ScheduleDAGRRList.cpp revision ae692f2baedf53504af2715993b166950e185a55
1//===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms.  The basic approach uses a priority
12// queue of available nodes to schedule.  One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "pre-RA-sched"
19#include "ScheduleDAGSDNodes.h"
20#include "llvm/InlineAsm.h"
21#include "llvm/CodeGen/SchedulerRegistry.h"
22#include "llvm/CodeGen/SelectionDAGISel.h"
23#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
24#include "llvm/Target/TargetRegisterInfo.h"
25#include "llvm/DataLayout.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include <climits>
36using namespace llvm;
37
38STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
39STATISTIC(NumUnfolds,    "Number of nodes unfolded");
40STATISTIC(NumDups,       "Number of duplicated nodes");
41STATISTIC(NumPRCopies,   "Number of physical register copies");
42
43static RegisterScheduler
44  burrListDAGScheduler("list-burr",
45                       "Bottom-up register reduction list scheduling",
46                       createBURRListDAGScheduler);
47static RegisterScheduler
48  sourceListDAGScheduler("source",
49                         "Similar to list-burr but schedules in source "
50                         "order when possible",
51                         createSourceListDAGScheduler);
52
53static RegisterScheduler
54  hybridListDAGScheduler("list-hybrid",
55                         "Bottom-up register pressure aware list scheduling "
56                         "which tries to balance latency and register pressure",
57                         createHybridListDAGScheduler);
58
59static RegisterScheduler
60  ILPListDAGScheduler("list-ilp",
61                      "Bottom-up register pressure aware list scheduling "
62                      "which tries to balance ILP and register pressure",
63                      createILPListDAGScheduler);
64
65static cl::opt<bool> DisableSchedCycles(
66  "disable-sched-cycles", cl::Hidden, cl::init(false),
67  cl::desc("Disable cycle-level precision during preRA scheduling"));
68
69// Temporary sched=list-ilp flags until the heuristics are robust.
70// Some options are also available under sched=list-hybrid.
71static cl::opt<bool> DisableSchedRegPressure(
72  "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
73  cl::desc("Disable regpressure priority in sched=list-ilp"));
74static cl::opt<bool> DisableSchedLiveUses(
75  "disable-sched-live-uses", cl::Hidden, cl::init(true),
76  cl::desc("Disable live use priority in sched=list-ilp"));
77static cl::opt<bool> DisableSchedVRegCycle(
78  "disable-sched-vrcycle", cl::Hidden, cl::init(false),
79  cl::desc("Disable virtual register cycle interference checks"));
80static cl::opt<bool> DisableSchedPhysRegJoin(
81  "disable-sched-physreg-join", cl::Hidden, cl::init(false),
82  cl::desc("Disable physreg def-use affinity"));
83static cl::opt<bool> DisableSchedStalls(
84  "disable-sched-stalls", cl::Hidden, cl::init(true),
85  cl::desc("Disable no-stall priority in sched=list-ilp"));
86static cl::opt<bool> DisableSchedCriticalPath(
87  "disable-sched-critical-path", cl::Hidden, cl::init(false),
88  cl::desc("Disable critical path priority in sched=list-ilp"));
89static cl::opt<bool> DisableSchedHeight(
90  "disable-sched-height", cl::Hidden, cl::init(false),
91  cl::desc("Disable scheduled-height priority in sched=list-ilp"));
92static cl::opt<bool> Disable2AddrHack(
93  "disable-2addr-hack", cl::Hidden, cl::init(true),
94  cl::desc("Disable scheduler's two-address hack"));
95
96static cl::opt<int> MaxReorderWindow(
97  "max-sched-reorder", cl::Hidden, cl::init(6),
98  cl::desc("Number of instructions to allow ahead of the critical path "
99           "in sched=list-ilp"));
100
101static cl::opt<unsigned> AvgIPC(
102  "sched-avg-ipc", cl::Hidden, cl::init(1),
103  cl::desc("Average inst/cycle whan no target itinerary exists."));
104
105namespace {
106//===----------------------------------------------------------------------===//
107/// ScheduleDAGRRList - The actual register reduction list scheduler
108/// implementation.  This supports both top-down and bottom-up scheduling.
109///
110class ScheduleDAGRRList : public ScheduleDAGSDNodes {
111private:
112  /// NeedLatency - True if the scheduler will make use of latency information.
113  ///
114  bool NeedLatency;
115
116  /// AvailableQueue - The priority queue to use for the available SUnits.
117  SchedulingPriorityQueue *AvailableQueue;
118
119  /// PendingQueue - This contains all of the instructions whose operands have
120  /// been issued, but their results are not ready yet (due to the latency of
121  /// the operation).  Once the operands becomes available, the instruction is
122  /// added to the AvailableQueue.
123  std::vector<SUnit*> PendingQueue;
124
125  /// HazardRec - The hazard recognizer to use.
126  ScheduleHazardRecognizer *HazardRec;
127
128  /// CurCycle - The current scheduler state corresponds to this cycle.
129  unsigned CurCycle;
130
131  /// MinAvailableCycle - Cycle of the soonest available instruction.
132  unsigned MinAvailableCycle;
133
134  /// IssueCount - Count instructions issued in this cycle
135  /// Currently valid only for bottom-up scheduling.
136  unsigned IssueCount;
137
138  /// LiveRegDefs - A set of physical registers and their definition
139  /// that are "live". These nodes must be scheduled before any other nodes that
140  /// modifies the registers can be scheduled.
141  unsigned NumLiveRegs;
142  std::vector<SUnit*> LiveRegDefs;
143  std::vector<SUnit*> LiveRegGens;
144
145  /// Topo - A topological ordering for SUnits which permits fast IsReachable
146  /// and similar queries.
147  ScheduleDAGTopologicalSort Topo;
148
149  // Hack to keep track of the inverse of FindCallSeqStart without more crazy
150  // DAG crawling.
151  DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
152
153public:
154  ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
155                    SchedulingPriorityQueue *availqueue,
156                    CodeGenOpt::Level OptLevel)
157    : ScheduleDAGSDNodes(mf),
158      NeedLatency(needlatency), AvailableQueue(availqueue), CurCycle(0),
159      Topo(SUnits, NULL) {
160
161    const TargetMachine &tm = mf.getTarget();
162    if (DisableSchedCycles || !NeedLatency)
163      HazardRec = new ScheduleHazardRecognizer();
164    else
165      HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(&tm, this);
166  }
167
168  ~ScheduleDAGRRList() {
169    delete HazardRec;
170    delete AvailableQueue;
171  }
172
173  void Schedule();
174
175  ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
176
177  /// IsReachable - Checks if SU is reachable from TargetSU.
178  bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
179    return Topo.IsReachable(SU, TargetSU);
180  }
181
182  /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
183  /// create a cycle.
184  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
185    return Topo.WillCreateCycle(SU, TargetSU);
186  }
187
188  /// AddPred - adds a predecessor edge to SUnit SU.
189  /// This returns true if this is a new predecessor.
190  /// Updates the topological ordering if required.
191  void AddPred(SUnit *SU, const SDep &D) {
192    Topo.AddPred(SU, D.getSUnit());
193    SU->addPred(D);
194  }
195
196  /// RemovePred - removes a predecessor edge from SUnit SU.
197  /// This returns true if an edge was removed.
198  /// Updates the topological ordering if required.
199  void RemovePred(SUnit *SU, const SDep &D) {
200    Topo.RemovePred(SU, D.getSUnit());
201    SU->removePred(D);
202  }
203
204private:
205  bool isReady(SUnit *SU) {
206    return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
207      AvailableQueue->isReady(SU);
208  }
209
210  void ReleasePred(SUnit *SU, const SDep *PredEdge);
211  void ReleasePredecessors(SUnit *SU);
212  void ReleasePending();
213  void AdvanceToCycle(unsigned NextCycle);
214  void AdvancePastStalls(SUnit *SU);
215  void EmitNode(SUnit *SU);
216  void ScheduleNodeBottomUp(SUnit*);
217  void CapturePred(SDep *PredEdge);
218  void UnscheduleNodeBottomUp(SUnit*);
219  void RestoreHazardCheckerBottomUp();
220  void BacktrackBottomUp(SUnit*, SUnit*);
221  SUnit *CopyAndMoveSuccessors(SUnit*);
222  void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
223                                const TargetRegisterClass*,
224                                const TargetRegisterClass*,
225                                SmallVector<SUnit*, 2>&);
226  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
227
228  SUnit *PickNodeToScheduleBottomUp();
229  void ListScheduleBottomUp();
230
231  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
232  /// Updates the topological ordering if required.
233  SUnit *CreateNewSUnit(SDNode *N) {
234    unsigned NumSUnits = SUnits.size();
235    SUnit *NewNode = newSUnit(N);
236    // Update the topological ordering.
237    if (NewNode->NodeNum >= NumSUnits)
238      Topo.InitDAGTopologicalSorting();
239    return NewNode;
240  }
241
242  /// CreateClone - Creates a new SUnit from an existing one.
243  /// Updates the topological ordering if required.
244  SUnit *CreateClone(SUnit *N) {
245    unsigned NumSUnits = SUnits.size();
246    SUnit *NewNode = Clone(N);
247    // Update the topological ordering.
248    if (NewNode->NodeNum >= NumSUnits)
249      Topo.InitDAGTopologicalSorting();
250    return NewNode;
251  }
252
253  /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
254  /// need actual latency information but the hybrid scheduler does.
255  bool forceUnitLatencies() const {
256    return !NeedLatency;
257  }
258};
259}  // end anonymous namespace
260
261/// GetCostForDef - Looks up the register class and cost for a given definition.
262/// Typically this just means looking up the representative register class,
263/// but for untyped values (MVT::Untyped) it means inspecting the node's
264/// opcode to determine what register class is being generated.
265static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
266                          const TargetLowering *TLI,
267                          const TargetInstrInfo *TII,
268                          const TargetRegisterInfo *TRI,
269                          unsigned &RegClass, unsigned &Cost,
270                          const MachineFunction &MF) {
271  EVT VT = RegDefPos.GetValue();
272
273  // Special handling for untyped values.  These values can only come from
274  // the expansion of custom DAG-to-DAG patterns.
275  if (VT == MVT::Untyped) {
276    const SDNode *Node = RegDefPos.GetNode();
277    unsigned Opcode = Node->getMachineOpcode();
278
279    if (Opcode == TargetOpcode::REG_SEQUENCE) {
280      unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
281      const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
282      RegClass = RC->getID();
283      Cost = 1;
284      return;
285    }
286
287    unsigned Idx = RegDefPos.GetIdx();
288    const MCInstrDesc Desc = TII->get(Opcode);
289    const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
290    RegClass = RC->getID();
291    // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
292    // better way to determine it.
293    Cost = 1;
294  } else {
295    RegClass = TLI->getRepRegClassFor(VT)->getID();
296    Cost = TLI->getRepRegClassCostFor(VT);
297  }
298}
299
300/// Schedule - Schedule the DAG using list scheduling.
301void ScheduleDAGRRList::Schedule() {
302  DEBUG(dbgs()
303        << "********** List Scheduling BB#" << BB->getNumber()
304        << " '" << BB->getName() << "' **********\n");
305
306  CurCycle = 0;
307  IssueCount = 0;
308  MinAvailableCycle = DisableSchedCycles ? 0 : UINT_MAX;
309  NumLiveRegs = 0;
310  // Allocate slots for each physical register, plus one for a special register
311  // to track the virtual resource of a calling sequence.
312  LiveRegDefs.resize(TRI->getNumRegs() + 1, NULL);
313  LiveRegGens.resize(TRI->getNumRegs() + 1, NULL);
314  CallSeqEndForStart.clear();
315
316  // Build the scheduling graph.
317  BuildSchedGraph(NULL);
318
319  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
320          SUnits[su].dumpAll(this));
321  Topo.InitDAGTopologicalSorting();
322
323  AvailableQueue->initNodes(SUnits);
324
325  HazardRec->Reset();
326
327  // Execute the actual scheduling loop.
328  ListScheduleBottomUp();
329
330  AvailableQueue->releaseState();
331
332  DEBUG({
333      dbgs() << "*** Final schedule ***\n";
334      dumpSchedule();
335      dbgs() << '\n';
336    });
337}
338
339//===----------------------------------------------------------------------===//
340//  Bottom-Up Scheduling
341//===----------------------------------------------------------------------===//
342
343/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
344/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
345void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
346  SUnit *PredSU = PredEdge->getSUnit();
347
348#ifndef NDEBUG
349  if (PredSU->NumSuccsLeft == 0) {
350    dbgs() << "*** Scheduling failed! ***\n";
351    PredSU->dump(this);
352    dbgs() << " has been released too many times!\n";
353    llvm_unreachable(0);
354  }
355#endif
356  --PredSU->NumSuccsLeft;
357
358  if (!forceUnitLatencies()) {
359    // Updating predecessor's height. This is now the cycle when the
360    // predecessor can be scheduled without causing a pipeline stall.
361    PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
362  }
363
364  // If all the node's successors are scheduled, this node is ready
365  // to be scheduled. Ignore the special EntrySU node.
366  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
367    PredSU->isAvailable = true;
368
369    unsigned Height = PredSU->getHeight();
370    if (Height < MinAvailableCycle)
371      MinAvailableCycle = Height;
372
373    if (isReady(PredSU)) {
374      AvailableQueue->push(PredSU);
375    }
376    // CapturePred and others may have left the node in the pending queue, avoid
377    // adding it twice.
378    else if (!PredSU->isPending) {
379      PredSU->isPending = true;
380      PendingQueue.push_back(PredSU);
381    }
382  }
383}
384
385/// IsChainDependent - Test if Outer is reachable from Inner through
386/// chain dependencies.
387static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
388                             unsigned NestLevel,
389                             const TargetInstrInfo *TII) {
390  SDNode *N = Outer;
391  for (;;) {
392    if (N == Inner)
393      return true;
394    // For a TokenFactor, examine each operand. There may be multiple ways
395    // to get to the CALLSEQ_BEGIN, but we need to find the path with the
396    // most nesting in order to ensure that we find the corresponding match.
397    if (N->getOpcode() == ISD::TokenFactor) {
398      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
399        if (IsChainDependent(N->getOperand(i).getNode(), Inner, NestLevel, TII))
400          return true;
401      return false;
402    }
403    // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
404    if (N->isMachineOpcode()) {
405      if (N->getMachineOpcode() ==
406          (unsigned)TII->getCallFrameDestroyOpcode()) {
407        ++NestLevel;
408      } else if (N->getMachineOpcode() ==
409                 (unsigned)TII->getCallFrameSetupOpcode()) {
410        if (NestLevel == 0)
411          return false;
412        --NestLevel;
413      }
414    }
415    // Otherwise, find the chain and continue climbing.
416    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
417      if (N->getOperand(i).getValueType() == MVT::Other) {
418        N = N->getOperand(i).getNode();
419        goto found_chain_operand;
420      }
421    return false;
422  found_chain_operand:;
423    if (N->getOpcode() == ISD::EntryToken)
424      return false;
425  }
426}
427
428/// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
429/// the corresponding (lowered) CALLSEQ_BEGIN node.
430///
431/// NestLevel and MaxNested are used in recursion to indcate the current level
432/// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
433/// level seen so far.
434///
435/// TODO: It would be better to give CALLSEQ_END an explicit operand to point
436/// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
437static SDNode *
438FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
439                 const TargetInstrInfo *TII) {
440  for (;;) {
441    // For a TokenFactor, examine each operand. There may be multiple ways
442    // to get to the CALLSEQ_BEGIN, but we need to find the path with the
443    // most nesting in order to ensure that we find the corresponding match.
444    if (N->getOpcode() == ISD::TokenFactor) {
445      SDNode *Best = 0;
446      unsigned BestMaxNest = MaxNest;
447      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
448        unsigned MyNestLevel = NestLevel;
449        unsigned MyMaxNest = MaxNest;
450        if (SDNode *New = FindCallSeqStart(N->getOperand(i).getNode(),
451                                           MyNestLevel, MyMaxNest, TII))
452          if (!Best || (MyMaxNest > BestMaxNest)) {
453            Best = New;
454            BestMaxNest = MyMaxNest;
455          }
456      }
457      assert(Best);
458      MaxNest = BestMaxNest;
459      return Best;
460    }
461    // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
462    if (N->isMachineOpcode()) {
463      if (N->getMachineOpcode() ==
464          (unsigned)TII->getCallFrameDestroyOpcode()) {
465        ++NestLevel;
466        MaxNest = std::max(MaxNest, NestLevel);
467      } else if (N->getMachineOpcode() ==
468                 (unsigned)TII->getCallFrameSetupOpcode()) {
469        assert(NestLevel != 0);
470        --NestLevel;
471        if (NestLevel == 0)
472          return N;
473      }
474    }
475    // Otherwise, find the chain and continue climbing.
476    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
477      if (N->getOperand(i).getValueType() == MVT::Other) {
478        N = N->getOperand(i).getNode();
479        goto found_chain_operand;
480      }
481    return 0;
482  found_chain_operand:;
483    if (N->getOpcode() == ISD::EntryToken)
484      return 0;
485  }
486}
487
488/// Call ReleasePred for each predecessor, then update register live def/gen.
489/// Always update LiveRegDefs for a register dependence even if the current SU
490/// also defines the register. This effectively create one large live range
491/// across a sequence of two-address node. This is important because the
492/// entire chain must be scheduled together. Example:
493///
494/// flags = (3) add
495/// flags = (2) addc flags
496/// flags = (1) addc flags
497///
498/// results in
499///
500/// LiveRegDefs[flags] = 3
501/// LiveRegGens[flags] = 1
502///
503/// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
504/// interference on flags.
505void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
506  // Bottom up: release predecessors
507  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
508       I != E; ++I) {
509    ReleasePred(SU, &*I);
510    if (I->isAssignedRegDep()) {
511      // This is a physical register dependency and it's impossible or
512      // expensive to copy the register. Make sure nothing that can
513      // clobber the register is scheduled between the predecessor and
514      // this node.
515      SUnit *RegDef = LiveRegDefs[I->getReg()]; (void)RegDef;
516      assert((!RegDef || RegDef == SU || RegDef == I->getSUnit()) &&
517             "interference on register dependence");
518      LiveRegDefs[I->getReg()] = I->getSUnit();
519      if (!LiveRegGens[I->getReg()]) {
520        ++NumLiveRegs;
521        LiveRegGens[I->getReg()] = SU;
522      }
523    }
524  }
525
526  // If we're scheduling a lowered CALLSEQ_END, find the corresponding
527  // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
528  // these nodes, to prevent other calls from being interscheduled with them.
529  unsigned CallResource = TRI->getNumRegs();
530  if (!LiveRegDefs[CallResource])
531    for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
532      if (Node->isMachineOpcode() &&
533          Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
534        unsigned NestLevel = 0;
535        unsigned MaxNest = 0;
536        SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
537
538        SUnit *Def = &SUnits[N->getNodeId()];
539        CallSeqEndForStart[Def] = SU;
540
541        ++NumLiveRegs;
542        LiveRegDefs[CallResource] = Def;
543        LiveRegGens[CallResource] = SU;
544        break;
545      }
546}
547
548/// Check to see if any of the pending instructions are ready to issue.  If
549/// so, add them to the available queue.
550void ScheduleDAGRRList::ReleasePending() {
551  if (DisableSchedCycles) {
552    assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
553    return;
554  }
555
556  // If the available queue is empty, it is safe to reset MinAvailableCycle.
557  if (AvailableQueue->empty())
558    MinAvailableCycle = UINT_MAX;
559
560  // Check to see if any of the pending instructions are ready to issue.  If
561  // so, add them to the available queue.
562  for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
563    unsigned ReadyCycle = PendingQueue[i]->getHeight();
564    if (ReadyCycle < MinAvailableCycle)
565      MinAvailableCycle = ReadyCycle;
566
567    if (PendingQueue[i]->isAvailable) {
568      if (!isReady(PendingQueue[i]))
569          continue;
570      AvailableQueue->push(PendingQueue[i]);
571    }
572    PendingQueue[i]->isPending = false;
573    PendingQueue[i] = PendingQueue.back();
574    PendingQueue.pop_back();
575    --i; --e;
576  }
577}
578
579/// Move the scheduler state forward by the specified number of Cycles.
580void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
581  if (NextCycle <= CurCycle)
582    return;
583
584  IssueCount = 0;
585  AvailableQueue->setCurCycle(NextCycle);
586  if (!HazardRec->isEnabled()) {
587    // Bypass lots of virtual calls in case of long latency.
588    CurCycle = NextCycle;
589  }
590  else {
591    for (; CurCycle != NextCycle; ++CurCycle) {
592      HazardRec->RecedeCycle();
593    }
594  }
595  // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
596  // available Q to release pending nodes at least once before popping.
597  ReleasePending();
598}
599
600/// Move the scheduler state forward until the specified node's dependents are
601/// ready and can be scheduled with no resource conflicts.
602void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
603  if (DisableSchedCycles)
604    return;
605
606  // FIXME: Nodes such as CopyFromReg probably should not advance the current
607  // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
608  // has predecessors the cycle will be advanced when they are scheduled.
609  // But given the crude nature of modeling latency though such nodes, we
610  // currently need to treat these nodes like real instructions.
611  // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
612
613  unsigned ReadyCycle = SU->getHeight();
614
615  // Bump CurCycle to account for latency. We assume the latency of other
616  // available instructions may be hidden by the stall (not a full pipe stall).
617  // This updates the hazard recognizer's cycle before reserving resources for
618  // this instruction.
619  AdvanceToCycle(ReadyCycle);
620
621  // Calls are scheduled in their preceding cycle, so don't conflict with
622  // hazards from instructions after the call. EmitNode will reset the
623  // scoreboard state before emitting the call.
624  if (SU->isCall)
625    return;
626
627  // FIXME: For resource conflicts in very long non-pipelined stages, we
628  // should probably skip ahead here to avoid useless scoreboard checks.
629  int Stalls = 0;
630  while (true) {
631    ScheduleHazardRecognizer::HazardType HT =
632      HazardRec->getHazardType(SU, -Stalls);
633
634    if (HT == ScheduleHazardRecognizer::NoHazard)
635      break;
636
637    ++Stalls;
638  }
639  AdvanceToCycle(CurCycle + Stalls);
640}
641
642/// Record this SUnit in the HazardRecognizer.
643/// Does not update CurCycle.
644void ScheduleDAGRRList::EmitNode(SUnit *SU) {
645  if (!HazardRec->isEnabled())
646    return;
647
648  // Check for phys reg copy.
649  if (!SU->getNode())
650    return;
651
652  switch (SU->getNode()->getOpcode()) {
653  default:
654    assert(SU->getNode()->isMachineOpcode() &&
655           "This target-independent node should not be scheduled.");
656    break;
657  case ISD::MERGE_VALUES:
658  case ISD::TokenFactor:
659  case ISD::LIFETIME_START:
660  case ISD::LIFETIME_END:
661  case ISD::CopyToReg:
662  case ISD::CopyFromReg:
663  case ISD::EH_LABEL:
664    // Noops don't affect the scoreboard state. Copies are likely to be
665    // removed.
666    return;
667  case ISD::INLINEASM:
668    // For inline asm, clear the pipeline state.
669    HazardRec->Reset();
670    return;
671  }
672  if (SU->isCall) {
673    // Calls are scheduled with their preceding instructions. For bottom-up
674    // scheduling, clear the pipeline state before emitting.
675    HazardRec->Reset();
676  }
677
678  HazardRec->EmitInstruction(SU);
679}
680
681static void resetVRegCycle(SUnit *SU);
682
683/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
684/// count of its predecessors. If a predecessor pending count is zero, add it to
685/// the Available queue.
686void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
687  DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
688  DEBUG(SU->dump(this));
689
690#ifndef NDEBUG
691  if (CurCycle < SU->getHeight())
692    DEBUG(dbgs() << "   Height [" << SU->getHeight()
693          << "] pipeline stall!\n");
694#endif
695
696  // FIXME: Do not modify node height. It may interfere with
697  // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
698  // node its ready cycle can aid heuristics, and after scheduling it can
699  // indicate the scheduled cycle.
700  SU->setHeightToAtLeast(CurCycle);
701
702  // Reserve resources for the scheduled intruction.
703  EmitNode(SU);
704
705  Sequence.push_back(SU);
706
707  AvailableQueue->scheduledNode(SU);
708
709  // If HazardRec is disabled, and each inst counts as one cycle, then
710  // advance CurCycle before ReleasePredecessors to avoid useless pushes to
711  // PendingQueue for schedulers that implement HasReadyFilter.
712  if (!HazardRec->isEnabled() && AvgIPC < 2)
713    AdvanceToCycle(CurCycle + 1);
714
715  // Update liveness of predecessors before successors to avoid treating a
716  // two-address node as a live range def.
717  ReleasePredecessors(SU);
718
719  // Release all the implicit physical register defs that are live.
720  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
721       I != E; ++I) {
722    // LiveRegDegs[I->getReg()] != SU when SU is a two-address node.
723    if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] == SU) {
724      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
725      --NumLiveRegs;
726      LiveRegDefs[I->getReg()] = NULL;
727      LiveRegGens[I->getReg()] = NULL;
728    }
729  }
730  // Release the special call resource dependence, if this is the beginning
731  // of a call.
732  unsigned CallResource = TRI->getNumRegs();
733  if (LiveRegDefs[CallResource] == SU)
734    for (const SDNode *SUNode = SU->getNode(); SUNode;
735         SUNode = SUNode->getGluedNode()) {
736      if (SUNode->isMachineOpcode() &&
737          SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
738        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
739        --NumLiveRegs;
740        LiveRegDefs[CallResource] = NULL;
741        LiveRegGens[CallResource] = NULL;
742      }
743    }
744
745  resetVRegCycle(SU);
746
747  SU->isScheduled = true;
748
749  // Conditions under which the scheduler should eagerly advance the cycle:
750  // (1) No available instructions
751  // (2) All pipelines full, so available instructions must have hazards.
752  //
753  // If HazardRec is disabled, the cycle was pre-advanced before calling
754  // ReleasePredecessors. In that case, IssueCount should remain 0.
755  //
756  // Check AvailableQueue after ReleasePredecessors in case of zero latency.
757  if (HazardRec->isEnabled() || AvgIPC > 1) {
758    if (SU->getNode() && SU->getNode()->isMachineOpcode())
759      ++IssueCount;
760    if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
761        || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
762      AdvanceToCycle(CurCycle + 1);
763  }
764}
765
766/// CapturePred - This does the opposite of ReleasePred. Since SU is being
767/// unscheduled, incrcease the succ left count of its predecessors. Remove
768/// them from AvailableQueue if necessary.
769void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
770  SUnit *PredSU = PredEdge->getSUnit();
771  if (PredSU->isAvailable) {
772    PredSU->isAvailable = false;
773    if (!PredSU->isPending)
774      AvailableQueue->remove(PredSU);
775  }
776
777  assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
778  ++PredSU->NumSuccsLeft;
779}
780
781/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
782/// its predecessor states to reflect the change.
783void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
784  DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
785  DEBUG(SU->dump(this));
786
787  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
788       I != E; ++I) {
789    CapturePred(&*I);
790    if (I->isAssignedRegDep() && SU == LiveRegGens[I->getReg()]){
791      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
792      assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
793             "Physical register dependency violated?");
794      --NumLiveRegs;
795      LiveRegDefs[I->getReg()] = NULL;
796      LiveRegGens[I->getReg()] = NULL;
797    }
798  }
799
800  // Reclaim the special call resource dependence, if this is the beginning
801  // of a call.
802  unsigned CallResource = TRI->getNumRegs();
803  for (const SDNode *SUNode = SU->getNode(); SUNode;
804       SUNode = SUNode->getGluedNode()) {
805    if (SUNode->isMachineOpcode() &&
806        SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
807      ++NumLiveRegs;
808      LiveRegDefs[CallResource] = SU;
809      LiveRegGens[CallResource] = CallSeqEndForStart[SU];
810    }
811  }
812
813  // Release the special call resource dependence, if this is the end
814  // of a call.
815  if (LiveRegGens[CallResource] == SU)
816    for (const SDNode *SUNode = SU->getNode(); SUNode;
817         SUNode = SUNode->getGluedNode()) {
818      if (SUNode->isMachineOpcode() &&
819          SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
820        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
821        --NumLiveRegs;
822        LiveRegDefs[CallResource] = NULL;
823        LiveRegGens[CallResource] = NULL;
824      }
825    }
826
827  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
828       I != E; ++I) {
829    if (I->isAssignedRegDep()) {
830      if (!LiveRegDefs[I->getReg()])
831        ++NumLiveRegs;
832      // This becomes the nearest def. Note that an earlier def may still be
833      // pending if this is a two-address node.
834      LiveRegDefs[I->getReg()] = SU;
835      if (LiveRegGens[I->getReg()] == NULL ||
836          I->getSUnit()->getHeight() < LiveRegGens[I->getReg()]->getHeight())
837        LiveRegGens[I->getReg()] = I->getSUnit();
838    }
839  }
840  if (SU->getHeight() < MinAvailableCycle)
841    MinAvailableCycle = SU->getHeight();
842
843  SU->setHeightDirty();
844  SU->isScheduled = false;
845  SU->isAvailable = true;
846  if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
847    // Don't make available until backtracking is complete.
848    SU->isPending = true;
849    PendingQueue.push_back(SU);
850  }
851  else {
852    AvailableQueue->push(SU);
853  }
854  AvailableQueue->unscheduledNode(SU);
855}
856
857/// After backtracking, the hazard checker needs to be restored to a state
858/// corresponding the current cycle.
859void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
860  HazardRec->Reset();
861
862  unsigned LookAhead = std::min((unsigned)Sequence.size(),
863                                HazardRec->getMaxLookAhead());
864  if (LookAhead == 0)
865    return;
866
867  std::vector<SUnit*>::const_iterator I = (Sequence.end() - LookAhead);
868  unsigned HazardCycle = (*I)->getHeight();
869  for (std::vector<SUnit*>::const_iterator E = Sequence.end(); I != E; ++I) {
870    SUnit *SU = *I;
871    for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
872      HazardRec->RecedeCycle();
873    }
874    EmitNode(SU);
875  }
876}
877
878/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
879/// BTCycle in order to schedule a specific node.
880void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
881  SUnit *OldSU = Sequence.back();
882  while (true) {
883    Sequence.pop_back();
884    if (SU->isSucc(OldSU))
885      // Don't try to remove SU from AvailableQueue.
886      SU->isAvailable = false;
887    // FIXME: use ready cycle instead of height
888    CurCycle = OldSU->getHeight();
889    UnscheduleNodeBottomUp(OldSU);
890    AvailableQueue->setCurCycle(CurCycle);
891    if (OldSU == BtSU)
892      break;
893    OldSU = Sequence.back();
894  }
895
896  assert(!SU->isSucc(OldSU) && "Something is wrong!");
897
898  RestoreHazardCheckerBottomUp();
899
900  ReleasePending();
901
902  ++NumBacktracks;
903}
904
905static bool isOperandOf(const SUnit *SU, SDNode *N) {
906  for (const SDNode *SUNode = SU->getNode(); SUNode;
907       SUNode = SUNode->getGluedNode()) {
908    if (SUNode->isOperandOf(N))
909      return true;
910  }
911  return false;
912}
913
914/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
915/// successors to the newly created node.
916SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
917  SDNode *N = SU->getNode();
918  if (!N)
919    return NULL;
920
921  if (SU->getNode()->getGluedNode())
922    return NULL;
923
924  SUnit *NewSU;
925  bool TryUnfold = false;
926  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
927    EVT VT = N->getValueType(i);
928    if (VT == MVT::Glue)
929      return NULL;
930    else if (VT == MVT::Other)
931      TryUnfold = true;
932  }
933  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
934    const SDValue &Op = N->getOperand(i);
935    EVT VT = Op.getNode()->getValueType(Op.getResNo());
936    if (VT == MVT::Glue)
937      return NULL;
938  }
939
940  if (TryUnfold) {
941    SmallVector<SDNode*, 2> NewNodes;
942    if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
943      return NULL;
944
945    // unfolding an x86 DEC64m operation results in store, dec, load which
946    // can't be handled here so quit
947    if (NewNodes.size() == 3)
948      return NULL;
949
950    DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
951    assert(NewNodes.size() == 2 && "Expected a load folding node!");
952
953    N = NewNodes[1];
954    SDNode *LoadNode = NewNodes[0];
955    unsigned NumVals = N->getNumValues();
956    unsigned OldNumVals = SU->getNode()->getNumValues();
957    for (unsigned i = 0; i != NumVals; ++i)
958      DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
959    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
960                                   SDValue(LoadNode, 1));
961
962    // LoadNode may already exist. This can happen when there is another
963    // load from the same location and producing the same type of value
964    // but it has different alignment or volatileness.
965    bool isNewLoad = true;
966    SUnit *LoadSU;
967    if (LoadNode->getNodeId() != -1) {
968      LoadSU = &SUnits[LoadNode->getNodeId()];
969      isNewLoad = false;
970    } else {
971      LoadSU = CreateNewSUnit(LoadNode);
972      LoadNode->setNodeId(LoadSU->NodeNum);
973
974      InitNumRegDefsLeft(LoadSU);
975      computeLatency(LoadSU);
976    }
977
978    SUnit *NewSU = CreateNewSUnit(N);
979    assert(N->getNodeId() == -1 && "Node already inserted!");
980    N->setNodeId(NewSU->NodeNum);
981
982    const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
983    for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
984      if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
985        NewSU->isTwoAddress = true;
986        break;
987      }
988    }
989    if (MCID.isCommutable())
990      NewSU->isCommutable = true;
991
992    InitNumRegDefsLeft(NewSU);
993    computeLatency(NewSU);
994
995    // Record all the edges to and from the old SU, by category.
996    SmallVector<SDep, 4> ChainPreds;
997    SmallVector<SDep, 4> ChainSuccs;
998    SmallVector<SDep, 4> LoadPreds;
999    SmallVector<SDep, 4> NodePreds;
1000    SmallVector<SDep, 4> NodeSuccs;
1001    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1002         I != E; ++I) {
1003      if (I->isCtrl())
1004        ChainPreds.push_back(*I);
1005      else if (isOperandOf(I->getSUnit(), LoadNode))
1006        LoadPreds.push_back(*I);
1007      else
1008        NodePreds.push_back(*I);
1009    }
1010    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1011         I != E; ++I) {
1012      if (I->isCtrl())
1013        ChainSuccs.push_back(*I);
1014      else
1015        NodeSuccs.push_back(*I);
1016    }
1017
1018    // Now assign edges to the newly-created nodes.
1019    for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
1020      const SDep &Pred = ChainPreds[i];
1021      RemovePred(SU, Pred);
1022      if (isNewLoad)
1023        AddPred(LoadSU, Pred);
1024    }
1025    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
1026      const SDep &Pred = LoadPreds[i];
1027      RemovePred(SU, Pred);
1028      if (isNewLoad)
1029        AddPred(LoadSU, Pred);
1030    }
1031    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
1032      const SDep &Pred = NodePreds[i];
1033      RemovePred(SU, Pred);
1034      AddPred(NewSU, Pred);
1035    }
1036    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
1037      SDep D = NodeSuccs[i];
1038      SUnit *SuccDep = D.getSUnit();
1039      D.setSUnit(SU);
1040      RemovePred(SuccDep, D);
1041      D.setSUnit(NewSU);
1042      AddPred(SuccDep, D);
1043      // Balance register pressure.
1044      if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled
1045          && !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
1046        --NewSU->NumRegDefsLeft;
1047    }
1048    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
1049      SDep D = ChainSuccs[i];
1050      SUnit *SuccDep = D.getSUnit();
1051      D.setSUnit(SU);
1052      RemovePred(SuccDep, D);
1053      if (isNewLoad) {
1054        D.setSUnit(LoadSU);
1055        AddPred(SuccDep, D);
1056      }
1057    }
1058
1059    // Add a data dependency to reflect that NewSU reads the value defined
1060    // by LoadSU.
1061    SDep D(LoadSU, SDep::Data, 0);
1062    D.setLatency(LoadSU->Latency);
1063    AddPred(NewSU, D);
1064
1065    if (isNewLoad)
1066      AvailableQueue->addNode(LoadSU);
1067    AvailableQueue->addNode(NewSU);
1068
1069    ++NumUnfolds;
1070
1071    if (NewSU->NumSuccsLeft == 0) {
1072      NewSU->isAvailable = true;
1073      return NewSU;
1074    }
1075    SU = NewSU;
1076  }
1077
1078  DEBUG(dbgs() << "    Duplicating SU #" << SU->NodeNum << "\n");
1079  NewSU = CreateClone(SU);
1080
1081  // New SUnit has the exact same predecessors.
1082  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1083       I != E; ++I)
1084    if (!I->isArtificial())
1085      AddPred(NewSU, *I);
1086
1087  // Only copy scheduled successors. Cut them from old node's successor
1088  // list and move them over.
1089  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1090  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1091       I != E; ++I) {
1092    if (I->isArtificial())
1093      continue;
1094    SUnit *SuccSU = I->getSUnit();
1095    if (SuccSU->isScheduled) {
1096      SDep D = *I;
1097      D.setSUnit(NewSU);
1098      AddPred(SuccSU, D);
1099      D.setSUnit(SU);
1100      DelDeps.push_back(std::make_pair(SuccSU, D));
1101    }
1102  }
1103  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
1104    RemovePred(DelDeps[i].first, DelDeps[i].second);
1105
1106  AvailableQueue->updateNode(SU);
1107  AvailableQueue->addNode(NewSU);
1108
1109  ++NumDups;
1110  return NewSU;
1111}
1112
1113/// InsertCopiesAndMoveSuccs - Insert register copies and move all
1114/// scheduled successors of the given SUnit to the last copy.
1115void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
1116                                               const TargetRegisterClass *DestRC,
1117                                               const TargetRegisterClass *SrcRC,
1118                                               SmallVector<SUnit*, 2> &Copies) {
1119  SUnit *CopyFromSU = CreateNewSUnit(NULL);
1120  CopyFromSU->CopySrcRC = SrcRC;
1121  CopyFromSU->CopyDstRC = DestRC;
1122
1123  SUnit *CopyToSU = CreateNewSUnit(NULL);
1124  CopyToSU->CopySrcRC = DestRC;
1125  CopyToSU->CopyDstRC = SrcRC;
1126
1127  // Only copy scheduled successors. Cut them from old node's successor
1128  // list and move them over.
1129  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1130  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1131       I != E; ++I) {
1132    if (I->isArtificial())
1133      continue;
1134    SUnit *SuccSU = I->getSUnit();
1135    if (SuccSU->isScheduled) {
1136      SDep D = *I;
1137      D.setSUnit(CopyToSU);
1138      AddPred(SuccSU, D);
1139      DelDeps.push_back(std::make_pair(SuccSU, *I));
1140    }
1141    else {
1142      // Avoid scheduling the def-side copy before other successors. Otherwise
1143      // we could introduce another physreg interference on the copy and
1144      // continue inserting copies indefinitely.
1145      AddPred(SuccSU, SDep(CopyFromSU, SDep::Artificial));
1146    }
1147  }
1148  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
1149    RemovePred(DelDeps[i].first, DelDeps[i].second);
1150
1151  SDep FromDep(SU, SDep::Data, Reg);
1152  FromDep.setLatency(SU->Latency);
1153  AddPred(CopyFromSU, FromDep);
1154  SDep ToDep(CopyFromSU, SDep::Data, 0);
1155  ToDep.setLatency(CopyFromSU->Latency);
1156  AddPred(CopyToSU, ToDep);
1157
1158  AvailableQueue->updateNode(SU);
1159  AvailableQueue->addNode(CopyFromSU);
1160  AvailableQueue->addNode(CopyToSU);
1161  Copies.push_back(CopyFromSU);
1162  Copies.push_back(CopyToSU);
1163
1164  ++NumPRCopies;
1165}
1166
1167/// getPhysicalRegisterVT - Returns the ValueType of the physical register
1168/// definition of the specified node.
1169/// FIXME: Move to SelectionDAG?
1170static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
1171                                 const TargetInstrInfo *TII) {
1172  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1173  assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
1174  unsigned NumRes = MCID.getNumDefs();
1175  for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
1176    if (Reg == *ImpDef)
1177      break;
1178    ++NumRes;
1179  }
1180  return N->getValueType(NumRes);
1181}
1182
1183/// CheckForLiveRegDef - Return true and update live register vector if the
1184/// specified register def of the specified SUnit clobbers any "live" registers.
1185static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
1186                               std::vector<SUnit*> &LiveRegDefs,
1187                               SmallSet<unsigned, 4> &RegAdded,
1188                               SmallVector<unsigned, 4> &LRegs,
1189                               const TargetRegisterInfo *TRI) {
1190  for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {
1191
1192    // Check if Ref is live.
1193    if (!LiveRegDefs[*AliasI]) continue;
1194
1195    // Allow multiple uses of the same def.
1196    if (LiveRegDefs[*AliasI] == SU) continue;
1197
1198    // Add Reg to the set of interfering live regs.
1199    if (RegAdded.insert(*AliasI)) {
1200      LRegs.push_back(*AliasI);
1201    }
1202  }
1203}
1204
1205/// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
1206/// by RegMask, and add them to LRegs.
1207static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
1208                                     std::vector<SUnit*> &LiveRegDefs,
1209                                     SmallSet<unsigned, 4> &RegAdded,
1210                                     SmallVector<unsigned, 4> &LRegs) {
1211  // Look at all live registers. Skip Reg0 and the special CallResource.
1212  for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
1213    if (!LiveRegDefs[i]) continue;
1214    if (LiveRegDefs[i] == SU) continue;
1215    if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
1216    if (RegAdded.insert(i))
1217      LRegs.push_back(i);
1218  }
1219}
1220
1221/// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
1222static const uint32_t *getNodeRegMask(const SDNode *N) {
1223  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1224    if (const RegisterMaskSDNode *Op =
1225        dyn_cast<RegisterMaskSDNode>(N->getOperand(i).getNode()))
1226      return Op->getRegMask();
1227  return NULL;
1228}
1229
1230/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
1231/// scheduling of the given node to satisfy live physical register dependencies.
1232/// If the specific node is the last one that's available to schedule, do
1233/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
1234bool ScheduleDAGRRList::
1235DelayForLiveRegsBottomUp(SUnit *SU, SmallVector<unsigned, 4> &LRegs) {
1236  if (NumLiveRegs == 0)
1237    return false;
1238
1239  SmallSet<unsigned, 4> RegAdded;
1240  // If this node would clobber any "live" register, then it's not ready.
1241  //
1242  // If SU is the currently live definition of the same register that it uses,
1243  // then we are free to schedule it.
1244  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1245       I != E; ++I) {
1246    if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] != SU)
1247      CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
1248                         RegAdded, LRegs, TRI);
1249  }
1250
1251  for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
1252    if (Node->getOpcode() == ISD::INLINEASM) {
1253      // Inline asm can clobber physical defs.
1254      unsigned NumOps = Node->getNumOperands();
1255      if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1256        --NumOps;  // Ignore the glue operand.
1257
1258      for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1259        unsigned Flags =
1260          cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1261        unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1262
1263        ++i; // Skip the ID value.
1264        if (InlineAsm::isRegDefKind(Flags) ||
1265            InlineAsm::isRegDefEarlyClobberKind(Flags) ||
1266            InlineAsm::isClobberKind(Flags)) {
1267          // Check for def of register or earlyclobber register.
1268          for (; NumVals; --NumVals, ++i) {
1269            unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1270            if (TargetRegisterInfo::isPhysicalRegister(Reg))
1271              CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
1272          }
1273        } else
1274          i += NumVals;
1275      }
1276      continue;
1277    }
1278
1279    if (!Node->isMachineOpcode())
1280      continue;
1281    // If we're in the middle of scheduling a call, don't begin scheduling
1282    // another call. Also, don't allow any physical registers to be live across
1283    // the call.
1284    if (Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
1285      // Check the special calling-sequence resource.
1286      unsigned CallResource = TRI->getNumRegs();
1287      if (LiveRegDefs[CallResource]) {
1288        SDNode *Gen = LiveRegGens[CallResource]->getNode();
1289        while (SDNode *Glued = Gen->getGluedNode())
1290          Gen = Glued;
1291        if (!IsChainDependent(Gen, Node, 0, TII) && RegAdded.insert(CallResource))
1292          LRegs.push_back(CallResource);
1293      }
1294    }
1295    if (const uint32_t *RegMask = getNodeRegMask(Node))
1296      CheckForLiveRegDefMasked(SU, RegMask, LiveRegDefs, RegAdded, LRegs);
1297
1298    const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
1299    if (!MCID.ImplicitDefs)
1300      continue;
1301    for (const uint16_t *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
1302      CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
1303  }
1304
1305  return !LRegs.empty();
1306}
1307
1308/// Return a node that can be scheduled in this cycle. Requirements:
1309/// (1) Ready: latency has been satisfied
1310/// (2) No Hazards: resources are available
1311/// (3) No Interferences: may unschedule to break register interferences.
1312SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
1313  SmallVector<SUnit*, 4> Interferences;
1314  DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
1315
1316  SUnit *CurSU = AvailableQueue->pop();
1317  while (CurSU) {
1318    SmallVector<unsigned, 4> LRegs;
1319    if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
1320      break;
1321    LRegsMap.insert(std::make_pair(CurSU, LRegs));
1322
1323    CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
1324    Interferences.push_back(CurSU);
1325    CurSU = AvailableQueue->pop();
1326  }
1327  if (CurSU) {
1328    // Add the nodes that aren't ready back onto the available list.
1329    for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1330      Interferences[i]->isPending = false;
1331      assert(Interferences[i]->isAvailable && "must still be available");
1332      AvailableQueue->push(Interferences[i]);
1333    }
1334    return CurSU;
1335  }
1336
1337  // All candidates are delayed due to live physical reg dependencies.
1338  // Try backtracking, code duplication, or inserting cross class copies
1339  // to resolve it.
1340  for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1341    SUnit *TrySU = Interferences[i];
1342    SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
1343
1344    // Try unscheduling up to the point where it's safe to schedule
1345    // this node.
1346    SUnit *BtSU = NULL;
1347    unsigned LiveCycle = UINT_MAX;
1348    for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
1349      unsigned Reg = LRegs[j];
1350      if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
1351        BtSU = LiveRegGens[Reg];
1352        LiveCycle = BtSU->getHeight();
1353      }
1354    }
1355    if (!WillCreateCycle(TrySU, BtSU))  {
1356      BacktrackBottomUp(TrySU, BtSU);
1357
1358      // Force the current node to be scheduled before the node that
1359      // requires the physical reg dep.
1360      if (BtSU->isAvailable) {
1361        BtSU->isAvailable = false;
1362        if (!BtSU->isPending)
1363          AvailableQueue->remove(BtSU);
1364      }
1365      AddPred(TrySU, SDep(BtSU, SDep::Artificial));
1366
1367      // If one or more successors has been unscheduled, then the current
1368      // node is no longer avaialable. Schedule a successor that's now
1369      // available instead.
1370      if (!TrySU->isAvailable) {
1371        CurSU = AvailableQueue->pop();
1372      }
1373      else {
1374        CurSU = TrySU;
1375        TrySU->isPending = false;
1376        Interferences.erase(Interferences.begin()+i);
1377      }
1378      break;
1379    }
1380  }
1381
1382  if (!CurSU) {
1383    // Can't backtrack. If it's too expensive to copy the value, then try
1384    // duplicate the nodes that produces these "too expensive to copy"
1385    // values to break the dependency. In case even that doesn't work,
1386    // insert cross class copies.
1387    // If it's not too expensive, i.e. cost != -1, issue copies.
1388    SUnit *TrySU = Interferences[0];
1389    SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
1390    assert(LRegs.size() == 1 && "Can't handle this yet!");
1391    unsigned Reg = LRegs[0];
1392    SUnit *LRDef = LiveRegDefs[Reg];
1393    EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
1394    const TargetRegisterClass *RC =
1395      TRI->getMinimalPhysRegClass(Reg, VT);
1396    const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1397
1398    // If cross copy register class is the same as RC, then it must be possible
1399    // copy the value directly. Do not try duplicate the def.
1400    // If cross copy register class is not the same as RC, then it's possible to
1401    // copy the value but it require cross register class copies and it is
1402    // expensive.
1403    // If cross copy register class is null, then it's not possible to copy
1404    // the value at all.
1405    SUnit *NewDef = 0;
1406    if (DestRC != RC) {
1407      NewDef = CopyAndMoveSuccessors(LRDef);
1408      if (!DestRC && !NewDef)
1409        report_fatal_error("Can't handle live physical register dependency!");
1410    }
1411    if (!NewDef) {
1412      // Issue copies, these can be expensive cross register class copies.
1413      SmallVector<SUnit*, 2> Copies;
1414      InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1415      DEBUG(dbgs() << "    Adding an edge from SU #" << TrySU->NodeNum
1416            << " to SU #" << Copies.front()->NodeNum << "\n");
1417      AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
1418      NewDef = Copies.back();
1419    }
1420
1421    DEBUG(dbgs() << "    Adding an edge from SU #" << NewDef->NodeNum
1422          << " to SU #" << TrySU->NodeNum << "\n");
1423    LiveRegDefs[Reg] = NewDef;
1424    AddPred(NewDef, SDep(TrySU, SDep::Artificial));
1425    TrySU->isAvailable = false;
1426    CurSU = NewDef;
1427  }
1428
1429  assert(CurSU && "Unable to resolve live physical register dependencies!");
1430
1431  // Add the nodes that aren't ready back onto the available list.
1432  for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1433    Interferences[i]->isPending = false;
1434    // May no longer be available due to backtracking.
1435    if (Interferences[i]->isAvailable) {
1436      AvailableQueue->push(Interferences[i]);
1437    }
1438  }
1439  return CurSU;
1440}
1441
1442/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
1443/// schedulers.
1444void ScheduleDAGRRList::ListScheduleBottomUp() {
1445  // Release any predecessors of the special Exit node.
1446  ReleasePredecessors(&ExitSU);
1447
1448  // Add root to Available queue.
1449  if (!SUnits.empty()) {
1450    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
1451    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
1452    RootSU->isAvailable = true;
1453    AvailableQueue->push(RootSU);
1454  }
1455
1456  // While Available queue is not empty, grab the node with the highest
1457  // priority. If it is not ready put it back.  Schedule the node.
1458  Sequence.reserve(SUnits.size());
1459  while (!AvailableQueue->empty()) {
1460    DEBUG(dbgs() << "\nExamining Available:\n";
1461          AvailableQueue->dump(this));
1462
1463    // Pick the best node to schedule taking all constraints into
1464    // consideration.
1465    SUnit *SU = PickNodeToScheduleBottomUp();
1466
1467    AdvancePastStalls(SU);
1468
1469    ScheduleNodeBottomUp(SU);
1470
1471    while (AvailableQueue->empty() && !PendingQueue.empty()) {
1472      // Advance the cycle to free resources. Skip ahead to the next ready SU.
1473      assert(MinAvailableCycle < UINT_MAX && "MinAvailableCycle uninitialized");
1474      AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
1475    }
1476  }
1477
1478  // Reverse the order if it is bottom up.
1479  std::reverse(Sequence.begin(), Sequence.end());
1480
1481#ifndef NDEBUG
1482  VerifyScheduledSequence(/*isBottomUp=*/true);
1483#endif
1484}
1485
1486//===----------------------------------------------------------------------===//
1487//                RegReductionPriorityQueue Definition
1488//===----------------------------------------------------------------------===//
1489//
1490// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1491// to reduce register pressure.
1492//
1493namespace {
1494class RegReductionPQBase;
1495
1496struct queue_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1497  bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
1498};
1499
1500#ifndef NDEBUG
1501template<class SF>
1502struct reverse_sort : public queue_sort {
1503  SF &SortFunc;
1504  reverse_sort(SF &sf) : SortFunc(sf) {}
1505  reverse_sort(const reverse_sort &RHS) : SortFunc(RHS.SortFunc) {}
1506
1507  bool operator()(SUnit* left, SUnit* right) const {
1508    // reverse left/right rather than simply !SortFunc(left, right)
1509    // to expose different paths in the comparison logic.
1510    return SortFunc(right, left);
1511  }
1512};
1513#endif // NDEBUG
1514
1515/// bu_ls_rr_sort - Priority function for bottom up register pressure
1516// reduction scheduler.
1517struct bu_ls_rr_sort : public queue_sort {
1518  enum {
1519    IsBottomUp = true,
1520    HasReadyFilter = false
1521  };
1522
1523  RegReductionPQBase *SPQ;
1524  bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1525  bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1526
1527  bool operator()(SUnit* left, SUnit* right) const;
1528};
1529
1530// src_ls_rr_sort - Priority function for source order scheduler.
1531struct src_ls_rr_sort : public queue_sort {
1532  enum {
1533    IsBottomUp = true,
1534    HasReadyFilter = false
1535  };
1536
1537  RegReductionPQBase *SPQ;
1538  src_ls_rr_sort(RegReductionPQBase *spq)
1539    : SPQ(spq) {}
1540  src_ls_rr_sort(const src_ls_rr_sort &RHS)
1541    : SPQ(RHS.SPQ) {}
1542
1543  bool operator()(SUnit* left, SUnit* right) const;
1544};
1545
1546// hybrid_ls_rr_sort - Priority function for hybrid scheduler.
1547struct hybrid_ls_rr_sort : public queue_sort {
1548  enum {
1549    IsBottomUp = true,
1550    HasReadyFilter = false
1551  };
1552
1553  RegReductionPQBase *SPQ;
1554  hybrid_ls_rr_sort(RegReductionPQBase *spq)
1555    : SPQ(spq) {}
1556  hybrid_ls_rr_sort(const hybrid_ls_rr_sort &RHS)
1557    : SPQ(RHS.SPQ) {}
1558
1559  bool isReady(SUnit *SU, unsigned CurCycle) const;
1560
1561  bool operator()(SUnit* left, SUnit* right) const;
1562};
1563
1564// ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
1565// scheduler.
1566struct ilp_ls_rr_sort : public queue_sort {
1567  enum {
1568    IsBottomUp = true,
1569    HasReadyFilter = false
1570  };
1571
1572  RegReductionPQBase *SPQ;
1573  ilp_ls_rr_sort(RegReductionPQBase *spq)
1574    : SPQ(spq) {}
1575  ilp_ls_rr_sort(const ilp_ls_rr_sort &RHS)
1576    : SPQ(RHS.SPQ) {}
1577
1578  bool isReady(SUnit *SU, unsigned CurCycle) const;
1579
1580  bool operator()(SUnit* left, SUnit* right) const;
1581};
1582
1583class RegReductionPQBase : public SchedulingPriorityQueue {
1584protected:
1585  std::vector<SUnit*> Queue;
1586  unsigned CurQueueId;
1587  bool TracksRegPressure;
1588  bool SrcOrder;
1589
1590  // SUnits - The SUnits for the current graph.
1591  std::vector<SUnit> *SUnits;
1592
1593  MachineFunction &MF;
1594  const TargetInstrInfo *TII;
1595  const TargetRegisterInfo *TRI;
1596  const TargetLowering *TLI;
1597  ScheduleDAGRRList *scheduleDAG;
1598
1599  // SethiUllmanNumbers - The SethiUllman number for each node.
1600  std::vector<unsigned> SethiUllmanNumbers;
1601
1602  /// RegPressure - Tracking current reg pressure per register class.
1603  ///
1604  std::vector<unsigned> RegPressure;
1605
1606  /// RegLimit - Tracking the number of allocatable registers per register
1607  /// class.
1608  std::vector<unsigned> RegLimit;
1609
1610public:
1611  RegReductionPQBase(MachineFunction &mf,
1612                     bool hasReadyFilter,
1613                     bool tracksrp,
1614                     bool srcorder,
1615                     const TargetInstrInfo *tii,
1616                     const TargetRegisterInfo *tri,
1617                     const TargetLowering *tli)
1618    : SchedulingPriorityQueue(hasReadyFilter),
1619      CurQueueId(0), TracksRegPressure(tracksrp), SrcOrder(srcorder),
1620      MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(NULL) {
1621    if (TracksRegPressure) {
1622      unsigned NumRC = TRI->getNumRegClasses();
1623      RegLimit.resize(NumRC);
1624      RegPressure.resize(NumRC);
1625      std::fill(RegLimit.begin(), RegLimit.end(), 0);
1626      std::fill(RegPressure.begin(), RegPressure.end(), 0);
1627      for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1628             E = TRI->regclass_end(); I != E; ++I)
1629        RegLimit[(*I)->getID()] = tri->getRegPressureLimit(*I, MF);
1630    }
1631  }
1632
1633  void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1634    scheduleDAG = scheduleDag;
1635  }
1636
1637  ScheduleHazardRecognizer* getHazardRec() {
1638    return scheduleDAG->getHazardRec();
1639  }
1640
1641  void initNodes(std::vector<SUnit> &sunits);
1642
1643  void addNode(const SUnit *SU);
1644
1645  void updateNode(const SUnit *SU);
1646
1647  void releaseState() {
1648    SUnits = 0;
1649    SethiUllmanNumbers.clear();
1650    std::fill(RegPressure.begin(), RegPressure.end(), 0);
1651  }
1652
1653  unsigned getNodePriority(const SUnit *SU) const;
1654
1655  unsigned getNodeOrdering(const SUnit *SU) const {
1656    if (!SU->getNode()) return 0;
1657
1658    return scheduleDAG->DAG->GetOrdering(SU->getNode());
1659  }
1660
1661  bool empty() const { return Queue.empty(); }
1662
1663  void push(SUnit *U) {
1664    assert(!U->NodeQueueId && "Node in the queue already");
1665    U->NodeQueueId = ++CurQueueId;
1666    Queue.push_back(U);
1667  }
1668
1669  void remove(SUnit *SU) {
1670    assert(!Queue.empty() && "Queue is empty!");
1671    assert(SU->NodeQueueId != 0 && "Not in queue!");
1672    std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
1673                                                 SU);
1674    if (I != prior(Queue.end()))
1675      std::swap(*I, Queue.back());
1676    Queue.pop_back();
1677    SU->NodeQueueId = 0;
1678  }
1679
1680  bool tracksRegPressure() const { return TracksRegPressure; }
1681
1682  void dumpRegPressure() const;
1683
1684  bool HighRegPressure(const SUnit *SU) const;
1685
1686  bool MayReduceRegPressure(SUnit *SU) const;
1687
1688  int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
1689
1690  void scheduledNode(SUnit *SU);
1691
1692  void unscheduledNode(SUnit *SU);
1693
1694protected:
1695  bool canClobber(const SUnit *SU, const SUnit *Op);
1696  void AddPseudoTwoAddrDeps();
1697  void PrescheduleNodesWithMultipleUses();
1698  void CalculateSethiUllmanNumbers();
1699};
1700
1701template<class SF>
1702static SUnit *popFromQueueImpl(std::vector<SUnit*> &Q, SF &Picker) {
1703  std::vector<SUnit *>::iterator Best = Q.begin();
1704  for (std::vector<SUnit *>::iterator I = llvm::next(Q.begin()),
1705         E = Q.end(); I != E; ++I)
1706    if (Picker(*Best, *I))
1707      Best = I;
1708  SUnit *V = *Best;
1709  if (Best != prior(Q.end()))
1710    std::swap(*Best, Q.back());
1711  Q.pop_back();
1712  return V;
1713}
1714
1715template<class SF>
1716SUnit *popFromQueue(std::vector<SUnit*> &Q, SF &Picker, ScheduleDAG *DAG) {
1717#ifndef NDEBUG
1718  if (DAG->StressSched) {
1719    reverse_sort<SF> RPicker(Picker);
1720    return popFromQueueImpl(Q, RPicker);
1721  }
1722#endif
1723  (void)DAG;
1724  return popFromQueueImpl(Q, Picker);
1725}
1726
1727template<class SF>
1728class RegReductionPriorityQueue : public RegReductionPQBase {
1729  SF Picker;
1730
1731public:
1732  RegReductionPriorityQueue(MachineFunction &mf,
1733                            bool tracksrp,
1734                            bool srcorder,
1735                            const TargetInstrInfo *tii,
1736                            const TargetRegisterInfo *tri,
1737                            const TargetLowering *tli)
1738    : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
1739                         tii, tri, tli),
1740      Picker(this) {}
1741
1742  bool isBottomUp() const { return SF::IsBottomUp; }
1743
1744  bool isReady(SUnit *U) const {
1745    return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
1746  }
1747
1748  SUnit *pop() {
1749    if (Queue.empty()) return NULL;
1750
1751    SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
1752    V->NodeQueueId = 0;
1753    return V;
1754  }
1755
1756#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1757  void dump(ScheduleDAG *DAG) const {
1758    // Emulate pop() without clobbering NodeQueueIds.
1759    std::vector<SUnit*> DumpQueue = Queue;
1760    SF DumpPicker = Picker;
1761    while (!DumpQueue.empty()) {
1762      SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
1763      dbgs() << "Height " << SU->getHeight() << ": ";
1764      SU->dump(DAG);
1765    }
1766  }
1767#endif
1768};
1769
1770typedef RegReductionPriorityQueue<bu_ls_rr_sort>
1771BURegReductionPriorityQueue;
1772
1773typedef RegReductionPriorityQueue<src_ls_rr_sort>
1774SrcRegReductionPriorityQueue;
1775
1776typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
1777HybridBURRPriorityQueue;
1778
1779typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
1780ILPBURRPriorityQueue;
1781} // end anonymous namespace
1782
1783//===----------------------------------------------------------------------===//
1784//           Static Node Priority for Register Pressure Reduction
1785//===----------------------------------------------------------------------===//
1786
1787// Check for special nodes that bypass scheduling heuristics.
1788// Currently this pushes TokenFactor nodes down, but may be used for other
1789// pseudo-ops as well.
1790//
1791// Return -1 to schedule right above left, 1 for left above right.
1792// Return 0 if no bias exists.
1793static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
1794  bool LSchedLow = left->isScheduleLow;
1795  bool RSchedLow = right->isScheduleLow;
1796  if (LSchedLow != RSchedLow)
1797    return LSchedLow < RSchedLow ? 1 : -1;
1798  return 0;
1799}
1800
1801/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
1802/// Smaller number is the higher priority.
1803static unsigned
1804CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1805  unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
1806  if (SethiUllmanNumber != 0)
1807    return SethiUllmanNumber;
1808
1809  unsigned Extra = 0;
1810  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1811       I != E; ++I) {
1812    if (I->isCtrl()) continue;  // ignore chain preds
1813    SUnit *PredSU = I->getSUnit();
1814    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
1815    if (PredSethiUllman > SethiUllmanNumber) {
1816      SethiUllmanNumber = PredSethiUllman;
1817      Extra = 0;
1818    } else if (PredSethiUllman == SethiUllmanNumber)
1819      ++Extra;
1820  }
1821
1822  SethiUllmanNumber += Extra;
1823
1824  if (SethiUllmanNumber == 0)
1825    SethiUllmanNumber = 1;
1826
1827  return SethiUllmanNumber;
1828}
1829
1830/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1831/// scheduling units.
1832void RegReductionPQBase::CalculateSethiUllmanNumbers() {
1833  SethiUllmanNumbers.assign(SUnits->size(), 0);
1834
1835  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1836    CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1837}
1838
1839void RegReductionPQBase::addNode(const SUnit *SU) {
1840  unsigned SUSize = SethiUllmanNumbers.size();
1841  if (SUnits->size() > SUSize)
1842    SethiUllmanNumbers.resize(SUSize*2, 0);
1843  CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1844}
1845
1846void RegReductionPQBase::updateNode(const SUnit *SU) {
1847  SethiUllmanNumbers[SU->NodeNum] = 0;
1848  CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1849}
1850
1851// Lower priority means schedule further down. For bottom-up scheduling, lower
1852// priority SUs are scheduled before higher priority SUs.
1853unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
1854  assert(SU->NodeNum < SethiUllmanNumbers.size());
1855  unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
1856  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1857    // CopyToReg should be close to its uses to facilitate coalescing and
1858    // avoid spilling.
1859    return 0;
1860  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
1861      Opc == TargetOpcode::SUBREG_TO_REG ||
1862      Opc == TargetOpcode::INSERT_SUBREG)
1863    // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
1864    // close to their uses to facilitate coalescing.
1865    return 0;
1866  if (SU->NumSuccs == 0 && SU->NumPreds != 0)
1867    // If SU does not have a register use, i.e. it doesn't produce a value
1868    // that would be consumed (e.g. store), then it terminates a chain of
1869    // computation.  Give it a large SethiUllman number so it will be
1870    // scheduled right before its predecessors that it doesn't lengthen
1871    // their live ranges.
1872    return 0xffff;
1873  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
1874    // If SU does not have a register def, schedule it close to its uses
1875    // because it does not lengthen any live ranges.
1876    return 0;
1877#if 1
1878  return SethiUllmanNumbers[SU->NodeNum];
1879#else
1880  unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
1881  if (SU->isCallOp) {
1882    // FIXME: This assumes all of the defs are used as call operands.
1883    int NP = (int)Priority - SU->getNode()->getNumValues();
1884    return (NP > 0) ? NP : 0;
1885  }
1886  return Priority;
1887#endif
1888}
1889
1890//===----------------------------------------------------------------------===//
1891//                     Register Pressure Tracking
1892//===----------------------------------------------------------------------===//
1893
1894void RegReductionPQBase::dumpRegPressure() const {
1895#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1896  for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1897         E = TRI->regclass_end(); I != E; ++I) {
1898    const TargetRegisterClass *RC = *I;
1899    unsigned Id = RC->getID();
1900    unsigned RP = RegPressure[Id];
1901    if (!RP) continue;
1902    DEBUG(dbgs() << RC->getName() << ": " << RP << " / " << RegLimit[Id]
1903          << '\n');
1904  }
1905#endif
1906}
1907
1908bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
1909  if (!TLI)
1910    return false;
1911
1912  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
1913       I != E; ++I) {
1914    if (I->isCtrl())
1915      continue;
1916    SUnit *PredSU = I->getSUnit();
1917    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1918    // to cover the number of registers defined (they are all live).
1919    if (PredSU->NumRegDefsLeft == 0) {
1920      continue;
1921    }
1922    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1923         RegDefPos.IsValid(); RegDefPos.Advance()) {
1924      unsigned RCId, Cost;
1925      GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
1926
1927      if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
1928        return true;
1929    }
1930  }
1931  return false;
1932}
1933
1934bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
1935  const SDNode *N = SU->getNode();
1936
1937  if (!N->isMachineOpcode() || !SU->NumSuccs)
1938    return false;
1939
1940  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1941  for (unsigned i = 0; i != NumDefs; ++i) {
1942    EVT VT = N->getValueType(i);
1943    if (!N->hasAnyUseOfValue(i))
1944      continue;
1945    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1946    if (RegPressure[RCId] >= RegLimit[RCId])
1947      return true;
1948  }
1949  return false;
1950}
1951
1952// Compute the register pressure contribution by this instruction by count up
1953// for uses that are not live and down for defs. Only count register classes
1954// that are already under high pressure. As a side effect, compute the number of
1955// uses of registers that are already live.
1956//
1957// FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
1958// so could probably be factored.
1959int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
1960  LiveUses = 0;
1961  int PDiff = 0;
1962  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
1963       I != E; ++I) {
1964    if (I->isCtrl())
1965      continue;
1966    SUnit *PredSU = I->getSUnit();
1967    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1968    // to cover the number of registers defined (they are all live).
1969    if (PredSU->NumRegDefsLeft == 0) {
1970      if (PredSU->getNode()->isMachineOpcode())
1971        ++LiveUses;
1972      continue;
1973    }
1974    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1975         RegDefPos.IsValid(); RegDefPos.Advance()) {
1976      EVT VT = RegDefPos.GetValue();
1977      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1978      if (RegPressure[RCId] >= RegLimit[RCId])
1979        ++PDiff;
1980    }
1981  }
1982  const SDNode *N = SU->getNode();
1983
1984  if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
1985    return PDiff;
1986
1987  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1988  for (unsigned i = 0; i != NumDefs; ++i) {
1989    EVT VT = N->getValueType(i);
1990    if (!N->hasAnyUseOfValue(i))
1991      continue;
1992    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1993    if (RegPressure[RCId] >= RegLimit[RCId])
1994      --PDiff;
1995  }
1996  return PDiff;
1997}
1998
1999void RegReductionPQBase::scheduledNode(SUnit *SU) {
2000  if (!TracksRegPressure)
2001    return;
2002
2003  if (!SU->getNode())
2004    return;
2005
2006  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2007       I != E; ++I) {
2008    if (I->isCtrl())
2009      continue;
2010    SUnit *PredSU = I->getSUnit();
2011    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2012    // to cover the number of registers defined (they are all live).
2013    if (PredSU->NumRegDefsLeft == 0) {
2014      continue;
2015    }
2016    // FIXME: The ScheduleDAG currently loses information about which of a
2017    // node's values is consumed by each dependence. Consequently, if the node
2018    // defines multiple register classes, we don't know which to pressurize
2019    // here. Instead the following loop consumes the register defs in an
2020    // arbitrary order. At least it handles the common case of clustered loads
2021    // to the same class. For precise liveness, each SDep needs to indicate the
2022    // result number. But that tightly couples the ScheduleDAG with the
2023    // SelectionDAG making updates tricky. A simpler hack would be to attach a
2024    // value type or register class to SDep.
2025    //
2026    // The most important aspect of register tracking is balancing the increase
2027    // here with the reduction further below. Note that this SU may use multiple
2028    // defs in PredSU. The can't be determined here, but we've already
2029    // compensated by reducing NumRegDefsLeft in PredSU during
2030    // ScheduleDAGSDNodes::AddSchedEdges.
2031    --PredSU->NumRegDefsLeft;
2032    unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
2033    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2034         RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2035      if (SkipRegDefs)
2036        continue;
2037
2038      unsigned RCId, Cost;
2039      GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2040      RegPressure[RCId] += Cost;
2041      break;
2042    }
2043  }
2044
2045  // We should have this assert, but there may be dead SDNodes that never
2046  // materialize as SUnits, so they don't appear to generate liveness.
2047  //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
2048  int SkipRegDefs = (int)SU->NumRegDefsLeft;
2049  for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
2050       RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2051    if (SkipRegDefs > 0)
2052      continue;
2053    unsigned RCId, Cost;
2054    GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2055    if (RegPressure[RCId] < Cost) {
2056      // Register pressure tracking is imprecise. This can happen. But we try
2057      // hard not to let it happen because it likely results in poor scheduling.
2058      DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") has too many regdefs\n");
2059      RegPressure[RCId] = 0;
2060    }
2061    else {
2062      RegPressure[RCId] -= Cost;
2063    }
2064  }
2065  dumpRegPressure();
2066}
2067
2068void RegReductionPQBase::unscheduledNode(SUnit *SU) {
2069  if (!TracksRegPressure)
2070    return;
2071
2072  const SDNode *N = SU->getNode();
2073  if (!N) return;
2074
2075  if (!N->isMachineOpcode()) {
2076    if (N->getOpcode() != ISD::CopyToReg)
2077      return;
2078  } else {
2079    unsigned Opc = N->getMachineOpcode();
2080    if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2081        Opc == TargetOpcode::INSERT_SUBREG ||
2082        Opc == TargetOpcode::SUBREG_TO_REG ||
2083        Opc == TargetOpcode::REG_SEQUENCE ||
2084        Opc == TargetOpcode::IMPLICIT_DEF)
2085      return;
2086  }
2087
2088  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2089       I != E; ++I) {
2090    if (I->isCtrl())
2091      continue;
2092    SUnit *PredSU = I->getSUnit();
2093    // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
2094    // counts data deps.
2095    if (PredSU->NumSuccsLeft != PredSU->Succs.size())
2096      continue;
2097    const SDNode *PN = PredSU->getNode();
2098    if (!PN->isMachineOpcode()) {
2099      if (PN->getOpcode() == ISD::CopyFromReg) {
2100        EVT VT = PN->getValueType(0);
2101        unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2102        RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2103      }
2104      continue;
2105    }
2106    unsigned POpc = PN->getMachineOpcode();
2107    if (POpc == TargetOpcode::IMPLICIT_DEF)
2108      continue;
2109    if (POpc == TargetOpcode::EXTRACT_SUBREG ||
2110        POpc == TargetOpcode::INSERT_SUBREG ||
2111        POpc == TargetOpcode::SUBREG_TO_REG) {
2112      EVT VT = PN->getValueType(0);
2113      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2114      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2115      continue;
2116    }
2117    unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
2118    for (unsigned i = 0; i != NumDefs; ++i) {
2119      EVT VT = PN->getValueType(i);
2120      if (!PN->hasAnyUseOfValue(i))
2121        continue;
2122      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2123      if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
2124        // Register pressure tracking is imprecise. This can happen.
2125        RegPressure[RCId] = 0;
2126      else
2127        RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
2128    }
2129  }
2130
2131  // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
2132  // may transfer data dependencies to CopyToReg.
2133  if (SU->NumSuccs && N->isMachineOpcode()) {
2134    unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2135    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2136      EVT VT = N->getValueType(i);
2137      if (VT == MVT::Glue || VT == MVT::Other)
2138        continue;
2139      if (!N->hasAnyUseOfValue(i))
2140        continue;
2141      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2142      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2143    }
2144  }
2145
2146  dumpRegPressure();
2147}
2148
2149//===----------------------------------------------------------------------===//
2150//           Dynamic Node Priority for Register Pressure Reduction
2151//===----------------------------------------------------------------------===//
2152
2153/// closestSucc - Returns the scheduled cycle of the successor which is
2154/// closest to the current cycle.
2155static unsigned closestSucc(const SUnit *SU) {
2156  unsigned MaxHeight = 0;
2157  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2158       I != E; ++I) {
2159    if (I->isCtrl()) continue;  // ignore chain succs
2160    unsigned Height = I->getSUnit()->getHeight();
2161    // If there are bunch of CopyToRegs stacked up, they should be considered
2162    // to be at the same position.
2163    if (I->getSUnit()->getNode() &&
2164        I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
2165      Height = closestSucc(I->getSUnit())+1;
2166    if (Height > MaxHeight)
2167      MaxHeight = Height;
2168  }
2169  return MaxHeight;
2170}
2171
2172/// calcMaxScratches - Returns an cost estimate of the worse case requirement
2173/// for scratch registers, i.e. number of data dependencies.
2174static unsigned calcMaxScratches(const SUnit *SU) {
2175  unsigned Scratches = 0;
2176  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2177       I != E; ++I) {
2178    if (I->isCtrl()) continue;  // ignore chain preds
2179    Scratches++;
2180  }
2181  return Scratches;
2182}
2183
2184/// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
2185/// CopyFromReg from a virtual register.
2186static bool hasOnlyLiveInOpers(const SUnit *SU) {
2187  bool RetVal = false;
2188  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2189       I != E; ++I) {
2190    if (I->isCtrl()) continue;
2191    const SUnit *PredSU = I->getSUnit();
2192    if (PredSU->getNode() &&
2193        PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
2194      unsigned Reg =
2195        cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
2196      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2197        RetVal = true;
2198        continue;
2199      }
2200    }
2201    return false;
2202  }
2203  return RetVal;
2204}
2205
2206/// hasOnlyLiveOutUses - Return true if SU has only value successors that are
2207/// CopyToReg to a virtual register. This SU def is probably a liveout and
2208/// it has no other use. It should be scheduled closer to the terminator.
2209static bool hasOnlyLiveOutUses(const SUnit *SU) {
2210  bool RetVal = false;
2211  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2212       I != E; ++I) {
2213    if (I->isCtrl()) continue;
2214    const SUnit *SuccSU = I->getSUnit();
2215    if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
2216      unsigned Reg =
2217        cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
2218      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2219        RetVal = true;
2220        continue;
2221      }
2222    }
2223    return false;
2224  }
2225  return RetVal;
2226}
2227
2228// Set isVRegCycle for a node with only live in opers and live out uses. Also
2229// set isVRegCycle for its CopyFromReg operands.
2230//
2231// This is only relevant for single-block loops, in which case the VRegCycle
2232// node is likely an induction variable in which the operand and target virtual
2233// registers should be coalesced (e.g. pre/post increment values). Setting the
2234// isVRegCycle flag helps the scheduler prioritize other uses of the same
2235// CopyFromReg so that this node becomes the virtual register "kill". This
2236// avoids interference between the values live in and out of the block and
2237// eliminates a copy inside the loop.
2238static void initVRegCycle(SUnit *SU) {
2239  if (DisableSchedVRegCycle)
2240    return;
2241
2242  if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
2243    return;
2244
2245  DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
2246
2247  SU->isVRegCycle = true;
2248
2249  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2250       I != E; ++I) {
2251    if (I->isCtrl()) continue;
2252    I->getSUnit()->isVRegCycle = true;
2253  }
2254}
2255
2256// After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
2257// CopyFromReg operands. We should no longer penalize other uses of this VReg.
2258static void resetVRegCycle(SUnit *SU) {
2259  if (!SU->isVRegCycle)
2260    return;
2261
2262  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
2263       I != E; ++I) {
2264    if (I->isCtrl()) continue;  // ignore chain preds
2265    SUnit *PredSU = I->getSUnit();
2266    if (PredSU->isVRegCycle) {
2267      assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
2268             "VRegCycle def must be CopyFromReg");
2269      I->getSUnit()->isVRegCycle = 0;
2270    }
2271  }
2272}
2273
2274// Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
2275// means a node that defines the VRegCycle has not been scheduled yet.
2276static bool hasVRegCycleUse(const SUnit *SU) {
2277  // If this SU also defines the VReg, don't hoist it as a "use".
2278  if (SU->isVRegCycle)
2279    return false;
2280
2281  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
2282       I != E; ++I) {
2283    if (I->isCtrl()) continue;  // ignore chain preds
2284    if (I->getSUnit()->isVRegCycle &&
2285        I->getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
2286      DEBUG(dbgs() << "  VReg cycle use: SU (" << SU->NodeNum << ")\n");
2287      return true;
2288    }
2289  }
2290  return false;
2291}
2292
2293// Check for either a dependence (latency) or resource (hazard) stall.
2294//
2295// Note: The ScheduleHazardRecognizer interface requires a non-const SU.
2296static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
2297  if ((int)SPQ->getCurCycle() < Height) return true;
2298  if (SPQ->getHazardRec()->getHazardType(SU, 0)
2299      != ScheduleHazardRecognizer::NoHazard)
2300    return true;
2301  return false;
2302}
2303
2304// Return -1 if left has higher priority, 1 if right has higher priority.
2305// Return 0 if latency-based priority is equivalent.
2306static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
2307                            RegReductionPQBase *SPQ) {
2308  // Scheduling an instruction that uses a VReg whose postincrement has not yet
2309  // been scheduled will induce a copy. Model this as an extra cycle of latency.
2310  int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
2311  int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
2312  int LHeight = (int)left->getHeight() + LPenalty;
2313  int RHeight = (int)right->getHeight() + RPenalty;
2314
2315  bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
2316    BUHasStall(left, LHeight, SPQ);
2317  bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
2318    BUHasStall(right, RHeight, SPQ);
2319
2320  // If scheduling one of the node will cause a pipeline stall, delay it.
2321  // If scheduling either one of the node will cause a pipeline stall, sort
2322  // them according to their height.
2323  if (LStall) {
2324    if (!RStall)
2325      return 1;
2326    if (LHeight != RHeight)
2327      return LHeight > RHeight ? 1 : -1;
2328  } else if (RStall)
2329    return -1;
2330
2331  // If either node is scheduling for latency, sort them by height/depth
2332  // and latency.
2333  if (!checkPref || (left->SchedulingPref == Sched::ILP ||
2334                     right->SchedulingPref == Sched::ILP)) {
2335    // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
2336    // is enabled, grouping instructions by cycle, then its height is already
2337    // covered so only its depth matters. We also reach this point if both stall
2338    // but have the same height.
2339    if (!SPQ->getHazardRec()->isEnabled()) {
2340      if (LHeight != RHeight)
2341        return LHeight > RHeight ? 1 : -1;
2342    }
2343    int LDepth = left->getDepth() - LPenalty;
2344    int RDepth = right->getDepth() - RPenalty;
2345    if (LDepth != RDepth) {
2346      DEBUG(dbgs() << "  Comparing latency of SU (" << left->NodeNum
2347            << ") depth " << LDepth << " vs SU (" << right->NodeNum
2348            << ") depth " << RDepth << "\n");
2349      return LDepth < RDepth ? 1 : -1;
2350    }
2351    if (left->Latency != right->Latency)
2352      return left->Latency > right->Latency ? 1 : -1;
2353  }
2354  return 0;
2355}
2356
2357static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
2358  // Schedule physical register definitions close to their use. This is
2359  // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
2360  // long as shortening physreg live ranges is generally good, we can defer
2361  // creating a subtarget hook.
2362  if (!DisableSchedPhysRegJoin) {
2363    bool LHasPhysReg = left->hasPhysRegDefs;
2364    bool RHasPhysReg = right->hasPhysRegDefs;
2365    if (LHasPhysReg != RHasPhysReg) {
2366      #ifndef NDEBUG
2367      const char *const PhysRegMsg[] = {" has no physreg"," defines a physreg"};
2368      #endif
2369      DEBUG(dbgs() << "  SU (" << left->NodeNum << ") "
2370            << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum << ") "
2371            << PhysRegMsg[RHasPhysReg] << "\n");
2372      return LHasPhysReg < RHasPhysReg;
2373    }
2374  }
2375
2376  // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
2377  unsigned LPriority = SPQ->getNodePriority(left);
2378  unsigned RPriority = SPQ->getNodePriority(right);
2379
2380  // Be really careful about hoisting call operands above previous calls.
2381  // Only allows it if it would reduce register pressure.
2382  if (left->isCall && right->isCallOp) {
2383    unsigned RNumVals = right->getNode()->getNumValues();
2384    RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
2385  }
2386  if (right->isCall && left->isCallOp) {
2387    unsigned LNumVals = left->getNode()->getNumValues();
2388    LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
2389  }
2390
2391  if (LPriority != RPriority)
2392    return LPriority > RPriority;
2393
2394  // One or both of the nodes are calls and their sethi-ullman numbers are the
2395  // same, then keep source order.
2396  if (left->isCall || right->isCall) {
2397    unsigned LOrder = SPQ->getNodeOrdering(left);
2398    unsigned ROrder = SPQ->getNodeOrdering(right);
2399
2400    // Prefer an ordering where the lower the non-zero order number, the higher
2401    // the preference.
2402    if ((LOrder || ROrder) && LOrder != ROrder)
2403      return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2404  }
2405
2406  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
2407  // e.g.
2408  // t1 = op t2, c1
2409  // t3 = op t4, c2
2410  //
2411  // and the following instructions are both ready.
2412  // t2 = op c3
2413  // t4 = op c4
2414  //
2415  // Then schedule t2 = op first.
2416  // i.e.
2417  // t4 = op c4
2418  // t2 = op c3
2419  // t1 = op t2, c1
2420  // t3 = op t4, c2
2421  //
2422  // This creates more short live intervals.
2423  unsigned LDist = closestSucc(left);
2424  unsigned RDist = closestSucc(right);
2425  if (LDist != RDist)
2426    return LDist < RDist;
2427
2428  // How many registers becomes live when the node is scheduled.
2429  unsigned LScratch = calcMaxScratches(left);
2430  unsigned RScratch = calcMaxScratches(right);
2431  if (LScratch != RScratch)
2432    return LScratch > RScratch;
2433
2434  // Comparing latency against a call makes little sense unless the node
2435  // is register pressure-neutral.
2436  if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
2437    return (left->NodeQueueId > right->NodeQueueId);
2438
2439  // Do not compare latencies when one or both of the nodes are calls.
2440  if (!DisableSchedCycles &&
2441      !(left->isCall || right->isCall)) {
2442    int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
2443    if (result != 0)
2444      return result > 0;
2445  }
2446  else {
2447    if (left->getHeight() != right->getHeight())
2448      return left->getHeight() > right->getHeight();
2449
2450    if (left->getDepth() != right->getDepth())
2451      return left->getDepth() < right->getDepth();
2452  }
2453
2454  assert(left->NodeQueueId && right->NodeQueueId &&
2455         "NodeQueueId cannot be zero");
2456  return (left->NodeQueueId > right->NodeQueueId);
2457}
2458
2459// Bottom up
2460bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2461  if (int res = checkSpecialNodes(left, right))
2462    return res > 0;
2463
2464  return BURRSort(left, right, SPQ);
2465}
2466
2467// Source order, otherwise bottom up.
2468bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2469  if (int res = checkSpecialNodes(left, right))
2470    return res > 0;
2471
2472  unsigned LOrder = SPQ->getNodeOrdering(left);
2473  unsigned ROrder = SPQ->getNodeOrdering(right);
2474
2475  // Prefer an ordering where the lower the non-zero order number, the higher
2476  // the preference.
2477  if ((LOrder || ROrder) && LOrder != ROrder)
2478    return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2479
2480  return BURRSort(left, right, SPQ);
2481}
2482
2483// If the time between now and when the instruction will be ready can cover
2484// the spill code, then avoid adding it to the ready queue. This gives long
2485// stalls highest priority and allows hoisting across calls. It should also
2486// speed up processing the available queue.
2487bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2488  static const unsigned ReadyDelay = 3;
2489
2490  if (SPQ->MayReduceRegPressure(SU)) return true;
2491
2492  if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
2493
2494  if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
2495      != ScheduleHazardRecognizer::NoHazard)
2496    return false;
2497
2498  return true;
2499}
2500
2501// Return true if right should be scheduled with higher priority than left.
2502bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2503  if (int res = checkSpecialNodes(left, right))
2504    return res > 0;
2505
2506  if (left->isCall || right->isCall)
2507    // No way to compute latency of calls.
2508    return BURRSort(left, right, SPQ);
2509
2510  bool LHigh = SPQ->HighRegPressure(left);
2511  bool RHigh = SPQ->HighRegPressure(right);
2512  // Avoid causing spills. If register pressure is high, schedule for
2513  // register pressure reduction.
2514  if (LHigh && !RHigh) {
2515    DEBUG(dbgs() << "  pressure SU(" << left->NodeNum << ") > SU("
2516          << right->NodeNum << ")\n");
2517    return true;
2518  }
2519  else if (!LHigh && RHigh) {
2520    DEBUG(dbgs() << "  pressure SU(" << right->NodeNum << ") > SU("
2521          << left->NodeNum << ")\n");
2522    return false;
2523  }
2524  if (!LHigh && !RHigh) {
2525    int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
2526    if (result != 0)
2527      return result > 0;
2528  }
2529  return BURRSort(left, right, SPQ);
2530}
2531
2532// Schedule as many instructions in each cycle as possible. So don't make an
2533// instruction available unless it is ready in the current cycle.
2534bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2535  if (SU->getHeight() > CurCycle) return false;
2536
2537  if (SPQ->getHazardRec()->getHazardType(SU, 0)
2538      != ScheduleHazardRecognizer::NoHazard)
2539    return false;
2540
2541  return true;
2542}
2543
2544static bool canEnableCoalescing(SUnit *SU) {
2545  unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2546  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2547    // CopyToReg should be close to its uses to facilitate coalescing and
2548    // avoid spilling.
2549    return true;
2550
2551  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2552      Opc == TargetOpcode::SUBREG_TO_REG ||
2553      Opc == TargetOpcode::INSERT_SUBREG)
2554    // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2555    // close to their uses to facilitate coalescing.
2556    return true;
2557
2558  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2559    // If SU does not have a register def, schedule it close to its uses
2560    // because it does not lengthen any live ranges.
2561    return true;
2562
2563  return false;
2564}
2565
2566// list-ilp is currently an experimental scheduler that allows various
2567// heuristics to be enabled prior to the normal register reduction logic.
2568bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2569  if (int res = checkSpecialNodes(left, right))
2570    return res > 0;
2571
2572  if (left->isCall || right->isCall)
2573    // No way to compute latency of calls.
2574    return BURRSort(left, right, SPQ);
2575
2576  unsigned LLiveUses = 0, RLiveUses = 0;
2577  int LPDiff = 0, RPDiff = 0;
2578  if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
2579    LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
2580    RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
2581  }
2582  if (!DisableSchedRegPressure && LPDiff != RPDiff) {
2583    DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum << "): " << LPDiff
2584          << " != SU(" << right->NodeNum << "): " << RPDiff << "\n");
2585    return LPDiff > RPDiff;
2586  }
2587
2588  if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
2589    bool LReduce = canEnableCoalescing(left);
2590    bool RReduce = canEnableCoalescing(right);
2591    if (LReduce && !RReduce) return false;
2592    if (RReduce && !LReduce) return true;
2593  }
2594
2595  if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
2596    DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
2597          << " != SU(" << right->NodeNum << "): " << RLiveUses << "\n");
2598    return LLiveUses < RLiveUses;
2599  }
2600
2601  if (!DisableSchedStalls) {
2602    bool LStall = BUHasStall(left, left->getHeight(), SPQ);
2603    bool RStall = BUHasStall(right, right->getHeight(), SPQ);
2604    if (LStall != RStall)
2605      return left->getHeight() > right->getHeight();
2606  }
2607
2608  if (!DisableSchedCriticalPath) {
2609    int spread = (int)left->getDepth() - (int)right->getDepth();
2610    if (std::abs(spread) > MaxReorderWindow) {
2611      DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
2612            << left->getDepth() << " != SU(" << right->NodeNum << "): "
2613            << right->getDepth() << "\n");
2614      return left->getDepth() < right->getDepth();
2615    }
2616  }
2617
2618  if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
2619    int spread = (int)left->getHeight() - (int)right->getHeight();
2620    if (std::abs(spread) > MaxReorderWindow)
2621      return left->getHeight() > right->getHeight();
2622  }
2623
2624  return BURRSort(left, right, SPQ);
2625}
2626
2627void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
2628  SUnits = &sunits;
2629  // Add pseudo dependency edges for two-address nodes.
2630  if (!Disable2AddrHack)
2631    AddPseudoTwoAddrDeps();
2632  // Reroute edges to nodes with multiple uses.
2633  if (!TracksRegPressure && !SrcOrder)
2634    PrescheduleNodesWithMultipleUses();
2635  // Calculate node priorities.
2636  CalculateSethiUllmanNumbers();
2637
2638  // For single block loops, mark nodes that look like canonical IV increments.
2639  if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB)) {
2640    for (unsigned i = 0, e = sunits.size(); i != e; ++i) {
2641      initVRegCycle(&sunits[i]);
2642    }
2643  }
2644}
2645
2646//===----------------------------------------------------------------------===//
2647//                    Preschedule for Register Pressure
2648//===----------------------------------------------------------------------===//
2649
2650bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
2651  if (SU->isTwoAddress) {
2652    unsigned Opc = SU->getNode()->getMachineOpcode();
2653    const MCInstrDesc &MCID = TII->get(Opc);
2654    unsigned NumRes = MCID.getNumDefs();
2655    unsigned NumOps = MCID.getNumOperands() - NumRes;
2656    for (unsigned i = 0; i != NumOps; ++i) {
2657      if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
2658        SDNode *DU = SU->getNode()->getOperand(i).getNode();
2659        if (DU->getNodeId() != -1 &&
2660            Op->OrigNode == &(*SUnits)[DU->getNodeId()])
2661          return true;
2662      }
2663    }
2664  }
2665  return false;
2666}
2667
2668/// canClobberReachingPhysRegUse - True if SU would clobber one of it's
2669/// successor's explicit physregs whose definition can reach DepSU.
2670/// i.e. DepSU should not be scheduled above SU.
2671static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
2672                                         ScheduleDAGRRList *scheduleDAG,
2673                                         const TargetInstrInfo *TII,
2674                                         const TargetRegisterInfo *TRI) {
2675  const uint16_t *ImpDefs
2676    = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
2677  const uint32_t *RegMask = getNodeRegMask(SU->getNode());
2678  if(!ImpDefs && !RegMask)
2679    return false;
2680
2681  for (SUnit::const_succ_iterator SI = SU->Succs.begin(), SE = SU->Succs.end();
2682       SI != SE; ++SI) {
2683    SUnit *SuccSU = SI->getSUnit();
2684    for (SUnit::const_pred_iterator PI = SuccSU->Preds.begin(),
2685           PE = SuccSU->Preds.end(); PI != PE; ++PI) {
2686      if (!PI->isAssignedRegDep())
2687        continue;
2688
2689      if (RegMask && MachineOperand::clobbersPhysReg(RegMask, PI->getReg()) &&
2690          scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
2691        return true;
2692
2693      if (ImpDefs)
2694        for (const uint16_t *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
2695          // Return true if SU clobbers this physical register use and the
2696          // definition of the register reaches from DepSU. IsReachable queries
2697          // a topological forward sort of the DAG (following the successors).
2698          if (TRI->regsOverlap(*ImpDef, PI->getReg()) &&
2699              scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
2700            return true;
2701    }
2702  }
2703  return false;
2704}
2705
2706/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
2707/// physical register defs.
2708static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
2709                                  const TargetInstrInfo *TII,
2710                                  const TargetRegisterInfo *TRI) {
2711  SDNode *N = SuccSU->getNode();
2712  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2713  const uint16_t *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
2714  assert(ImpDefs && "Caller should check hasPhysRegDefs");
2715  for (const SDNode *SUNode = SU->getNode(); SUNode;
2716       SUNode = SUNode->getGluedNode()) {
2717    if (!SUNode->isMachineOpcode())
2718      continue;
2719    const uint16_t *SUImpDefs =
2720      TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
2721    const uint32_t *SURegMask = getNodeRegMask(SUNode);
2722    if (!SUImpDefs && !SURegMask)
2723      continue;
2724    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2725      EVT VT = N->getValueType(i);
2726      if (VT == MVT::Glue || VT == MVT::Other)
2727        continue;
2728      if (!N->hasAnyUseOfValue(i))
2729        continue;
2730      unsigned Reg = ImpDefs[i - NumDefs];
2731      if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
2732        return true;
2733      if (!SUImpDefs)
2734        continue;
2735      for (;*SUImpDefs; ++SUImpDefs) {
2736        unsigned SUReg = *SUImpDefs;
2737        if (TRI->regsOverlap(Reg, SUReg))
2738          return true;
2739      }
2740    }
2741  }
2742  return false;
2743}
2744
2745/// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
2746/// are not handled well by the general register pressure reduction
2747/// heuristics. When presented with code like this:
2748///
2749///      N
2750///    / |
2751///   /  |
2752///  U  store
2753///  |
2754/// ...
2755///
2756/// the heuristics tend to push the store up, but since the
2757/// operand of the store has another use (U), this would increase
2758/// the length of that other use (the U->N edge).
2759///
2760/// This function transforms code like the above to route U's
2761/// dependence through the store when possible, like this:
2762///
2763///      N
2764///      ||
2765///      ||
2766///     store
2767///       |
2768///       U
2769///       |
2770///      ...
2771///
2772/// This results in the store being scheduled immediately
2773/// after N, which shortens the U->N live range, reducing
2774/// register pressure.
2775///
2776void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
2777  // Visit all the nodes in topological order, working top-down.
2778  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2779    SUnit *SU = &(*SUnits)[i];
2780    // For now, only look at nodes with no data successors, such as stores.
2781    // These are especially important, due to the heuristics in
2782    // getNodePriority for nodes with no data successors.
2783    if (SU->NumSuccs != 0)
2784      continue;
2785    // For now, only look at nodes with exactly one data predecessor.
2786    if (SU->NumPreds != 1)
2787      continue;
2788    // Avoid prescheduling copies to virtual registers, which don't behave
2789    // like other nodes from the perspective of scheduling heuristics.
2790    if (SDNode *N = SU->getNode())
2791      if (N->getOpcode() == ISD::CopyToReg &&
2792          TargetRegisterInfo::isVirtualRegister
2793            (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2794        continue;
2795
2796    // Locate the single data predecessor.
2797    SUnit *PredSU = 0;
2798    for (SUnit::const_pred_iterator II = SU->Preds.begin(),
2799         EE = SU->Preds.end(); II != EE; ++II)
2800      if (!II->isCtrl()) {
2801        PredSU = II->getSUnit();
2802        break;
2803      }
2804    assert(PredSU);
2805
2806    // Don't rewrite edges that carry physregs, because that requires additional
2807    // support infrastructure.
2808    if (PredSU->hasPhysRegDefs)
2809      continue;
2810    // Short-circuit the case where SU is PredSU's only data successor.
2811    if (PredSU->NumSuccs == 1)
2812      continue;
2813    // Avoid prescheduling to copies from virtual registers, which don't behave
2814    // like other nodes from the perspective of scheduling heuristics.
2815    if (SDNode *N = SU->getNode())
2816      if (N->getOpcode() == ISD::CopyFromReg &&
2817          TargetRegisterInfo::isVirtualRegister
2818            (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2819        continue;
2820
2821    // Perform checks on the successors of PredSU.
2822    for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
2823         EE = PredSU->Succs.end(); II != EE; ++II) {
2824      SUnit *PredSuccSU = II->getSUnit();
2825      if (PredSuccSU == SU) continue;
2826      // If PredSU has another successor with no data successors, for
2827      // now don't attempt to choose either over the other.
2828      if (PredSuccSU->NumSuccs == 0)
2829        goto outer_loop_continue;
2830      // Don't break physical register dependencies.
2831      if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
2832        if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
2833          goto outer_loop_continue;
2834      // Don't introduce graph cycles.
2835      if (scheduleDAG->IsReachable(SU, PredSuccSU))
2836        goto outer_loop_continue;
2837    }
2838
2839    // Ok, the transformation is safe and the heuristics suggest it is
2840    // profitable. Update the graph.
2841    DEBUG(dbgs() << "    Prescheduling SU #" << SU->NodeNum
2842                 << " next to PredSU #" << PredSU->NodeNum
2843                 << " to guide scheduling in the presence of multiple uses\n");
2844    for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
2845      SDep Edge = PredSU->Succs[i];
2846      assert(!Edge.isAssignedRegDep());
2847      SUnit *SuccSU = Edge.getSUnit();
2848      if (SuccSU != SU) {
2849        Edge.setSUnit(PredSU);
2850        scheduleDAG->RemovePred(SuccSU, Edge);
2851        scheduleDAG->AddPred(SU, Edge);
2852        Edge.setSUnit(SU);
2853        scheduleDAG->AddPred(SuccSU, Edge);
2854        --i;
2855      }
2856    }
2857  outer_loop_continue:;
2858  }
2859}
2860
2861/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
2862/// it as a def&use operand. Add a pseudo control edge from it to the other
2863/// node (if it won't create a cycle) so the two-address one will be scheduled
2864/// first (lower in the schedule). If both nodes are two-address, favor the
2865/// one that has a CopyToReg use (more likely to be a loop induction update).
2866/// If both are two-address, but one is commutable while the other is not
2867/// commutable, favor the one that's not commutable.
2868void RegReductionPQBase::AddPseudoTwoAddrDeps() {
2869  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2870    SUnit *SU = &(*SUnits)[i];
2871    if (!SU->isTwoAddress)
2872      continue;
2873
2874    SDNode *Node = SU->getNode();
2875    if (!Node || !Node->isMachineOpcode() || SU->getNode()->getGluedNode())
2876      continue;
2877
2878    bool isLiveOut = hasOnlyLiveOutUses(SU);
2879    unsigned Opc = Node->getMachineOpcode();
2880    const MCInstrDesc &MCID = TII->get(Opc);
2881    unsigned NumRes = MCID.getNumDefs();
2882    unsigned NumOps = MCID.getNumOperands() - NumRes;
2883    for (unsigned j = 0; j != NumOps; ++j) {
2884      if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
2885        continue;
2886      SDNode *DU = SU->getNode()->getOperand(j).getNode();
2887      if (DU->getNodeId() == -1)
2888        continue;
2889      const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
2890      if (!DUSU) continue;
2891      for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
2892           E = DUSU->Succs.end(); I != E; ++I) {
2893        if (I->isCtrl()) continue;
2894        SUnit *SuccSU = I->getSUnit();
2895        if (SuccSU == SU)
2896          continue;
2897        // Be conservative. Ignore if nodes aren't at roughly the same
2898        // depth and height.
2899        if (SuccSU->getHeight() < SU->getHeight() &&
2900            (SU->getHeight() - SuccSU->getHeight()) > 1)
2901          continue;
2902        // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
2903        // constrains whatever is using the copy, instead of the copy
2904        // itself. In the case that the copy is coalesced, this
2905        // preserves the intent of the pseudo two-address heurietics.
2906        while (SuccSU->Succs.size() == 1 &&
2907               SuccSU->getNode()->isMachineOpcode() &&
2908               SuccSU->getNode()->getMachineOpcode() ==
2909                 TargetOpcode::COPY_TO_REGCLASS)
2910          SuccSU = SuccSU->Succs.front().getSUnit();
2911        // Don't constrain non-instruction nodes.
2912        if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
2913          continue;
2914        // Don't constrain nodes with physical register defs if the
2915        // predecessor can clobber them.
2916        if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
2917          if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
2918            continue;
2919        }
2920        // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
2921        // these may be coalesced away. We want them close to their uses.
2922        unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
2923        if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
2924            SuccOpc == TargetOpcode::INSERT_SUBREG ||
2925            SuccOpc == TargetOpcode::SUBREG_TO_REG)
2926          continue;
2927        if (!canClobberReachingPhysRegUse(SuccSU, SU, scheduleDAG, TII, TRI) &&
2928            (!canClobber(SuccSU, DUSU) ||
2929             (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
2930             (!SU->isCommutable && SuccSU->isCommutable)) &&
2931            !scheduleDAG->IsReachable(SuccSU, SU)) {
2932          DEBUG(dbgs() << "    Adding a pseudo-two-addr edge from SU #"
2933                       << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
2934          scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Artificial));
2935        }
2936      }
2937    }
2938  }
2939}
2940
2941//===----------------------------------------------------------------------===//
2942//                         Public Constructor Functions
2943//===----------------------------------------------------------------------===//
2944
2945llvm::ScheduleDAGSDNodes *
2946llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
2947                                 CodeGenOpt::Level OptLevel) {
2948  const TargetMachine &TM = IS->TM;
2949  const TargetInstrInfo *TII = TM.getInstrInfo();
2950  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2951
2952  BURegReductionPriorityQueue *PQ =
2953    new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, 0);
2954  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2955  PQ->setScheduleDAG(SD);
2956  return SD;
2957}
2958
2959llvm::ScheduleDAGSDNodes *
2960llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
2961                                   CodeGenOpt::Level OptLevel) {
2962  const TargetMachine &TM = IS->TM;
2963  const TargetInstrInfo *TII = TM.getInstrInfo();
2964  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2965
2966  SrcRegReductionPriorityQueue *PQ =
2967    new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, 0);
2968  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2969  PQ->setScheduleDAG(SD);
2970  return SD;
2971}
2972
2973llvm::ScheduleDAGSDNodes *
2974llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
2975                                   CodeGenOpt::Level OptLevel) {
2976  const TargetMachine &TM = IS->TM;
2977  const TargetInstrInfo *TII = TM.getInstrInfo();
2978  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2979  const TargetLowering *TLI = &IS->getTargetLowering();
2980
2981  HybridBURRPriorityQueue *PQ =
2982    new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
2983
2984  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
2985  PQ->setScheduleDAG(SD);
2986  return SD;
2987}
2988
2989llvm::ScheduleDAGSDNodes *
2990llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
2991                                CodeGenOpt::Level OptLevel) {
2992  const TargetMachine &TM = IS->TM;
2993  const TargetInstrInfo *TII = TM.getInstrInfo();
2994  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2995  const TargetLowering *TLI = &IS->getTargetLowering();
2996
2997  ILPBURRPriorityQueue *PQ =
2998    new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
2999  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3000  PQ->setScheduleDAG(SD);
3001  return SD;
3002}
3003