ScheduleDAGRRList.cpp revision 8701816221817cfb8b8b67ca06cc9a39bacbcbde
1//===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms.  The basic approach uses a priority
12// queue of available nodes to schedule.  One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "pre-RA-sched"
19#include "llvm/CodeGen/ScheduleDAG.h"
20#include "llvm/CodeGen/SchedulerRegistry.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22#include "llvm/Target/TargetData.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/Statistic.h"
30#include <climits>
31#include <queue>
32#include "llvm/Support/CommandLine.h"
33using namespace llvm;
34
35STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
36STATISTIC(NumUnfolds,    "Number of nodes unfolded");
37STATISTIC(NumDups,       "Number of duplicated nodes");
38STATISTIC(NumCCCopies,   "Number of cross class copies");
39
40static RegisterScheduler
41  burrListDAGScheduler("list-burr",
42                       "  Bottom-up register reduction list scheduling",
43                       createBURRListDAGScheduler);
44static RegisterScheduler
45  tdrListrDAGScheduler("list-tdrr",
46                       "  Top-down register reduction list scheduling",
47                       createTDRRListDAGScheduler);
48
49namespace {
50//===----------------------------------------------------------------------===//
51/// ScheduleDAGRRList - The actual register reduction list scheduler
52/// implementation.  This supports both top-down and bottom-up scheduling.
53///
54class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAG {
55private:
56  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
57  /// it is top-down.
58  bool isBottomUp;
59
60  /// AvailableQueue - The priority queue to use for the available SUnits.
61  SchedulingPriorityQueue *AvailableQueue;
62
63  /// LiveRegs / LiveRegDefs - A set of physical registers and their definition
64  /// that are "live". These nodes must be scheduled before any other nodes that
65  /// modifies the registers can be scheduled.
66  SmallSet<unsigned, 4> LiveRegs;
67  std::vector<SUnit*> LiveRegDefs;
68  std::vector<unsigned> LiveRegCycles;
69
70public:
71  ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
72                  const TargetMachine &tm, bool isbottomup,
73                  SchedulingPriorityQueue *availqueue)
74    : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup),
75      AvailableQueue(availqueue) {
76    }
77
78  ~ScheduleDAGRRList() {
79    delete AvailableQueue;
80  }
81
82  void Schedule();
83
84  /// IsReachable - Checks if SU is reachable from TargetSU.
85  bool IsReachable(SUnit *SU, SUnit *TargetSU);
86
87  /// willCreateCycle - Returns true if adding an edge from SU to TargetSU will
88  /// create a cycle.
89  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
90
91  /// AddPred - This adds the specified node X as a predecessor of
92  /// the current node Y if not already.
93  /// This returns true if this is a new predecessor.
94  /// Updates the topological ordering if required.
95  bool AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial,
96               unsigned PhyReg = 0, int Cost = 1);
97
98  /// RemovePred - This removes the specified node N from the predecessors of
99  /// the current node M. Updates the topological ordering if required.
100  bool RemovePred(SUnit *M, SUnit *N, bool isCtrl, bool isSpecial);
101
102private:
103  void ReleasePred(SUnit*, bool, unsigned);
104  void ReleaseSucc(SUnit*, bool isChain, unsigned);
105  void CapturePred(SUnit*, SUnit*, bool);
106  void ScheduleNodeBottomUp(SUnit*, unsigned);
107  void ScheduleNodeTopDown(SUnit*, unsigned);
108  void UnscheduleNodeBottomUp(SUnit*);
109  void BacktrackBottomUp(SUnit*, unsigned, unsigned&);
110  SUnit *CopyAndMoveSuccessors(SUnit*);
111  void InsertCCCopiesAndMoveSuccs(SUnit*, unsigned,
112                                  const TargetRegisterClass*,
113                                  const TargetRegisterClass*,
114                                  SmallVector<SUnit*, 2>&);
115  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
116  void ListScheduleTopDown();
117  void ListScheduleBottomUp();
118  void CommuteNodesToReducePressure();
119
120
121  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
122  /// Updates the topological ordering if required.
123  SUnit *CreateNewSUnit(SDNode *N) {
124    SUnit *NewNode = NewSUnit(N);
125    // Update the topological ordering.
126    if (NewNode->NodeNum >= Node2Index.size())
127      InitDAGTopologicalSorting();
128    return NewNode;
129  }
130
131  /// CreateClone - Creates a new SUnit from an existing one.
132  /// Updates the topological ordering if required.
133  SUnit *CreateClone(SUnit *N) {
134    SUnit *NewNode = Clone(N);
135    // Update the topological ordering.
136    if (NewNode->NodeNum >= Node2Index.size())
137      InitDAGTopologicalSorting();
138    return NewNode;
139  }
140
141  /// Functions for preserving the topological ordering
142  /// even after dynamic insertions of new edges.
143  /// This allows a very fast implementation of IsReachable.
144
145
146  /**
147  The idea of the algorithm is taken from
148  "Online algorithms for managing the topological order of
149  a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
150  This is the MNR algorithm, which was first introduced by
151  A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
152  "Maintaining a topological order under edge insertions".
153
154  Short description of the algorithm:
155
156  Topological ordering, ord, of a DAG maps each node to a topological
157  index so that for all edges X->Y it is the case that ord(X) < ord(Y).
158
159  This means that if there is a path from the node X to the node Z,
160  then ord(X) < ord(Z).
161
162  This property can be used to check for reachability of nodes:
163  if Z is reachable from X, then an insertion of the edge Z->X would
164  create a cycle.
165
166  The algorithm first computes a topological ordering for the DAG by initializing
167  the Index2Node and Node2Index arrays and then tries to keep the ordering
168  up-to-date after edge insertions by reordering the DAG.
169
170  On insertion of the edge X->Y, the algorithm first marks by calling DFS the
171  nodes reachable from Y, and then shifts them using Shift to lie immediately
172  after X in Index2Node.
173  */
174
175  /// InitDAGTopologicalSorting - create the initial topological
176  /// ordering from the DAG to be scheduled.
177  void InitDAGTopologicalSorting();
178
179  /// DFS - make a DFS traversal and mark all nodes affected by the
180  /// edge insertion. These nodes will later get new topological indexes
181  /// by means of the Shift method.
182  void DFS(SUnit *SU, int UpperBound, bool& HasLoop);
183
184  /// Shift - reassign topological indexes for the nodes in the DAG
185  /// to preserve the topological ordering.
186  void Shift(BitVector& Visited, int LowerBound, int UpperBound);
187
188  /// Allocate - assign the topological index to the node n.
189  void Allocate(int n, int index);
190
191  /// Index2Node - Maps topological index to the node number.
192  std::vector<int> Index2Node;
193  /// Node2Index - Maps the node number to its topological index.
194  std::vector<int> Node2Index;
195  /// Visited - a set of nodes visited during a DFS traversal.
196  BitVector Visited;
197};
198}  // end anonymous namespace
199
200
201/// Schedule - Schedule the DAG using list scheduling.
202void ScheduleDAGRRList::Schedule() {
203  DOUT << "********** List Scheduling **********\n";
204
205  LiveRegDefs.resize(TRI->getNumRegs(), NULL);
206  LiveRegCycles.resize(TRI->getNumRegs(), 0);
207
208  // Build scheduling units.
209  BuildSchedUnits();
210
211  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
212          SUnits[su].dumpAll(&DAG));
213  CalculateDepths();
214  CalculateHeights();
215  InitDAGTopologicalSorting();
216
217  AvailableQueue->initNodes(SUnitMap, SUnits);
218
219  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
220  if (isBottomUp)
221    ListScheduleBottomUp();
222  else
223    ListScheduleTopDown();
224
225  AvailableQueue->releaseState();
226
227  CommuteNodesToReducePressure();
228
229  DOUT << "*** Final schedule ***\n";
230  DEBUG(dumpSchedule());
231  DOUT << "\n";
232
233  // Emit in scheduled order
234  EmitSchedule();
235}
236
237/// CommuteNodesToReducePressure - If a node is two-address and commutable, and
238/// it is not the last use of its first operand, add it to the CommuteSet if
239/// possible. It will be commuted when it is translated to a MI.
240void ScheduleDAGRRList::CommuteNodesToReducePressure() {
241  SmallPtrSet<SUnit*, 4> OperandSeen;
242  for (unsigned i = Sequence.size(); i != 0; ) {
243    --i;
244    SUnit *SU = Sequence[i];
245    if (!SU || !SU->Node) continue;
246    if (SU->isCommutable) {
247      unsigned Opc = SU->Node->getTargetOpcode();
248      const TargetInstrDesc &TID = TII->get(Opc);
249      unsigned NumRes = TID.getNumDefs();
250      unsigned NumOps = TID.getNumOperands() - NumRes;
251      for (unsigned j = 0; j != NumOps; ++j) {
252        if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
253          continue;
254
255        SDNode *OpN = SU->Node->getOperand(j).Val;
256        SUnit *OpSU = isPassiveNode(OpN) ? NULL : SUnitMap[OpN][SU->InstanceNo];
257        if (OpSU && OperandSeen.count(OpSU) == 1) {
258          // Ok, so SU is not the last use of OpSU, but SU is two-address so
259          // it will clobber OpSU. Try to commute SU if no other source operands
260          // are live below.
261          bool DoCommute = true;
262          for (unsigned k = 0; k < NumOps; ++k) {
263            if (k != j) {
264              OpN = SU->Node->getOperand(k).Val;
265              OpSU = isPassiveNode(OpN) ? NULL : SUnitMap[OpN][SU->InstanceNo];
266              if (OpSU && OperandSeen.count(OpSU) == 1) {
267                DoCommute = false;
268                break;
269              }
270            }
271          }
272          if (DoCommute)
273            CommuteSet.insert(SU->Node);
274        }
275
276        // Only look at the first use&def node for now.
277        break;
278      }
279    }
280
281    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
282         I != E; ++I) {
283      if (!I->isCtrl)
284        OperandSeen.insert(I->Dep);
285    }
286  }
287}
288
289//===----------------------------------------------------------------------===//
290//  Bottom-Up Scheduling
291//===----------------------------------------------------------------------===//
292
293/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
294/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
295void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain,
296                                    unsigned CurCycle) {
297  // FIXME: the distance between two nodes is not always == the predecessor's
298  // latency. For example, the reader can very well read the register written
299  // by the predecessor later than the issue cycle. It also depends on the
300  // interrupt model (drain vs. freeze).
301  PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
302
303  --PredSU->NumSuccsLeft;
304
305#ifndef NDEBUG
306  if (PredSU->NumSuccsLeft < 0) {
307    cerr << "*** List scheduling failed! ***\n";
308    PredSU->dump(&DAG);
309    cerr << " has been released too many times!\n";
310    assert(0);
311  }
312#endif
313
314  if (PredSU->NumSuccsLeft == 0) {
315    PredSU->isAvailable = true;
316    AvailableQueue->push(PredSU);
317  }
318}
319
320/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
321/// count of its predecessors. If a predecessor pending count is zero, add it to
322/// the Available queue.
323void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
324  DOUT << "*** Scheduling [" << CurCycle << "]: ";
325  DEBUG(SU->dump(&DAG));
326  SU->Cycle = CurCycle;
327
328  AvailableQueue->ScheduledNode(SU);
329
330  // Bottom up: release predecessors
331  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
332       I != E; ++I) {
333    ReleasePred(I->Dep, I->isCtrl, CurCycle);
334    if (I->Cost < 0)  {
335      // This is a physical register dependency and it's impossible or
336      // expensive to copy the register. Make sure nothing that can
337      // clobber the register is scheduled between the predecessor and
338      // this node.
339      if (LiveRegs.insert(I->Reg)) {
340        LiveRegDefs[I->Reg] = I->Dep;
341        LiveRegCycles[I->Reg] = CurCycle;
342      }
343    }
344  }
345
346  // Release all the implicit physical register defs that are live.
347  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
348       I != E; ++I) {
349    if (I->Cost < 0)  {
350      if (LiveRegCycles[I->Reg] == I->Dep->Cycle) {
351        LiveRegs.erase(I->Reg);
352        assert(LiveRegDefs[I->Reg] == SU &&
353               "Physical register dependency violated?");
354        LiveRegDefs[I->Reg] = NULL;
355        LiveRegCycles[I->Reg] = 0;
356      }
357    }
358  }
359
360  SU->isScheduled = true;
361}
362
363/// CapturePred - This does the opposite of ReleasePred. Since SU is being
364/// unscheduled, incrcease the succ left count of its predecessors. Remove
365/// them from AvailableQueue if necessary.
366void ScheduleDAGRRList::CapturePred(SUnit *PredSU, SUnit *SU, bool isChain) {
367  PredSU->CycleBound = 0;
368  for (SUnit::succ_iterator I = PredSU->Succs.begin(), E = PredSU->Succs.end();
369       I != E; ++I) {
370    if (I->Dep == SU)
371      continue;
372    PredSU->CycleBound = std::max(PredSU->CycleBound,
373                                  I->Dep->Cycle + PredSU->Latency);
374  }
375
376  if (PredSU->isAvailable) {
377    PredSU->isAvailable = false;
378    if (!PredSU->isPending)
379      AvailableQueue->remove(PredSU);
380  }
381
382  ++PredSU->NumSuccsLeft;
383}
384
385/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
386/// its predecessor states to reflect the change.
387void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
388  DOUT << "*** Unscheduling [" << SU->Cycle << "]: ";
389  DEBUG(SU->dump(&DAG));
390
391  AvailableQueue->UnscheduledNode(SU);
392
393  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
394       I != E; ++I) {
395    CapturePred(I->Dep, SU, I->isCtrl);
396    if (I->Cost < 0 && SU->Cycle == LiveRegCycles[I->Reg])  {
397      LiveRegs.erase(I->Reg);
398      assert(LiveRegDefs[I->Reg] == I->Dep &&
399             "Physical register dependency violated?");
400      LiveRegDefs[I->Reg] = NULL;
401      LiveRegCycles[I->Reg] = 0;
402    }
403  }
404
405  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
406       I != E; ++I) {
407    if (I->Cost < 0)  {
408      if (LiveRegs.insert(I->Reg)) {
409        assert(!LiveRegDefs[I->Reg] &&
410               "Physical register dependency violated?");
411        LiveRegDefs[I->Reg] = SU;
412      }
413      if (I->Dep->Cycle < LiveRegCycles[I->Reg])
414        LiveRegCycles[I->Reg] = I->Dep->Cycle;
415    }
416  }
417
418  SU->Cycle = 0;
419  SU->isScheduled = false;
420  SU->isAvailable = true;
421  AvailableQueue->push(SU);
422}
423
424/// IsReachable - Checks if SU is reachable from TargetSU.
425bool ScheduleDAGRRList::IsReachable(SUnit *SU, SUnit *TargetSU) {
426  // If insertion of the edge SU->TargetSU would create a cycle
427  // then there is a path from TargetSU to SU.
428  int UpperBound, LowerBound;
429  LowerBound = Node2Index[TargetSU->NodeNum];
430  UpperBound = Node2Index[SU->NodeNum];
431  bool HasLoop = false;
432  // Is Ord(TargetSU) < Ord(SU) ?
433  if (LowerBound < UpperBound) {
434    Visited.reset();
435    // There may be a path from TargetSU to SU. Check for it.
436    DFS(TargetSU, UpperBound, HasLoop);
437  }
438  return HasLoop;
439}
440
441/// Allocate - assign the topological index to the node n.
442inline void ScheduleDAGRRList::Allocate(int n, int index) {
443  Node2Index[n] = index;
444  Index2Node[index] = n;
445}
446
447/// InitDAGTopologicalSorting - create the initial topological
448/// ordering from the DAG to be scheduled.
449void ScheduleDAGRRList::InitDAGTopologicalSorting() {
450  unsigned DAGSize = SUnits.size();
451  std::vector<unsigned> InDegree(DAGSize);
452  std::vector<SUnit*> WorkList;
453  WorkList.reserve(DAGSize);
454  std::vector<SUnit*> TopOrder;
455  TopOrder.reserve(DAGSize);
456
457  // Initialize the data structures.
458  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
459    SUnit *SU = &SUnits[i];
460    int NodeNum = SU->NodeNum;
461    unsigned Degree = SU->Succs.size();
462    InDegree[NodeNum] = Degree;
463
464    // Is it a node without dependencies?
465    if (Degree == 0) {
466        assert(SU->Succs.empty() && "SUnit should have no successors");
467        // Collect leaf nodes.
468        WorkList.push_back(SU);
469    }
470  }
471
472  while (!WorkList.empty()) {
473    SUnit *SU = WorkList.back();
474    WorkList.pop_back();
475    TopOrder.push_back(SU);
476    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
477         I != E; ++I) {
478      SUnit *SU = I->Dep;
479      if (!--InDegree[SU->NodeNum])
480        // If all dependencies of the node are processed already,
481        // then the node can be computed now.
482        WorkList.push_back(SU);
483    }
484  }
485
486  // Second pass, assign the actual topological order as node ids.
487  int Id = 0;
488
489  Index2Node.clear();
490  Node2Index.clear();
491  Index2Node.resize(DAGSize);
492  Node2Index.resize(DAGSize);
493  Visited.resize(DAGSize);
494
495  for (std::vector<SUnit*>::reverse_iterator TI = TopOrder.rbegin(),
496       TE = TopOrder.rend();TI != TE; ++TI) {
497    Allocate((*TI)->NodeNum, Id);
498    Id++;
499  }
500
501#ifndef NDEBUG
502  // Check correctness of the ordering
503  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
504    SUnit *SU = &SUnits[i];
505    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
506         I != E; ++I) {
507       assert(Node2Index[SU->NodeNum] > Node2Index[I->Dep->NodeNum] &&
508       "Wrong topological sorting");
509    }
510  }
511#endif
512}
513
514/// AddPred - adds an edge from SUnit X to SUnit Y.
515/// Updates the topological ordering if required.
516bool ScheduleDAGRRList::AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial,
517                 unsigned PhyReg, int Cost) {
518  int UpperBound, LowerBound;
519  LowerBound = Node2Index[Y->NodeNum];
520  UpperBound = Node2Index[X->NodeNum];
521  bool HasLoop = false;
522  // Is Ord(X) < Ord(Y) ?
523  if (LowerBound < UpperBound) {
524    // Update the topological order.
525    Visited.reset();
526    DFS(Y, UpperBound, HasLoop);
527    assert(!HasLoop && "Inserted edge creates a loop!");
528    // Recompute topological indexes.
529    Shift(Visited, LowerBound, UpperBound);
530  }
531  // Now really insert the edge.
532  return Y->addPred(X, isCtrl, isSpecial, PhyReg, Cost);
533}
534
535/// RemovePred - This removes the specified node N from the predecessors of
536/// the current node M. Updates the topological ordering if required.
537bool ScheduleDAGRRList::RemovePred(SUnit *M, SUnit *N,
538                                   bool isCtrl, bool isSpecial) {
539  // InitDAGTopologicalSorting();
540  return M->removePred(N, isCtrl, isSpecial);
541}
542
543/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
544/// all nodes affected by the edge insertion. These nodes will later get new
545/// topological indexes by means of the Shift method.
546void ScheduleDAGRRList::DFS(SUnit *SU, int UpperBound, bool& HasLoop) {
547  std::vector<SUnit*> WorkList;
548  WorkList.reserve(SUnits.size());
549
550  WorkList.push_back(SU);
551  while (!WorkList.empty()) {
552    SU = WorkList.back();
553    WorkList.pop_back();
554    Visited.set(SU->NodeNum);
555    for (int I = SU->Succs.size()-1; I >= 0; --I) {
556      int s = SU->Succs[I].Dep->NodeNum;
557      if (Node2Index[s] == UpperBound) {
558        HasLoop = true;
559        return;
560      }
561      // Visit successors if not already and in affected region.
562      if (!Visited.test(s) && Node2Index[s] < UpperBound) {
563        WorkList.push_back(SU->Succs[I].Dep);
564      }
565    }
566  }
567}
568
569/// Shift - Renumber the nodes so that the topological ordering is
570/// preserved.
571void ScheduleDAGRRList::Shift(BitVector& Visited, int LowerBound,
572                              int UpperBound) {
573  std::vector<int> L;
574  int shift = 0;
575  int i;
576
577  for (i = LowerBound; i <= UpperBound; ++i) {
578    // w is node at topological index i.
579    int w = Index2Node[i];
580    if (Visited.test(w)) {
581      // Unmark.
582      Visited.reset(w);
583      L.push_back(w);
584      shift = shift + 1;
585    } else {
586      Allocate(w, i - shift);
587    }
588  }
589
590  for (unsigned j = 0; j < L.size(); ++j) {
591    Allocate(L[j], i - shift);
592    i = i + 1;
593  }
594}
595
596
597/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
598/// create a cycle.
599bool ScheduleDAGRRList::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
600  if (IsReachable(TargetSU, SU))
601    return true;
602  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
603       I != E; ++I)
604    if (I->Cost < 0 && IsReachable(TargetSU, I->Dep))
605      return true;
606  return false;
607}
608
609/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
610/// BTCycle in order to schedule a specific node. Returns the last unscheduled
611/// SUnit. Also returns if a successor is unscheduled in the process.
612void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle,
613                                          unsigned &CurCycle) {
614  SUnit *OldSU = NULL;
615  while (CurCycle > BtCycle) {
616    OldSU = Sequence.back();
617    Sequence.pop_back();
618    if (SU->isSucc(OldSU))
619      // Don't try to remove SU from AvailableQueue.
620      SU->isAvailable = false;
621    UnscheduleNodeBottomUp(OldSU);
622    --CurCycle;
623  }
624
625
626  if (SU->isSucc(OldSU)) {
627    assert(false && "Something is wrong!");
628    abort();
629  }
630
631  ++NumBacktracks;
632}
633
634/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
635/// successors to the newly created node.
636SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
637  if (SU->FlaggedNodes.size())
638    return NULL;
639
640  SDNode *N = SU->Node;
641  if (!N)
642    return NULL;
643
644  SUnit *NewSU;
645  bool TryUnfold = false;
646  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
647    MVT::ValueType VT = N->getValueType(i);
648    if (VT == MVT::Flag)
649      return NULL;
650    else if (VT == MVT::Other)
651      TryUnfold = true;
652  }
653  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
654    const SDOperand &Op = N->getOperand(i);
655    MVT::ValueType VT = Op.Val->getValueType(Op.ResNo);
656    if (VT == MVT::Flag)
657      return NULL;
658  }
659
660  if (TryUnfold) {
661    SmallVector<SDNode*, 4> NewNodes;
662    if (!TII->unfoldMemoryOperand(DAG, N, NewNodes))
663      return NULL;
664
665    DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
666    assert(NewNodes.size() == 2 && "Expected a load folding node!");
667
668    N = NewNodes[1];
669    SDNode *LoadNode = NewNodes[0];
670    unsigned NumVals = N->getNumValues();
671    unsigned OldNumVals = SU->Node->getNumValues();
672    for (unsigned i = 0; i != NumVals; ++i)
673      DAG.ReplaceAllUsesOfValueWith(SDOperand(SU->Node, i), SDOperand(N, i));
674    DAG.ReplaceAllUsesOfValueWith(SDOperand(SU->Node, OldNumVals-1),
675                                  SDOperand(LoadNode, 1));
676
677    SUnit *NewSU = CreateNewSUnit(N);
678    SUnitMap[N].push_back(NewSU);
679    const TargetInstrDesc &TID = TII->get(N->getTargetOpcode());
680    for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
681      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
682        NewSU->isTwoAddress = true;
683        break;
684      }
685    }
686    if (TID.isCommutable())
687      NewSU->isCommutable = true;
688    // FIXME: Calculate height / depth and propagate the changes?
689    NewSU->Depth = SU->Depth;
690    NewSU->Height = SU->Height;
691    ComputeLatency(NewSU);
692
693    // LoadNode may already exist. This can happen when there is another
694    // load from the same location and producing the same type of value
695    // but it has different alignment or volatileness.
696    bool isNewLoad = true;
697    SUnit *LoadSU;
698    DenseMap<SDNode*, std::vector<SUnit*> >::iterator SMI =
699      SUnitMap.find(LoadNode);
700    if (SMI != SUnitMap.end()) {
701      LoadSU = SMI->second.front();
702      isNewLoad = false;
703    } else {
704      LoadSU = CreateNewSUnit(LoadNode);
705      SUnitMap[LoadNode].push_back(LoadSU);
706
707      LoadSU->Depth = SU->Depth;
708      LoadSU->Height = SU->Height;
709      ComputeLatency(LoadSU);
710    }
711
712    SUnit *ChainPred = NULL;
713    SmallVector<SDep, 4> ChainSuccs;
714    SmallVector<SDep, 4> LoadPreds;
715    SmallVector<SDep, 4> NodePreds;
716    SmallVector<SDep, 4> NodeSuccs;
717    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
718         I != E; ++I) {
719      if (I->isCtrl)
720        ChainPred = I->Dep;
721      else if (I->Dep->Node && I->Dep->Node->isOperandOf(LoadNode))
722        LoadPreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
723      else
724        NodePreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
725    }
726    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
727         I != E; ++I) {
728      if (I->isCtrl)
729        ChainSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
730                                  I->isCtrl, I->isSpecial));
731      else
732        NodeSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
733                                 I->isCtrl, I->isSpecial));
734    }
735
736    if (ChainPred) {
737      RemovePred(SU, ChainPred, true, false);
738      if (isNewLoad)
739        AddPred(LoadSU, ChainPred, true, false);
740    }
741    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
742      SDep *Pred = &LoadPreds[i];
743      RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial);
744      if (isNewLoad) {
745        AddPred(LoadSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial,
746                Pred->Reg, Pred->Cost);
747      }
748    }
749    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
750      SDep *Pred = &NodePreds[i];
751      RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial);
752      AddPred(NewSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial,
753              Pred->Reg, Pred->Cost);
754    }
755    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
756      SDep *Succ = &NodeSuccs[i];
757      RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial);
758      AddPred(Succ->Dep, NewSU, Succ->isCtrl, Succ->isSpecial,
759              Succ->Reg, Succ->Cost);
760    }
761    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
762      SDep *Succ = &ChainSuccs[i];
763      RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial);
764      if (isNewLoad) {
765        AddPred(Succ->Dep, LoadSU, Succ->isCtrl, Succ->isSpecial,
766                Succ->Reg, Succ->Cost);
767      }
768    }
769    if (isNewLoad) {
770      AddPred(NewSU, LoadSU, false, false);
771    }
772
773    if (isNewLoad)
774      AvailableQueue->addNode(LoadSU);
775    AvailableQueue->addNode(NewSU);
776
777    ++NumUnfolds;
778
779    if (NewSU->NumSuccsLeft == 0) {
780      NewSU->isAvailable = true;
781      return NewSU;
782    }
783    SU = NewSU;
784  }
785
786  DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
787  NewSU = CreateClone(SU);
788
789  // New SUnit has the exact same predecessors.
790  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
791       I != E; ++I)
792    if (!I->isSpecial) {
793      AddPred(NewSU, I->Dep, I->isCtrl, false, I->Reg, I->Cost);
794      NewSU->Depth = std::max(NewSU->Depth, I->Dep->Depth+1);
795    }
796
797  // Only copy scheduled successors. Cut them from old node's successor
798  // list and move them over.
799  SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
800  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
801       I != E; ++I) {
802    if (I->isSpecial)
803      continue;
804    if (I->Dep->isScheduled) {
805      NewSU->Height = std::max(NewSU->Height, I->Dep->Height+1);
806      AddPred(I->Dep, NewSU, I->isCtrl, false, I->Reg, I->Cost);
807      DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
808    }
809  }
810  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
811    SUnit *Succ = DelDeps[i].first;
812    bool isCtrl = DelDeps[i].second;
813    RemovePred(Succ, SU, isCtrl, false);
814  }
815
816  AvailableQueue->updateNode(SU);
817  AvailableQueue->addNode(NewSU);
818
819  ++NumDups;
820  return NewSU;
821}
822
823/// InsertCCCopiesAndMoveSuccs - Insert expensive cross register class copies
824/// and move all scheduled successors of the given SUnit to the last copy.
825void ScheduleDAGRRList::InsertCCCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
826                                              const TargetRegisterClass *DestRC,
827                                              const TargetRegisterClass *SrcRC,
828                                               SmallVector<SUnit*, 2> &Copies) {
829  SUnit *CopyFromSU = CreateNewSUnit(NULL);
830  CopyFromSU->CopySrcRC = SrcRC;
831  CopyFromSU->CopyDstRC = DestRC;
832  CopyFromSU->Depth = SU->Depth;
833  CopyFromSU->Height = SU->Height;
834
835  SUnit *CopyToSU = CreateNewSUnit(NULL);
836  CopyToSU->CopySrcRC = DestRC;
837  CopyToSU->CopyDstRC = SrcRC;
838
839  // Only copy scheduled successors. Cut them from old node's successor
840  // list and move them over.
841  SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
842  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
843       I != E; ++I) {
844    if (I->isSpecial)
845      continue;
846    if (I->Dep->isScheduled) {
847      CopyToSU->Height = std::max(CopyToSU->Height, I->Dep->Height+1);
848      AddPred(I->Dep, CopyToSU, I->isCtrl, false, I->Reg, I->Cost);
849      DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
850    }
851  }
852  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
853    SUnit *Succ = DelDeps[i].first;
854    bool isCtrl = DelDeps[i].second;
855    RemovePred(Succ, SU, isCtrl, false);
856  }
857
858  AddPred(CopyFromSU, SU, false, false, Reg, -1);
859  AddPred(CopyToSU, CopyFromSU, false, false, Reg, 1);
860
861  AvailableQueue->updateNode(SU);
862  AvailableQueue->addNode(CopyFromSU);
863  AvailableQueue->addNode(CopyToSU);
864  Copies.push_back(CopyFromSU);
865  Copies.push_back(CopyToSU);
866
867  ++NumCCCopies;
868}
869
870/// getPhysicalRegisterVT - Returns the ValueType of the physical register
871/// definition of the specified node.
872/// FIXME: Move to SelectionDAG?
873static MVT::ValueType getPhysicalRegisterVT(SDNode *N, unsigned Reg,
874                                            const TargetInstrInfo *TII) {
875  const TargetInstrDesc &TID = TII->get(N->getTargetOpcode());
876  assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
877  unsigned NumRes = TID.getNumDefs();
878  for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
879    if (Reg == *ImpDef)
880      break;
881    ++NumRes;
882  }
883  return N->getValueType(NumRes);
884}
885
886/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
887/// scheduling of the given node to satisfy live physical register dependencies.
888/// If the specific node is the last one that's available to schedule, do
889/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
890bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
891                                                 SmallVector<unsigned, 4> &LRegs){
892  if (LiveRegs.empty())
893    return false;
894
895  SmallSet<unsigned, 4> RegAdded;
896  // If this node would clobber any "live" register, then it's not ready.
897  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
898       I != E; ++I) {
899    if (I->Cost < 0)  {
900      unsigned Reg = I->Reg;
901      if (LiveRegs.count(Reg) && LiveRegDefs[Reg] != I->Dep) {
902        if (RegAdded.insert(Reg))
903          LRegs.push_back(Reg);
904      }
905      for (const unsigned *Alias = TRI->getAliasSet(Reg);
906           *Alias; ++Alias)
907        if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != I->Dep) {
908          if (RegAdded.insert(*Alias))
909            LRegs.push_back(*Alias);
910        }
911    }
912  }
913
914  for (unsigned i = 0, e = SU->FlaggedNodes.size()+1; i != e; ++i) {
915    SDNode *Node = (i == 0) ? SU->Node : SU->FlaggedNodes[i-1];
916    if (!Node || !Node->isTargetOpcode())
917      continue;
918    const TargetInstrDesc &TID = TII->get(Node->getTargetOpcode());
919    if (!TID.ImplicitDefs)
920      continue;
921    for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
922      if (LiveRegs.count(*Reg) && LiveRegDefs[*Reg] != SU) {
923        if (RegAdded.insert(*Reg))
924          LRegs.push_back(*Reg);
925      }
926      for (const unsigned *Alias = TRI->getAliasSet(*Reg);
927           *Alias; ++Alias)
928        if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != SU) {
929          if (RegAdded.insert(*Alias))
930            LRegs.push_back(*Alias);
931        }
932    }
933  }
934  return !LRegs.empty();
935}
936
937
938/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
939/// schedulers.
940void ScheduleDAGRRList::ListScheduleBottomUp() {
941  unsigned CurCycle = 0;
942  // Add root to Available queue.
943  if (!SUnits.empty()) {
944    SUnit *RootSU = SUnitMap[DAG.getRoot().Val].front();
945    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
946    RootSU->isAvailable = true;
947    AvailableQueue->push(RootSU);
948  }
949
950  // While Available queue is not empty, grab the node with the highest
951  // priority. If it is not ready put it back.  Schedule the node.
952  SmallVector<SUnit*, 4> NotReady;
953  while (!AvailableQueue->empty()) {
954    bool Delayed = false;
955    DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
956    SUnit *CurSU = AvailableQueue->pop();
957    while (CurSU) {
958      if (CurSU->CycleBound <= CurCycle) {
959        SmallVector<unsigned, 4> LRegs;
960        if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
961          break;
962        Delayed = true;
963        LRegsMap.insert(std::make_pair(CurSU, LRegs));
964      }
965
966      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
967      NotReady.push_back(CurSU);
968      CurSU = AvailableQueue->pop();
969    }
970
971    // All candidates are delayed due to live physical reg dependencies.
972    // Try backtracking, code duplication, or inserting cross class copies
973    // to resolve it.
974    if (Delayed && !CurSU) {
975      for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
976        SUnit *TrySU = NotReady[i];
977        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
978
979        // Try unscheduling up to the point where it's safe to schedule
980        // this node.
981        unsigned LiveCycle = CurCycle;
982        for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
983          unsigned Reg = LRegs[j];
984          unsigned LCycle = LiveRegCycles[Reg];
985          LiveCycle = std::min(LiveCycle, LCycle);
986        }
987        SUnit *OldSU = Sequence[LiveCycle];
988        if (!WillCreateCycle(TrySU, OldSU))  {
989          BacktrackBottomUp(TrySU, LiveCycle, CurCycle);
990          // Force the current node to be scheduled before the node that
991          // requires the physical reg dep.
992          if (OldSU->isAvailable) {
993            OldSU->isAvailable = false;
994            AvailableQueue->remove(OldSU);
995          }
996          AddPred(TrySU, OldSU, true, true);
997          // If one or more successors has been unscheduled, then the current
998          // node is no longer avaialable. Schedule a successor that's now
999          // available instead.
1000          if (!TrySU->isAvailable)
1001            CurSU = AvailableQueue->pop();
1002          else {
1003            CurSU = TrySU;
1004            TrySU->isPending = false;
1005            NotReady.erase(NotReady.begin()+i);
1006          }
1007          break;
1008        }
1009      }
1010
1011      if (!CurSU) {
1012        // Can't backtrack. Try duplicating the nodes that produces these
1013        // "expensive to copy" values to break the dependency. In case even
1014        // that doesn't work, insert cross class copies.
1015        SUnit *TrySU = NotReady[0];
1016        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
1017        assert(LRegs.size() == 1 && "Can't handle this yet!");
1018        unsigned Reg = LRegs[0];
1019        SUnit *LRDef = LiveRegDefs[Reg];
1020        SUnit *NewDef = CopyAndMoveSuccessors(LRDef);
1021        if (!NewDef) {
1022          // Issue expensive cross register class copies.
1023          MVT::ValueType VT = getPhysicalRegisterVT(LRDef->Node, Reg, TII);
1024          const TargetRegisterClass *RC =
1025            TRI->getPhysicalRegisterRegClass(Reg, VT);
1026          const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1027          if (!DestRC) {
1028            assert(false && "Don't know how to copy this physical register!");
1029            abort();
1030          }
1031          SmallVector<SUnit*, 2> Copies;
1032          InsertCCCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1033          DOUT << "Adding an edge from SU # " << TrySU->NodeNum
1034               << " to SU #" << Copies.front()->NodeNum << "\n";
1035          AddPred(TrySU, Copies.front(), true, true);
1036          NewDef = Copies.back();
1037        }
1038
1039        DOUT << "Adding an edge from SU # " << NewDef->NodeNum
1040             << " to SU #" << TrySU->NodeNum << "\n";
1041        LiveRegDefs[Reg] = NewDef;
1042        AddPred(NewDef, TrySU, true, true);
1043        TrySU->isAvailable = false;
1044        CurSU = NewDef;
1045      }
1046
1047      if (!CurSU) {
1048        assert(false && "Unable to resolve live physical register dependencies!");
1049        abort();
1050      }
1051    }
1052
1053    // Add the nodes that aren't ready back onto the available list.
1054    for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
1055      NotReady[i]->isPending = false;
1056      // May no longer be available due to backtracking.
1057      if (NotReady[i]->isAvailable)
1058        AvailableQueue->push(NotReady[i]);
1059    }
1060    NotReady.clear();
1061
1062    if (!CurSU)
1063      Sequence.push_back(0);
1064    else {
1065      ScheduleNodeBottomUp(CurSU, CurCycle);
1066      Sequence.push_back(CurSU);
1067    }
1068    ++CurCycle;
1069  }
1070
1071  // Reverse the order if it is bottom up.
1072  std::reverse(Sequence.begin(), Sequence.end());
1073
1074
1075#ifndef NDEBUG
1076  // Verify that all SUnits were scheduled.
1077  bool AnyNotSched = false;
1078  unsigned DeadNodes = 0;
1079  unsigned Noops = 0;
1080  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1081    if (!SUnits[i].isScheduled) {
1082      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
1083        ++DeadNodes;
1084        continue;
1085      }
1086      if (!AnyNotSched)
1087        cerr << "*** List scheduling failed! ***\n";
1088      SUnits[i].dump(&DAG);
1089      cerr << "has not been scheduled!\n";
1090      AnyNotSched = true;
1091    }
1092    if (SUnits[i].NumSuccsLeft != 0) {
1093      if (!AnyNotSched)
1094        cerr << "*** List scheduling failed! ***\n";
1095      SUnits[i].dump(&DAG);
1096      cerr << "has successors left!\n";
1097      AnyNotSched = true;
1098    }
1099  }
1100  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
1101    if (!Sequence[i])
1102      ++Noops;
1103  assert(!AnyNotSched);
1104  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
1105         "The number of nodes scheduled doesn't match the expected number!");
1106#endif
1107}
1108
1109//===----------------------------------------------------------------------===//
1110//  Top-Down Scheduling
1111//===----------------------------------------------------------------------===//
1112
1113/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
1114/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
1115void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain,
1116                                    unsigned CurCycle) {
1117  // FIXME: the distance between two nodes is not always == the predecessor's
1118  // latency. For example, the reader can very well read the register written
1119  // by the predecessor later than the issue cycle. It also depends on the
1120  // interrupt model (drain vs. freeze).
1121  SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
1122
1123  --SuccSU->NumPredsLeft;
1124
1125#ifndef NDEBUG
1126  if (SuccSU->NumPredsLeft < 0) {
1127    cerr << "*** List scheduling failed! ***\n";
1128    SuccSU->dump(&DAG);
1129    cerr << " has been released too many times!\n";
1130    assert(0);
1131  }
1132#endif
1133
1134  if (SuccSU->NumPredsLeft == 0) {
1135    SuccSU->isAvailable = true;
1136    AvailableQueue->push(SuccSU);
1137  }
1138}
1139
1140
1141/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
1142/// count of its successors. If a successor pending count is zero, add it to
1143/// the Available queue.
1144void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
1145  DOUT << "*** Scheduling [" << CurCycle << "]: ";
1146  DEBUG(SU->dump(&DAG));
1147  SU->Cycle = CurCycle;
1148
1149  AvailableQueue->ScheduledNode(SU);
1150
1151  // Top down: release successors
1152  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1153       I != E; ++I)
1154    ReleaseSucc(I->Dep, I->isCtrl, CurCycle);
1155  SU->isScheduled = true;
1156}
1157
1158/// ListScheduleTopDown - The main loop of list scheduling for top-down
1159/// schedulers.
1160void ScheduleDAGRRList::ListScheduleTopDown() {
1161  unsigned CurCycle = 0;
1162
1163  // All leaves to Available queue.
1164  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1165    // It is available if it has no predecessors.
1166    if (SUnits[i].Preds.empty()) {
1167      AvailableQueue->push(&SUnits[i]);
1168      SUnits[i].isAvailable = true;
1169    }
1170  }
1171
1172  // While Available queue is not empty, grab the node with the highest
1173  // priority. If it is not ready put it back.  Schedule the node.
1174  std::vector<SUnit*> NotReady;
1175  while (!AvailableQueue->empty()) {
1176    SUnit *CurSU = AvailableQueue->pop();
1177    while (CurSU && CurSU->CycleBound > CurCycle) {
1178      NotReady.push_back(CurSU);
1179      CurSU = AvailableQueue->pop();
1180    }
1181
1182    // Add the nodes that aren't ready back onto the available list.
1183    AvailableQueue->push_all(NotReady);
1184    NotReady.clear();
1185
1186    if (!CurSU)
1187      Sequence.push_back(0);
1188    else {
1189      ScheduleNodeTopDown(CurSU, CurCycle);
1190      Sequence.push_back(CurSU);
1191    }
1192    ++CurCycle;
1193  }
1194
1195
1196#ifndef NDEBUG
1197  // Verify that all SUnits were scheduled.
1198  bool AnyNotSched = false;
1199  unsigned DeadNodes = 0;
1200  unsigned Noops = 0;
1201  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1202    if (!SUnits[i].isScheduled) {
1203      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
1204        ++DeadNodes;
1205        continue;
1206      }
1207      if (!AnyNotSched)
1208        cerr << "*** List scheduling failed! ***\n";
1209      SUnits[i].dump(&DAG);
1210      cerr << "has not been scheduled!\n";
1211      AnyNotSched = true;
1212    }
1213    if (SUnits[i].NumPredsLeft != 0) {
1214      if (!AnyNotSched)
1215        cerr << "*** List scheduling failed! ***\n";
1216      SUnits[i].dump(&DAG);
1217      cerr << "has predecessors left!\n";
1218      AnyNotSched = true;
1219    }
1220  }
1221  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
1222    if (!Sequence[i])
1223      ++Noops;
1224  assert(!AnyNotSched);
1225  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
1226         "The number of nodes scheduled doesn't match the expected number!");
1227#endif
1228}
1229
1230
1231
1232//===----------------------------------------------------------------------===//
1233//                RegReductionPriorityQueue Implementation
1234//===----------------------------------------------------------------------===//
1235//
1236// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1237// to reduce register pressure.
1238//
1239namespace {
1240  template<class SF>
1241  class RegReductionPriorityQueue;
1242
1243  /// Sorting functions for the Available queue.
1244  struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1245    RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
1246    bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
1247    bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1248
1249    bool operator()(const SUnit* left, const SUnit* right) const;
1250  };
1251
1252  struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1253    RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
1254    td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
1255    td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1256
1257    bool operator()(const SUnit* left, const SUnit* right) const;
1258  };
1259}  // end anonymous namespace
1260
1261static inline bool isCopyFromLiveIn(const SUnit *SU) {
1262  SDNode *N = SU->Node;
1263  return N && N->getOpcode() == ISD::CopyFromReg &&
1264    N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
1265}
1266
1267namespace {
1268  template<class SF>
1269  class VISIBILITY_HIDDEN RegReductionPriorityQueue
1270   : public SchedulingPriorityQueue {
1271    std::priority_queue<SUnit*, std::vector<SUnit*>, SF> Queue;
1272
1273  public:
1274    RegReductionPriorityQueue() :
1275    Queue(SF(this)) {}
1276
1277    virtual void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
1278                           std::vector<SUnit> &sunits) {}
1279
1280    virtual void addNode(const SUnit *SU) {}
1281
1282    virtual void updateNode(const SUnit *SU) {}
1283
1284    virtual void releaseState() {}
1285
1286    virtual unsigned getNodePriority(const SUnit *SU) const {
1287      return 0;
1288    }
1289
1290    unsigned size() const { return Queue.size(); }
1291
1292    bool empty() const { return Queue.empty(); }
1293
1294    void push(SUnit *U) {
1295      Queue.push(U);
1296    }
1297    void push_all(const std::vector<SUnit *> &Nodes) {
1298      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
1299        Queue.push(Nodes[i]);
1300    }
1301
1302    SUnit *pop() {
1303      if (empty()) return NULL;
1304      SUnit *V = Queue.top();
1305      Queue.pop();
1306      return V;
1307    }
1308
1309    /// remove - This is a really inefficient way to remove a node from a
1310    /// priority queue.  We should roll our own heap to make this better or
1311    /// something.
1312    void remove(SUnit *SU) {
1313      std::vector<SUnit*> Temp;
1314
1315      assert(!Queue.empty() && "Not in queue!");
1316      while (Queue.top() != SU) {
1317        Temp.push_back(Queue.top());
1318        Queue.pop();
1319        assert(!Queue.empty() && "Not in queue!");
1320      }
1321
1322      // Remove the node from the PQ.
1323      Queue.pop();
1324
1325      // Add all the other nodes back.
1326      for (unsigned i = 0, e = Temp.size(); i != e; ++i)
1327        Queue.push(Temp[i]);
1328    }
1329  };
1330
1331  template<class SF>
1332  class VISIBILITY_HIDDEN BURegReductionPriorityQueue
1333   : public RegReductionPriorityQueue<SF> {
1334    // SUnitMap SDNode to SUnit mapping (n -> n).
1335    DenseMap<SDNode*, std::vector<SUnit*> > *SUnitMap;
1336
1337    // SUnits - The SUnits for the current graph.
1338    const std::vector<SUnit> *SUnits;
1339
1340    // SethiUllmanNumbers - The SethiUllman number for each node.
1341    std::vector<unsigned> SethiUllmanNumbers;
1342
1343    const TargetInstrInfo *TII;
1344    const TargetRegisterInfo *TRI;
1345    ScheduleDAGRRList *scheduleDAG;
1346  public:
1347    explicit BURegReductionPriorityQueue(const TargetInstrInfo *tii,
1348                                         const TargetRegisterInfo *tri)
1349      : TII(tii), TRI(tri), scheduleDAG(NULL) {}
1350
1351    void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
1352                   std::vector<SUnit> &sunits) {
1353      SUnitMap = &sumap;
1354      SUnits = &sunits;
1355      // Add pseudo dependency edges for two-address nodes.
1356      AddPseudoTwoAddrDeps();
1357      // Calculate node priorities.
1358      CalculateSethiUllmanNumbers();
1359    }
1360
1361    void addNode(const SUnit *SU) {
1362      SethiUllmanNumbers.resize(SUnits->size(), 0);
1363      CalcNodeSethiUllmanNumber(SU);
1364    }
1365
1366    void updateNode(const SUnit *SU) {
1367      SethiUllmanNumbers[SU->NodeNum] = 0;
1368      CalcNodeSethiUllmanNumber(SU);
1369    }
1370
1371    void releaseState() {
1372      SUnits = 0;
1373      SethiUllmanNumbers.clear();
1374    }
1375
1376    unsigned getNodePriority(const SUnit *SU) const {
1377      assert(SU->NodeNum < SethiUllmanNumbers.size());
1378      unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
1379      if (Opc == ISD::CopyFromReg && !isCopyFromLiveIn(SU))
1380        // CopyFromReg should be close to its def because it restricts
1381        // allocation choices. But if it is a livein then perhaps we want it
1382        // closer to its uses so it can be coalesced.
1383        return 0xffff;
1384      else if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1385        // CopyToReg should be close to its uses to facilitate coalescing and
1386        // avoid spilling.
1387        return 0;
1388      else if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
1389               Opc == TargetInstrInfo::INSERT_SUBREG)
1390        // EXTRACT_SUBREG / INSERT_SUBREG should be close to its use to
1391        // facilitate coalescing.
1392        return 0;
1393      else if (SU->NumSuccs == 0)
1394        // If SU does not have a use, i.e. it doesn't produce a value that would
1395        // be consumed (e.g. store), then it terminates a chain of computation.
1396        // Give it a large SethiUllman number so it will be scheduled right
1397        // before its predecessors that it doesn't lengthen their live ranges.
1398        return 0xffff;
1399      else if (SU->NumPreds == 0)
1400        // If SU does not have a def, schedule it close to its uses because it
1401        // does not lengthen any live ranges.
1402        return 0;
1403      else
1404        return SethiUllmanNumbers[SU->NodeNum];
1405    }
1406
1407    void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1408      scheduleDAG = scheduleDag;
1409    }
1410
1411  private:
1412    bool canClobber(const SUnit *SU, const SUnit *Op);
1413    void AddPseudoTwoAddrDeps();
1414    void CalculateSethiUllmanNumbers();
1415    unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
1416  };
1417
1418
1419  template<class SF>
1420  class VISIBILITY_HIDDEN TDRegReductionPriorityQueue
1421   : public RegReductionPriorityQueue<SF> {
1422    // SUnitMap SDNode to SUnit mapping (n -> n).
1423    DenseMap<SDNode*, std::vector<SUnit*> > *SUnitMap;
1424
1425    // SUnits - The SUnits for the current graph.
1426    const std::vector<SUnit> *SUnits;
1427
1428    // SethiUllmanNumbers - The SethiUllman number for each node.
1429    std::vector<unsigned> SethiUllmanNumbers;
1430
1431  public:
1432    TDRegReductionPriorityQueue() {}
1433
1434    void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
1435                   std::vector<SUnit> &sunits) {
1436      SUnitMap = &sumap;
1437      SUnits = &sunits;
1438      // Calculate node priorities.
1439      CalculateSethiUllmanNumbers();
1440    }
1441
1442    void addNode(const SUnit *SU) {
1443      SethiUllmanNumbers.resize(SUnits->size(), 0);
1444      CalcNodeSethiUllmanNumber(SU);
1445    }
1446
1447    void updateNode(const SUnit *SU) {
1448      SethiUllmanNumbers[SU->NodeNum] = 0;
1449      CalcNodeSethiUllmanNumber(SU);
1450    }
1451
1452    void releaseState() {
1453      SUnits = 0;
1454      SethiUllmanNumbers.clear();
1455    }
1456
1457    unsigned getNodePriority(const SUnit *SU) const {
1458      assert(SU->NodeNum < SethiUllmanNumbers.size());
1459      return SethiUllmanNumbers[SU->NodeNum];
1460    }
1461
1462  private:
1463    void CalculateSethiUllmanNumbers();
1464    unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
1465  };
1466}
1467
1468/// closestSucc - Returns the scheduled cycle of the successor which is
1469/// closet to the current cycle.
1470static unsigned closestSucc(const SUnit *SU) {
1471  unsigned MaxCycle = 0;
1472  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1473       I != E; ++I) {
1474    unsigned Cycle = I->Dep->Cycle;
1475    // If there are bunch of CopyToRegs stacked up, they should be considered
1476    // to be at the same position.
1477    if (I->Dep->Node && I->Dep->Node->getOpcode() == ISD::CopyToReg)
1478      Cycle = closestSucc(I->Dep)+1;
1479    if (Cycle > MaxCycle)
1480      MaxCycle = Cycle;
1481  }
1482  return MaxCycle;
1483}
1484
1485/// calcMaxScratches - Returns an cost estimate of the worse case requirement
1486/// for scratch registers. Live-in operands and live-out results don't count
1487/// since they are "fixed".
1488static unsigned calcMaxScratches(const SUnit *SU) {
1489  unsigned Scratches = 0;
1490  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1491       I != E; ++I) {
1492    if (I->isCtrl) continue;  // ignore chain preds
1493    if (!I->Dep->Node || I->Dep->Node->getOpcode() != ISD::CopyFromReg)
1494      Scratches++;
1495  }
1496  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1497       I != E; ++I) {
1498    if (I->isCtrl) continue;  // ignore chain succs
1499    if (!I->Dep->Node || I->Dep->Node->getOpcode() != ISD::CopyToReg)
1500      Scratches += 10;
1501  }
1502  return Scratches;
1503}
1504
1505// Bottom up
1506bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1507  // There used to be a special tie breaker here that looked for
1508  // two-address instructions and preferred the instruction with a
1509  // def&use operand.  The special case triggered diagnostics when
1510  // _GLIBCXX_DEBUG was enabled because it broke the strict weak
1511  // ordering that priority_queue requires. It didn't help much anyway
1512  // because AddPseudoTwoAddrDeps already covers many of the cases
1513  // where it would have applied.  In addition, it's counter-intuitive
1514  // that a tie breaker would be the first thing attempted.  There's a
1515  // "real" tie breaker below that is the operation of last resort.
1516  // The fact that the "special tie breaker" would trigger when there
1517  // wasn't otherwise a tie is what broke the strict weak ordering
1518  // constraint.
1519
1520  unsigned LPriority = SPQ->getNodePriority(left);
1521  unsigned RPriority = SPQ->getNodePriority(right);
1522  if (LPriority != RPriority)
1523    return LPriority > RPriority;
1524
1525  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
1526  // e.g.
1527  // t1 = op t2, c1
1528  // t3 = op t4, c2
1529  //
1530  // and the following instructions are both ready.
1531  // t2 = op c3
1532  // t4 = op c4
1533  //
1534  // Then schedule t2 = op first.
1535  // i.e.
1536  // t4 = op c4
1537  // t2 = op c3
1538  // t1 = op t2, c1
1539  // t3 = op t4, c2
1540  //
1541  // This creates more short live intervals.
1542  unsigned LDist = closestSucc(left);
1543  unsigned RDist = closestSucc(right);
1544  if (LDist != RDist)
1545    return LDist < RDist;
1546
1547  // Intuitively, it's good to push down instructions whose results are
1548  // liveout so their long live ranges won't conflict with other values
1549  // which are needed inside the BB. Further prioritize liveout instructions
1550  // by the number of operands which are calculated within the BB.
1551  unsigned LScratch = calcMaxScratches(left);
1552  unsigned RScratch = calcMaxScratches(right);
1553  if (LScratch != RScratch)
1554    return LScratch > RScratch;
1555
1556  if (left->Height != right->Height)
1557    return left->Height > right->Height;
1558
1559  if (left->Depth != right->Depth)
1560    return left->Depth < right->Depth;
1561
1562  if (left->CycleBound != right->CycleBound)
1563    return left->CycleBound > right->CycleBound;
1564
1565  // FIXME: No strict ordering.
1566  return false;
1567}
1568
1569template<class SF> bool
1570BURegReductionPriorityQueue<SF>::canClobber(const SUnit *SU, const SUnit *Op) {
1571  if (SU->isTwoAddress) {
1572    unsigned Opc = SU->Node->getTargetOpcode();
1573    const TargetInstrDesc &TID = TII->get(Opc);
1574    unsigned NumRes = TID.getNumDefs();
1575    unsigned NumOps = TID.getNumOperands() - NumRes;
1576    for (unsigned i = 0; i != NumOps; ++i) {
1577      if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) {
1578        SDNode *DU = SU->Node->getOperand(i).Val;
1579        if ((*SUnitMap).find(DU) != (*SUnitMap).end() &&
1580            Op == (*SUnitMap)[DU][SU->InstanceNo])
1581          return true;
1582      }
1583    }
1584  }
1585  return false;
1586}
1587
1588
1589/// hasCopyToRegUse - Return true if SU has a value successor that is a
1590/// CopyToReg node.
1591static bool hasCopyToRegUse(SUnit *SU) {
1592  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1593       I != E; ++I) {
1594    if (I->isCtrl) continue;
1595    SUnit *SuccSU = I->Dep;
1596    if (SuccSU->Node && SuccSU->Node->getOpcode() == ISD::CopyToReg)
1597      return true;
1598  }
1599  return false;
1600}
1601
1602/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
1603/// physical register def.
1604static bool canClobberPhysRegDefs(SUnit *SuccSU, SUnit *SU,
1605                                  const TargetInstrInfo *TII,
1606                                  const TargetRegisterInfo *TRI) {
1607  SDNode *N = SuccSU->Node;
1608  unsigned NumDefs = TII->get(N->getTargetOpcode()).getNumDefs();
1609  const unsigned *ImpDefs = TII->get(N->getTargetOpcode()).getImplicitDefs();
1610  if (!ImpDefs)
1611    return false;
1612  const unsigned *SUImpDefs =
1613    TII->get(SU->Node->getTargetOpcode()).getImplicitDefs();
1614  if (!SUImpDefs)
1615    return false;
1616  for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
1617    MVT::ValueType VT = N->getValueType(i);
1618    if (VT == MVT::Flag || VT == MVT::Other)
1619      continue;
1620    unsigned Reg = ImpDefs[i - NumDefs];
1621    for (;*SUImpDefs; ++SUImpDefs) {
1622      unsigned SUReg = *SUImpDefs;
1623      if (TRI->regsOverlap(Reg, SUReg))
1624        return true;
1625    }
1626  }
1627  return false;
1628}
1629
1630/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
1631/// it as a def&use operand. Add a pseudo control edge from it to the other
1632/// node (if it won't create a cycle) so the two-address one will be scheduled
1633/// first (lower in the schedule). If both nodes are two-address, favor the
1634/// one that has a CopyToReg use (more likely to be a loop induction update).
1635/// If both are two-address, but one is commutable while the other is not
1636/// commutable, favor the one that's not commutable.
1637template<class SF>
1638void BURegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
1639  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
1640    SUnit *SU = (SUnit *)&((*SUnits)[i]);
1641    if (!SU->isTwoAddress)
1642      continue;
1643
1644    SDNode *Node = SU->Node;
1645    if (!Node || !Node->isTargetOpcode() || SU->FlaggedNodes.size() > 0)
1646      continue;
1647
1648    unsigned Opc = Node->getTargetOpcode();
1649    const TargetInstrDesc &TID = TII->get(Opc);
1650    unsigned NumRes = TID.getNumDefs();
1651    unsigned NumOps = TID.getNumOperands() - NumRes;
1652    for (unsigned j = 0; j != NumOps; ++j) {
1653      if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) != -1) {
1654        SDNode *DU = SU->Node->getOperand(j).Val;
1655        if ((*SUnitMap).find(DU) == (*SUnitMap).end())
1656          continue;
1657        SUnit *DUSU = (*SUnitMap)[DU][SU->InstanceNo];
1658        if (!DUSU) continue;
1659        for (SUnit::succ_iterator I = DUSU->Succs.begin(),E = DUSU->Succs.end();
1660             I != E; ++I) {
1661          if (I->isCtrl) continue;
1662          SUnit *SuccSU = I->Dep;
1663          if (SuccSU == SU)
1664            continue;
1665          // Be conservative. Ignore if nodes aren't at roughly the same
1666          // depth and height.
1667          if (SuccSU->Height < SU->Height && (SU->Height - SuccSU->Height) > 1)
1668            continue;
1669          if (!SuccSU->Node || !SuccSU->Node->isTargetOpcode())
1670            continue;
1671          // Don't constrain nodes with physical register defs if the
1672          // predecessor can clobber them.
1673          if (SuccSU->hasPhysRegDefs) {
1674            if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
1675              continue;
1676          }
1677          // Don't constraint extract_subreg / insert_subreg these may be
1678          // coalesced away. We don't them close to their uses.
1679          unsigned SuccOpc = SuccSU->Node->getTargetOpcode();
1680          if (SuccOpc == TargetInstrInfo::EXTRACT_SUBREG ||
1681              SuccOpc == TargetInstrInfo::INSERT_SUBREG)
1682            continue;
1683          if ((!canClobber(SuccSU, DUSU) ||
1684               (hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
1685               (!SU->isCommutable && SuccSU->isCommutable)) &&
1686              !scheduleDAG->IsReachable(SuccSU, SU)) {
1687            DOUT << "Adding an edge from SU # " << SU->NodeNum
1688                 << " to SU #" << SuccSU->NodeNum << "\n";
1689            scheduleDAG->AddPred(SU, SuccSU, true, true);
1690          }
1691        }
1692      }
1693    }
1694  }
1695}
1696
1697/// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number.
1698/// Smaller number is the higher priority.
1699template<class SF>
1700unsigned BURegReductionPriorityQueue<SF>::
1701CalcNodeSethiUllmanNumber(const SUnit *SU) {
1702  unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
1703  if (SethiUllmanNumber != 0)
1704    return SethiUllmanNumber;
1705
1706  unsigned Extra = 0;
1707  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1708       I != E; ++I) {
1709    if (I->isCtrl) continue;  // ignore chain preds
1710    SUnit *PredSU = I->Dep;
1711    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
1712    if (PredSethiUllman > SethiUllmanNumber) {
1713      SethiUllmanNumber = PredSethiUllman;
1714      Extra = 0;
1715    } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
1716      ++Extra;
1717  }
1718
1719  SethiUllmanNumber += Extra;
1720
1721  if (SethiUllmanNumber == 0)
1722    SethiUllmanNumber = 1;
1723
1724  return SethiUllmanNumber;
1725}
1726
1727/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1728/// scheduling units.
1729template<class SF>
1730void BURegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
1731  SethiUllmanNumbers.assign(SUnits->size(), 0);
1732
1733  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1734    CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
1735}
1736
1737/// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled
1738/// predecessors of the successors of the SUnit SU. Stop when the provided
1739/// limit is exceeded.
1740static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU,
1741                                                    unsigned Limit) {
1742  unsigned Sum = 0;
1743  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1744       I != E; ++I) {
1745    SUnit *SuccSU = I->Dep;
1746    for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
1747         EE = SuccSU->Preds.end(); II != EE; ++II) {
1748      SUnit *PredSU = II->Dep;
1749      if (!PredSU->isScheduled)
1750        if (++Sum > Limit)
1751          return Sum;
1752    }
1753  }
1754  return Sum;
1755}
1756
1757
1758// Top down
1759bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1760  unsigned LPriority = SPQ->getNodePriority(left);
1761  unsigned RPriority = SPQ->getNodePriority(right);
1762  bool LIsTarget = left->Node && left->Node->isTargetOpcode();
1763  bool RIsTarget = right->Node && right->Node->isTargetOpcode();
1764  bool LIsFloater = LIsTarget && left->NumPreds == 0;
1765  bool RIsFloater = RIsTarget && right->NumPreds == 0;
1766  unsigned LBonus = (LimitedSumOfUnscheduledPredsOfSuccs(left,1) == 1) ? 2 : 0;
1767  unsigned RBonus = (LimitedSumOfUnscheduledPredsOfSuccs(right,1) == 1) ? 2 : 0;
1768
1769  if (left->NumSuccs == 0 && right->NumSuccs != 0)
1770    return false;
1771  else if (left->NumSuccs != 0 && right->NumSuccs == 0)
1772    return true;
1773
1774  if (LIsFloater)
1775    LBonus -= 2;
1776  if (RIsFloater)
1777    RBonus -= 2;
1778  if (left->NumSuccs == 1)
1779    LBonus += 2;
1780  if (right->NumSuccs == 1)
1781    RBonus += 2;
1782
1783  if (LPriority+LBonus != RPriority+RBonus)
1784    return LPriority+LBonus < RPriority+RBonus;
1785
1786  if (left->Depth != right->Depth)
1787    return left->Depth < right->Depth;
1788
1789  if (left->NumSuccsLeft != right->NumSuccsLeft)
1790    return left->NumSuccsLeft > right->NumSuccsLeft;
1791
1792  if (left->CycleBound != right->CycleBound)
1793    return left->CycleBound > right->CycleBound;
1794
1795  // FIXME: No strict ordering.
1796  return false;
1797}
1798
1799/// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number.
1800/// Smaller number is the higher priority.
1801template<class SF>
1802unsigned TDRegReductionPriorityQueue<SF>::
1803CalcNodeSethiUllmanNumber(const SUnit *SU) {
1804  unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
1805  if (SethiUllmanNumber != 0)
1806    return SethiUllmanNumber;
1807
1808  unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
1809  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1810    SethiUllmanNumber = 0xffff;
1811  else if (SU->NumSuccsLeft == 0)
1812    // If SU does not have a use, i.e. it doesn't produce a value that would
1813    // be consumed (e.g. store), then it terminates a chain of computation.
1814    // Give it a small SethiUllman number so it will be scheduled right before
1815    // its predecessors that it doesn't lengthen their live ranges.
1816    SethiUllmanNumber = 0;
1817  else if (SU->NumPredsLeft == 0 &&
1818           (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
1819    SethiUllmanNumber = 0xffff;
1820  else {
1821    int Extra = 0;
1822    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1823         I != E; ++I) {
1824      if (I->isCtrl) continue;  // ignore chain preds
1825      SUnit *PredSU = I->Dep;
1826      unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
1827      if (PredSethiUllman > SethiUllmanNumber) {
1828        SethiUllmanNumber = PredSethiUllman;
1829        Extra = 0;
1830      } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
1831        ++Extra;
1832    }
1833
1834    SethiUllmanNumber += Extra;
1835  }
1836
1837  return SethiUllmanNumber;
1838}
1839
1840/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1841/// scheduling units.
1842template<class SF>
1843void TDRegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
1844  SethiUllmanNumbers.assign(SUnits->size(), 0);
1845
1846  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1847    CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
1848}
1849
1850//===----------------------------------------------------------------------===//
1851//                         Public Constructor Functions
1852//===----------------------------------------------------------------------===//
1853
1854llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
1855                                                    SelectionDAG *DAG,
1856                                                    MachineBasicBlock *BB) {
1857  const TargetInstrInfo *TII = DAG->getTarget().getInstrInfo();
1858  const TargetRegisterInfo *TRI = DAG->getTarget().getRegisterInfo();
1859
1860  BURegReductionPriorityQueue<bu_ls_rr_sort> *priorityQueue =
1861    new BURegReductionPriorityQueue<bu_ls_rr_sort>(TII, TRI);
1862
1863  ScheduleDAGRRList * scheduleDAG =
1864    new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), true, priorityQueue);
1865  priorityQueue->setScheduleDAG(scheduleDAG);
1866  return scheduleDAG;
1867}
1868
1869llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
1870                                                    SelectionDAG *DAG,
1871                                                    MachineBasicBlock *BB) {
1872  return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), false,
1873                              new TDRegReductionPriorityQueue<td_ls_rr_sort>());
1874}
1875
1876