisterInfo *TRI = DAG->getTarget().getRegisterInfo();
1572  return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), true,
1573                      new BURegReductionPriorityQueue<bu_ls_rr_sort>(TII, TRI));
1574}
1575
1576llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
1577                                                    SelectionDAG *DAG,
1578                                                    MachineBasicBlock *BB) {
1579  return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), false,
1580                              new TDRegReductionPriorityQueue<td_ls_rr_sort>());
1581}
1582
1583