ScheduleDAGRRList.cpp revision b720be6a50f4e1b3280d2b029ee38dda14577525
1//===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms.  The basic approach uses a priority
12// queue of available nodes to schedule.  One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "pre-RA-sched"
19#include "ScheduleDAGSDNodes.h"
20#include "llvm/InlineAsm.h"
21#include "llvm/CodeGen/SchedulerRegistry.h"
22#include "llvm/CodeGen/SelectionDAGISel.h"
23#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
24#include "llvm/Target/TargetRegisterInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include <climits>
36using namespace llvm;
37
38STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
39STATISTIC(NumUnfolds,    "Number of nodes unfolded");
40STATISTIC(NumDups,       "Number of duplicated nodes");
41STATISTIC(NumPRCopies,   "Number of physical register copies");
42
43static RegisterScheduler
44  burrListDAGScheduler("list-burr",
45                       "Bottom-up register reduction list scheduling",
46                       createBURRListDAGScheduler);
47static RegisterScheduler
48  sourceListDAGScheduler("source",
49                         "Similar to list-burr but schedules in source "
50                         "order when possible",
51                         createSourceListDAGScheduler);
52
53static RegisterScheduler
54  hybridListDAGScheduler("list-hybrid",
55                         "Bottom-up register pressure aware list scheduling "
56                         "which tries to balance latency and register pressure",
57                         createHybridListDAGScheduler);
58
59static RegisterScheduler
60  ILPListDAGScheduler("list-ilp",
61                      "Bottom-up register pressure aware list scheduling "
62                      "which tries to balance ILP and register pressure",
63                      createILPListDAGScheduler);
64
65static cl::opt<bool> DisableSchedCycles(
66  "disable-sched-cycles", cl::Hidden, cl::init(false),
67  cl::desc("Disable cycle-level precision during preRA scheduling"));
68
69// Temporary sched=list-ilp flags until the heuristics are robust.
70// Some options are also available under sched=list-hybrid.
71static cl::opt<bool> DisableSchedRegPressure(
72  "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
73  cl::desc("Disable regpressure priority in sched=list-ilp"));
74static cl::opt<bool> DisableSchedLiveUses(
75  "disable-sched-live-uses", cl::Hidden, cl::init(true),
76  cl::desc("Disable live use priority in sched=list-ilp"));
77static cl::opt<bool> DisableSchedVRegCycle(
78  "disable-sched-vrcycle", cl::Hidden, cl::init(false),
79  cl::desc("Disable virtual register cycle interference checks"));
80static cl::opt<bool> DisableSchedPhysRegJoin(
81  "disable-sched-physreg-join", cl::Hidden, cl::init(false),
82  cl::desc("Disable physreg def-use affinity"));
83static cl::opt<bool> DisableSchedStalls(
84  "disable-sched-stalls", cl::Hidden, cl::init(true),
85  cl::desc("Disable no-stall priority in sched=list-ilp"));
86static cl::opt<bool> DisableSchedCriticalPath(
87  "disable-sched-critical-path", cl::Hidden, cl::init(false),
88  cl::desc("Disable critical path priority in sched=list-ilp"));
89static cl::opt<bool> DisableSchedHeight(
90  "disable-sched-height", cl::Hidden, cl::init(false),
91  cl::desc("Disable scheduled-height priority in sched=list-ilp"));
92static cl::opt<bool> Disable2AddrHack(
93  "disable-2addr-hack", cl::Hidden, cl::init(true),
94  cl::desc("Disable scheduler's two-address hack"));
95
96static cl::opt<int> MaxReorderWindow(
97  "max-sched-reorder", cl::Hidden, cl::init(6),
98  cl::desc("Number of instructions to allow ahead of the critical path "
99           "in sched=list-ilp"));
100
101static cl::opt<unsigned> AvgIPC(
102  "sched-avg-ipc", cl::Hidden, cl::init(1),
103  cl::desc("Average inst/cycle whan no target itinerary exists."));
104
105namespace {
106//===----------------------------------------------------------------------===//
107/// ScheduleDAGRRList - The actual register reduction list scheduler
108/// implementation.  This supports both top-down and bottom-up scheduling.
109///
110class ScheduleDAGRRList : public ScheduleDAGSDNodes {
111private:
112  /// NeedLatency - True if the scheduler will make use of latency information.
113  ///
114  bool NeedLatency;
115
116  /// AvailableQueue - The priority queue to use for the available SUnits.
117  SchedulingPriorityQueue *AvailableQueue;
118
119  /// PendingQueue - This contains all of the instructions whose operands have
120  /// been issued, but their results are not ready yet (due to the latency of
121  /// the operation).  Once the operands becomes available, the instruction is
122  /// added to the AvailableQueue.
123  std::vector<SUnit*> PendingQueue;
124
125  /// HazardRec - The hazard recognizer to use.
126  ScheduleHazardRecognizer *HazardRec;
127
128  /// CurCycle - The current scheduler state corresponds to this cycle.
129  unsigned CurCycle;
130
131  /// MinAvailableCycle - Cycle of the soonest available instruction.
132  unsigned MinAvailableCycle;
133
134  /// IssueCount - Count instructions issued in this cycle
135  /// Currently valid only for bottom-up scheduling.
136  unsigned IssueCount;
137
138  /// LiveRegDefs - A set of physical registers and their definition
139  /// that are "live". These nodes must be scheduled before any other nodes that
140  /// modifies the registers can be scheduled.
141  unsigned NumLiveRegs;
142  std::vector<SUnit*> LiveRegDefs;
143  std::vector<SUnit*> LiveRegGens;
144
145  /// Topo - A topological ordering for SUnits which permits fast IsReachable
146  /// and similar queries.
147  ScheduleDAGTopologicalSort Topo;
148
149  // Hack to keep track of the inverse of FindCallSeqStart without more crazy
150  // DAG crawling.
151  DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
152
153public:
154  ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
155                    SchedulingPriorityQueue *availqueue,
156                    CodeGenOpt::Level OptLevel)
157    : ScheduleDAGSDNodes(mf),
158      NeedLatency(needlatency), AvailableQueue(availqueue), CurCycle(0),
159      Topo(SUnits) {
160
161    const TargetMachine &tm = mf.getTarget();
162    if (DisableSchedCycles || !NeedLatency)
163      HazardRec = new ScheduleHazardRecognizer();
164    else
165      HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(&tm, this);
166  }
167
168  ~ScheduleDAGRRList() {
169    delete HazardRec;
170    delete AvailableQueue;
171  }
172
173  void Schedule();
174
175  ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
176
177  /// IsReachable - Checks if SU is reachable from TargetSU.
178  bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
179    return Topo.IsReachable(SU, TargetSU);
180  }
181
182  /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
183  /// create a cycle.
184  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
185    return Topo.WillCreateCycle(SU, TargetSU);
186  }
187
188  /// AddPred - adds a predecessor edge to SUnit SU.
189  /// This returns true if this is a new predecessor.
190  /// Updates the topological ordering if required.
191  void AddPred(SUnit *SU, const SDep &D) {
192    Topo.AddPred(SU, D.getSUnit());
193    SU->addPred(D);
194  }
195
196  /// RemovePred - removes a predecessor edge from SUnit SU.
197  /// This returns true if an edge was removed.
198  /// Updates the topological ordering if required.
199  void RemovePred(SUnit *SU, const SDep &D) {
200    Topo.RemovePred(SU, D.getSUnit());
201    SU->removePred(D);
202  }
203
204private:
205  bool isReady(SUnit *SU) {
206    return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
207      AvailableQueue->isReady(SU);
208  }
209
210  void ReleasePred(SUnit *SU, const SDep *PredEdge);
211  void ReleasePredecessors(SUnit *SU);
212  void ReleasePending();
213  void AdvanceToCycle(unsigned NextCycle);
214  void AdvancePastStalls(SUnit *SU);
215  void EmitNode(SUnit *SU);
216  void ScheduleNodeBottomUp(SUnit*);
217  void CapturePred(SDep *PredEdge);
218  void UnscheduleNodeBottomUp(SUnit*);
219  void RestoreHazardCheckerBottomUp();
220  void BacktrackBottomUp(SUnit*, SUnit*);
221  SUnit *CopyAndMoveSuccessors(SUnit*);
222  void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
223                                const TargetRegisterClass*,
224                                const TargetRegisterClass*,
225                                SmallVector<SUnit*, 2>&);
226  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
227
228  SUnit *PickNodeToScheduleBottomUp();
229  void ListScheduleBottomUp();
230
231  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
232  /// Updates the topological ordering if required.
233  SUnit *CreateNewSUnit(SDNode *N) {
234    unsigned NumSUnits = SUnits.size();
235    SUnit *NewNode = newSUnit(N);
236    // Update the topological ordering.
237    if (NewNode->NodeNum >= NumSUnits)
238      Topo.InitDAGTopologicalSorting();
239    return NewNode;
240  }
241
242  /// CreateClone - Creates a new SUnit from an existing one.
243  /// Updates the topological ordering if required.
244  SUnit *CreateClone(SUnit *N) {
245    unsigned NumSUnits = SUnits.size();
246    SUnit *NewNode = Clone(N);
247    // Update the topological ordering.
248    if (NewNode->NodeNum >= NumSUnits)
249      Topo.InitDAGTopologicalSorting();
250    return NewNode;
251  }
252
253  /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
254  /// need actual latency information but the hybrid scheduler does.
255  bool forceUnitLatencies() const {
256    return !NeedLatency;
257  }
258};
259}  // end anonymous namespace
260
261/// GetCostForDef - Looks up the register class and cost for a given definition.
262/// Typically this just means looking up the representative register class,
263/// but for untyped values (MVT::Untyped) it means inspecting the node's
264/// opcode to determine what register class is being generated.
265static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
266                          const TargetLowering *TLI,
267                          const TargetInstrInfo *TII,
268                          const TargetRegisterInfo *TRI,
269                          unsigned &RegClass, unsigned &Cost,
270                          const MachineFunction &MF) {
271  EVT VT = RegDefPos.GetValue();
272
273  // Special handling for untyped values.  These values can only come from
274  // the expansion of custom DAG-to-DAG patterns.
275  if (VT == MVT::Untyped) {
276    const SDNode *Node = RegDefPos.GetNode();
277    unsigned Opcode = Node->getMachineOpcode();
278
279    if (Opcode == TargetOpcode::REG_SEQUENCE) {
280      unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
281      const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
282      RegClass = RC->getID();
283      Cost = 1;
284      return;
285    }
286
287    unsigned Idx = RegDefPos.GetIdx();
288    const MCInstrDesc Desc = TII->get(Opcode);
289    const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
290    RegClass = RC->getID();
291    // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
292    // better way to determine it.
293    Cost = 1;
294  } else {
295    RegClass = TLI->getRepRegClassFor(VT)->getID();
296    Cost = TLI->getRepRegClassCostFor(VT);
297  }
298}
299
300/// Schedule - Schedule the DAG using list scheduling.
301void ScheduleDAGRRList::Schedule() {
302  DEBUG(dbgs()
303        << "********** List Scheduling BB#" << BB->getNumber()
304        << " '" << BB->getName() << "' **********\n");
305
306  CurCycle = 0;
307  IssueCount = 0;
308  MinAvailableCycle = DisableSchedCycles ? 0 : UINT_MAX;
309  NumLiveRegs = 0;
310  // Allocate slots for each physical register, plus one for a special register
311  // to track the virtual resource of a calling sequence.
312  LiveRegDefs.resize(TRI->getNumRegs() + 1, NULL);
313  LiveRegGens.resize(TRI->getNumRegs() + 1, NULL);
314  CallSeqEndForStart.clear();
315
316  // Build the scheduling graph.
317  BuildSchedGraph(NULL);
318
319  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
320          SUnits[su].dumpAll(this));
321  Topo.InitDAGTopologicalSorting();
322
323  AvailableQueue->initNodes(SUnits);
324
325  HazardRec->Reset();
326
327  // Execute the actual scheduling loop.
328  ListScheduleBottomUp();
329
330  AvailableQueue->releaseState();
331
332  DEBUG({
333      dbgs() << "*** Final schedule ***\n";
334      dumpSchedule();
335      dbgs() << '\n';
336    });
337}
338
339//===----------------------------------------------------------------------===//
340//  Bottom-Up Scheduling
341//===----------------------------------------------------------------------===//
342
343/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
344/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
345void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
346  SUnit *PredSU = PredEdge->getSUnit();
347
348#ifndef NDEBUG
349  if (PredSU->NumSuccsLeft == 0) {
350    dbgs() << "*** Scheduling failed! ***\n";
351    PredSU->dump(this);
352    dbgs() << " has been released too many times!\n";
353    llvm_unreachable(0);
354  }
355#endif
356  --PredSU->NumSuccsLeft;
357
358  if (!forceUnitLatencies()) {
359    // Updating predecessor's height. This is now the cycle when the
360    // predecessor can be scheduled without causing a pipeline stall.
361    PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
362  }
363
364  // If all the node's successors are scheduled, this node is ready
365  // to be scheduled. Ignore the special EntrySU node.
366  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
367    PredSU->isAvailable = true;
368
369    unsigned Height = PredSU->getHeight();
370    if (Height < MinAvailableCycle)
371      MinAvailableCycle = Height;
372
373    if (isReady(PredSU)) {
374      AvailableQueue->push(PredSU);
375    }
376    // CapturePred and others may have left the node in the pending queue, avoid
377    // adding it twice.
378    else if (!PredSU->isPending) {
379      PredSU->isPending = true;
380      PendingQueue.push_back(PredSU);
381    }
382  }
383}
384
385/// IsChainDependent - Test if Outer is reachable from Inner through
386/// chain dependencies.
387static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
388                             unsigned NestLevel,
389                             const TargetInstrInfo *TII) {
390  SDNode *N = Outer;
391  for (;;) {
392    if (N == Inner)
393      return true;
394    // For a TokenFactor, examine each operand. There may be multiple ways
395    // to get to the CALLSEQ_BEGIN, but we need to find the path with the
396    // most nesting in order to ensure that we find the corresponding match.
397    if (N->getOpcode() == ISD::TokenFactor) {
398      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
399        if (IsChainDependent(N->getOperand(i).getNode(), Inner, NestLevel, TII))
400          return true;
401      return false;
402    }
403    // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
404    if (N->isMachineOpcode()) {
405      if (N->getMachineOpcode() ==
406          (unsigned)TII->getCallFrameDestroyOpcode()) {
407        ++NestLevel;
408      } else if (N->getMachineOpcode() ==
409                 (unsigned)TII->getCallFrameSetupOpcode()) {
410        if (NestLevel == 0)
411          return false;
412        --NestLevel;
413      }
414    }
415    // Otherwise, find the chain and continue climbing.
416    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
417      if (N->getOperand(i).getValueType() == MVT::Other) {
418        N = N->getOperand(i).getNode();
419        goto found_chain_operand;
420      }
421    return false;
422  found_chain_operand:;
423    if (N->getOpcode() == ISD::EntryToken)
424      return false;
425  }
426}
427
428/// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
429/// the corresponding (lowered) CALLSEQ_BEGIN node.
430///
431/// NestLevel and MaxNested are used in recursion to indcate the current level
432/// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
433/// level seen so far.
434///
435/// TODO: It would be better to give CALLSEQ_END an explicit operand to point
436/// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
437static SDNode *
438FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
439                 const TargetInstrInfo *TII) {
440  for (;;) {
441    // For a TokenFactor, examine each operand. There may be multiple ways
442    // to get to the CALLSEQ_BEGIN, but we need to find the path with the
443    // most nesting in order to ensure that we find the corresponding match.
444    if (N->getOpcode() == ISD::TokenFactor) {
445      SDNode *Best = 0;
446      unsigned BestMaxNest = MaxNest;
447      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
448        unsigned MyNestLevel = NestLevel;
449        unsigned MyMaxNest = MaxNest;
450        if (SDNode *New = FindCallSeqStart(N->getOperand(i).getNode(),
451                                           MyNestLevel, MyMaxNest, TII))
452          if (!Best || (MyMaxNest > BestMaxNest)) {
453            Best = New;
454            BestMaxNest = MyMaxNest;
455          }
456      }
457      assert(Best);
458      MaxNest = BestMaxNest;
459      return Best;
460    }
461    // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
462    if (N->isMachineOpcode()) {
463      if (N->getMachineOpcode() ==
464          (unsigned)TII->getCallFrameDestroyOpcode()) {
465        ++NestLevel;
466        MaxNest = std::max(MaxNest, NestLevel);
467      } else if (N->getMachineOpcode() ==
468                 (unsigned)TII->getCallFrameSetupOpcode()) {
469        assert(NestLevel != 0);
470        --NestLevel;
471        if (NestLevel == 0)
472          return N;
473      }
474    }
475    // Otherwise, find the chain and continue climbing.
476    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
477      if (N->getOperand(i).getValueType() == MVT::Other) {
478        N = N->getOperand(i).getNode();
479        goto found_chain_operand;
480      }
481    return 0;
482  found_chain_operand:;
483    if (N->getOpcode() == ISD::EntryToken)
484      return 0;
485  }
486}
487
488/// Call ReleasePred for each predecessor, then update register live def/gen.
489/// Always update LiveRegDefs for a register dependence even if the current SU
490/// also defines the register. This effectively create one large live range
491/// across a sequence of two-address node. This is important because the
492/// entire chain must be scheduled together. Example:
493///
494/// flags = (3) add
495/// flags = (2) addc flags
496/// flags = (1) addc flags
497///
498/// results in
499///
500/// LiveRegDefs[flags] = 3
501/// LiveRegGens[flags] = 1
502///
503/// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
504/// interference on flags.
505void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
506  // Bottom up: release predecessors
507  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
508       I != E; ++I) {
509    ReleasePred(SU, &*I);
510    if (I->isAssignedRegDep()) {
511      // This is a physical register dependency and it's impossible or
512      // expensive to copy the register. Make sure nothing that can
513      // clobber the register is scheduled between the predecessor and
514      // this node.
515      SUnit *RegDef = LiveRegDefs[I->getReg()]; (void)RegDef;
516      assert((!RegDef || RegDef == SU || RegDef == I->getSUnit()) &&
517             "interference on register dependence");
518      LiveRegDefs[I->getReg()] = I->getSUnit();
519      if (!LiveRegGens[I->getReg()]) {
520        ++NumLiveRegs;
521        LiveRegGens[I->getReg()] = SU;
522      }
523    }
524  }
525
526  // If we're scheduling a lowered CALLSEQ_END, find the corresponding
527  // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
528  // these nodes, to prevent other calls from being interscheduled with them.
529  unsigned CallResource = TRI->getNumRegs();
530  if (!LiveRegDefs[CallResource])
531    for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
532      if (Node->isMachineOpcode() &&
533          Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
534        unsigned NestLevel = 0;
535        unsigned MaxNest = 0;
536        SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
537
538        SUnit *Def = &SUnits[N->getNodeId()];
539        CallSeqEndForStart[Def] = SU;
540
541        ++NumLiveRegs;
542        LiveRegDefs[CallResource] = Def;
543        LiveRegGens[CallResource] = SU;
544        break;
545      }
546}
547
548/// Check to see if any of the pending instructions are ready to issue.  If
549/// so, add them to the available queue.
550void ScheduleDAGRRList::ReleasePending() {
551  if (DisableSchedCycles) {
552    assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
553    return;
554  }
555
556  // If the available queue is empty, it is safe to reset MinAvailableCycle.
557  if (AvailableQueue->empty())
558    MinAvailableCycle = UINT_MAX;
559
560  // Check to see if any of the pending instructions are ready to issue.  If
561  // so, add them to the available queue.
562  for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
563    unsigned ReadyCycle = PendingQueue[i]->getHeight();
564    if (ReadyCycle < MinAvailableCycle)
565      MinAvailableCycle = ReadyCycle;
566
567    if (PendingQueue[i]->isAvailable) {
568      if (!isReady(PendingQueue[i]))
569          continue;
570      AvailableQueue->push(PendingQueue[i]);
571    }
572    PendingQueue[i]->isPending = false;
573    PendingQueue[i] = PendingQueue.back();
574    PendingQueue.pop_back();
575    --i; --e;
576  }
577}
578
579/// Move the scheduler state forward by the specified number of Cycles.
580void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
581  if (NextCycle <= CurCycle)
582    return;
583
584  IssueCount = 0;
585  AvailableQueue->setCurCycle(NextCycle);
586  if (!HazardRec->isEnabled()) {
587    // Bypass lots of virtual calls in case of long latency.
588    CurCycle = NextCycle;
589  }
590  else {
591    for (; CurCycle != NextCycle; ++CurCycle) {
592      HazardRec->RecedeCycle();
593    }
594  }
595  // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
596  // available Q to release pending nodes at least once before popping.
597  ReleasePending();
598}
599
600/// Move the scheduler state forward until the specified node's dependents are
601/// ready and can be scheduled with no resource conflicts.
602void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
603  if (DisableSchedCycles)
604    return;
605
606  // FIXME: Nodes such as CopyFromReg probably should not advance the current
607  // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
608  // has predecessors the cycle will be advanced when they are scheduled.
609  // But given the crude nature of modeling latency though such nodes, we
610  // currently need to treat these nodes like real instructions.
611  // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
612
613  unsigned ReadyCycle = SU->getHeight();
614
615  // Bump CurCycle to account for latency. We assume the latency of other
616  // available instructions may be hidden by the stall (not a full pipe stall).
617  // This updates the hazard recognizer's cycle before reserving resources for
618  // this instruction.
619  AdvanceToCycle(ReadyCycle);
620
621  // Calls are scheduled in their preceding cycle, so don't conflict with
622  // hazards from instructions after the call. EmitNode will reset the
623  // scoreboard state before emitting the call.
624  if (SU->isCall)
625    return;
626
627  // FIXME: For resource conflicts in very long non-pipelined stages, we
628  // should probably skip ahead here to avoid useless scoreboard checks.
629  int Stalls = 0;
630  while (true) {
631    ScheduleHazardRecognizer::HazardType HT =
632      HazardRec->getHazardType(SU, -Stalls);
633
634    if (HT == ScheduleHazardRecognizer::NoHazard)
635      break;
636
637    ++Stalls;
638  }
639  AdvanceToCycle(CurCycle + Stalls);
640}
641
642/// Record this SUnit in the HazardRecognizer.
643/// Does not update CurCycle.
644void ScheduleDAGRRList::EmitNode(SUnit *SU) {
645  if (!HazardRec->isEnabled())
646    return;
647
648  // Check for phys reg copy.
649  if (!SU->getNode())
650    return;
651
652  switch (SU->getNode()->getOpcode()) {
653  default:
654    assert(SU->getNode()->isMachineOpcode() &&
655           "This target-independent node should not be scheduled.");
656    break;
657  case ISD::MERGE_VALUES:
658  case ISD::TokenFactor:
659  case ISD::LIFETIME_START:
660  case ISD::LIFETIME_END:
661  case ISD::CopyToReg:
662  case ISD::CopyFromReg:
663  case ISD::EH_LABEL:
664    // Noops don't affect the scoreboard state. Copies are likely to be
665    // removed.
666    return;
667  case ISD::INLINEASM:
668    // For inline asm, clear the pipeline state.
669    HazardRec->Reset();
670    return;
671  }
672  if (SU->isCall) {
673    // Calls are scheduled with their preceding instructions. For bottom-up
674    // scheduling, clear the pipeline state before emitting.
675    HazardRec->Reset();
676  }
677
678  HazardRec->EmitInstruction(SU);
679}
680
681static void resetVRegCycle(SUnit *SU);
682
683/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
684/// count of its predecessors. If a predecessor pending count is zero, add it to
685/// the Available queue.
686void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
687  DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
688  DEBUG(SU->dump(this));
689
690#ifndef NDEBUG
691  if (CurCycle < SU->getHeight())
692    DEBUG(dbgs() << "   Height [" << SU->getHeight()
693          << "] pipeline stall!\n");
694#endif
695
696  // FIXME: Do not modify node height. It may interfere with
697  // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
698  // node its ready cycle can aid heuristics, and after scheduling it can
699  // indicate the scheduled cycle.
700  SU->setHeightToAtLeast(CurCycle);
701
702  // Reserve resources for the scheduled intruction.
703  EmitNode(SU);
704
705  Sequence.push_back(SU);
706
707  AvailableQueue->scheduledNode(SU);
708
709  // If HazardRec is disabled, and each inst counts as one cycle, then
710  // advance CurCycle before ReleasePredecessors to avoid useless pushes to
711  // PendingQueue for schedulers that implement HasReadyFilter.
712  if (!HazardRec->isEnabled() && AvgIPC < 2)
713    AdvanceToCycle(CurCycle + 1);
714
715  // Update liveness of predecessors before successors to avoid treating a
716  // two-address node as a live range def.
717  ReleasePredecessors(SU);
718
719  // Release all the implicit physical register defs that are live.
720  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
721       I != E; ++I) {
722    // LiveRegDegs[I->getReg()] != SU when SU is a two-address node.
723    if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] == SU) {
724      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
725      --NumLiveRegs;
726      LiveRegDefs[I->getReg()] = NULL;
727      LiveRegGens[I->getReg()] = NULL;
728    }
729  }
730  // Release the special call resource dependence, if this is the beginning
731  // of a call.
732  unsigned CallResource = TRI->getNumRegs();
733  if (LiveRegDefs[CallResource] == SU)
734    for (const SDNode *SUNode = SU->getNode(); SUNode;
735         SUNode = SUNode->getGluedNode()) {
736      if (SUNode->isMachineOpcode() &&
737          SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
738        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
739        --NumLiveRegs;
740        LiveRegDefs[CallResource] = NULL;
741        LiveRegGens[CallResource] = NULL;
742      }
743    }
744
745  resetVRegCycle(SU);
746
747  SU->isScheduled = true;
748
749  // Conditions under which the scheduler should eagerly advance the cycle:
750  // (1) No available instructions
751  // (2) All pipelines full, so available instructions must have hazards.
752  //
753  // If HazardRec is disabled, the cycle was pre-advanced before calling
754  // ReleasePredecessors. In that case, IssueCount should remain 0.
755  //
756  // Check AvailableQueue after ReleasePredecessors in case of zero latency.
757  if (HazardRec->isEnabled() || AvgIPC > 1) {
758    if (SU->getNode() && SU->getNode()->isMachineOpcode())
759      ++IssueCount;
760    if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
761        || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
762      AdvanceToCycle(CurCycle + 1);
763  }
764}
765
766/// CapturePred - This does the opposite of ReleasePred. Since SU is being
767/// unscheduled, incrcease the succ left count of its predecessors. Remove
768/// them from AvailableQueue if necessary.
769void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
770  SUnit *PredSU = PredEdge->getSUnit();
771  if (PredSU->isAvailable) {
772    PredSU->isAvailable = false;
773    if (!PredSU->isPending)
774      AvailableQueue->remove(PredSU);
775  }
776
777  assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
778  ++PredSU->NumSuccsLeft;
779}
780
781/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
782/// its predecessor states to reflect the change.
783void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
784  DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
785  DEBUG(SU->dump(this));
786
787  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
788       I != E; ++I) {
789    CapturePred(&*I);
790    if (I->isAssignedRegDep() && SU == LiveRegGens[I->getReg()]){
791      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
792      assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
793             "Physical register dependency violated?");
794      --NumLiveRegs;
795      LiveRegDefs[I->getReg()] = NULL;
796      LiveRegGens[I->getReg()] = NULL;
797    }
798  }
799
800  // Reclaim the special call resource dependence, if this is the beginning
801  // of a call.
802  unsigned CallResource = TRI->getNumRegs();
803  for (const SDNode *SUNode = SU->getNode(); SUNode;
804       SUNode = SUNode->getGluedNode()) {
805    if (SUNode->isMachineOpcode() &&
806        SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
807      ++NumLiveRegs;
808      LiveRegDefs[CallResource] = SU;
809      LiveRegGens[CallResource] = CallSeqEndForStart[SU];
810    }
811  }
812
813  // Release the special call resource dependence, if this is the end
814  // of a call.
815  if (LiveRegGens[CallResource] == SU)
816    for (const SDNode *SUNode = SU->getNode(); SUNode;
817         SUNode = SUNode->getGluedNode()) {
818      if (SUNode->isMachineOpcode() &&
819          SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
820        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
821        --NumLiveRegs;
822        LiveRegDefs[CallResource] = NULL;
823        LiveRegGens[CallResource] = NULL;
824      }
825    }
826
827  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
828       I != E; ++I) {
829    if (I->isAssignedRegDep()) {
830      if (!LiveRegDefs[I->getReg()])
831        ++NumLiveRegs;
832      // This becomes the nearest def. Note that an earlier def may still be
833      // pending if this is a two-address node.
834      LiveRegDefs[I->getReg()] = SU;
835      if (LiveRegGens[I->getReg()] == NULL ||
836          I->getSUnit()->getHeight() < LiveRegGens[I->getReg()]->getHeight())
837        LiveRegGens[I->getReg()] = I->getSUnit();
838    }
839  }
840  if (SU->getHeight() < MinAvailableCycle)
841    MinAvailableCycle = SU->getHeight();
842
843  SU->setHeightDirty();
844  SU->isScheduled = false;
845  SU->isAvailable = true;
846  if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
847    // Don't make available until backtracking is complete.
848    SU->isPending = true;
849    PendingQueue.push_back(SU);
850  }
851  else {
852    AvailableQueue->push(SU);
853  }
854  AvailableQueue->unscheduledNode(SU);
855}
856
857/// After backtracking, the hazard checker needs to be restored to a state
858/// corresponding the current cycle.
859void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
860  HazardRec->Reset();
861
862  unsigned LookAhead = std::min((unsigned)Sequence.size(),
863                                HazardRec->getMaxLookAhead());
864  if (LookAhead == 0)
865    return;
866
867  std::vector<SUnit*>::const_iterator I = (Sequence.end() - LookAhead);
868  unsigned HazardCycle = (*I)->getHeight();
869  for (std::vector<SUnit*>::const_iterator E = Sequence.end(); I != E; ++I) {
870    SUnit *SU = *I;
871    for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
872      HazardRec->RecedeCycle();
873    }
874    EmitNode(SU);
875  }
876}
877
878/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
879/// BTCycle in order to schedule a specific node.
880void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
881  SUnit *OldSU = Sequence.back();
882  while (true) {
883    Sequence.pop_back();
884    if (SU->isSucc(OldSU))
885      // Don't try to remove SU from AvailableQueue.
886      SU->isAvailable = false;
887    // FIXME: use ready cycle instead of height
888    CurCycle = OldSU->getHeight();
889    UnscheduleNodeBottomUp(OldSU);
890    AvailableQueue->setCurCycle(CurCycle);
891    if (OldSU == BtSU)
892      break;
893    OldSU = Sequence.back();
894  }
895
896  assert(!SU->isSucc(OldSU) && "Something is wrong!");
897
898  RestoreHazardCheckerBottomUp();
899
900  ReleasePending();
901
902  ++NumBacktracks;
903}
904
905static bool isOperandOf(const SUnit *SU, SDNode *N) {
906  for (const SDNode *SUNode = SU->getNode(); SUNode;
907       SUNode = SUNode->getGluedNode()) {
908    if (SUNode->isOperandOf(N))
909      return true;
910  }
911  return false;
912}
913
914/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
915/// successors to the newly created node.
916SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
917  SDNode *N = SU->getNode();
918  if (!N)
919    return NULL;
920
921  if (SU->getNode()->getGluedNode())
922    return NULL;
923
924  SUnit *NewSU;
925  bool TryUnfold = false;
926  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
927    EVT VT = N->getValueType(i);
928    if (VT == MVT::Glue)
929      return NULL;
930    else if (VT == MVT::Other)
931      TryUnfold = true;
932  }
933  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
934    const SDValue &Op = N->getOperand(i);
935    EVT VT = Op.getNode()->getValueType(Op.getResNo());
936    if (VT == MVT::Glue)
937      return NULL;
938  }
939
940  if (TryUnfold) {
941    SmallVector<SDNode*, 2> NewNodes;
942    if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
943      return NULL;
944
945    // unfolding an x86 DEC64m operation results in store, dec, load which
946    // can't be handled here so quit
947    if (NewNodes.size() == 3)
948      return NULL;
949
950    DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
951    assert(NewNodes.size() == 2 && "Expected a load folding node!");
952
953    N = NewNodes[1];
954    SDNode *LoadNode = NewNodes[0];
955    unsigned NumVals = N->getNumValues();
956    unsigned OldNumVals = SU->getNode()->getNumValues();
957    for (unsigned i = 0; i != NumVals; ++i)
958      DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
959    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
960                                   SDValue(LoadNode, 1));
961
962    // LoadNode may already exist. This can happen when there is another
963    // load from the same location and producing the same type of value
964    // but it has different alignment or volatileness.
965    bool isNewLoad = true;
966    SUnit *LoadSU;
967    if (LoadNode->getNodeId() != -1) {
968      LoadSU = &SUnits[LoadNode->getNodeId()];
969      isNewLoad = false;
970    } else {
971      LoadSU = CreateNewSUnit(LoadNode);
972      LoadNode->setNodeId(LoadSU->NodeNum);
973
974      InitNumRegDefsLeft(LoadSU);
975      computeLatency(LoadSU);
976    }
977
978    SUnit *NewSU = CreateNewSUnit(N);
979    assert(N->getNodeId() == -1 && "Node already inserted!");
980    N->setNodeId(NewSU->NodeNum);
981
982    const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
983    for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
984      if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
985        NewSU->isTwoAddress = true;
986        break;
987      }
988    }
989    if (MCID.isCommutable())
990      NewSU->isCommutable = true;
991
992    InitNumRegDefsLeft(NewSU);
993    computeLatency(NewSU);
994
995    // Record all the edges to and from the old SU, by category.
996    SmallVector<SDep, 4> ChainPreds;
997    SmallVector<SDep, 4> ChainSuccs;
998    SmallVector<SDep, 4> LoadPreds;
999    SmallVector<SDep, 4> NodePreds;
1000    SmallVector<SDep, 4> NodeSuccs;
1001    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1002         I != E; ++I) {
1003      if (I->isCtrl())
1004        ChainPreds.push_back(*I);
1005      else if (isOperandOf(I->getSUnit(), LoadNode))
1006        LoadPreds.push_back(*I);
1007      else
1008        NodePreds.push_back(*I);
1009    }
1010    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1011         I != E; ++I) {
1012      if (I->isCtrl())
1013        ChainSuccs.push_back(*I);
1014      else
1015        NodeSuccs.push_back(*I);
1016    }
1017
1018    // Now assign edges to the newly-created nodes.
1019    for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
1020      const SDep &Pred = ChainPreds[i];
1021      RemovePred(SU, Pred);
1022      if (isNewLoad)
1023        AddPred(LoadSU, Pred);
1024    }
1025    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
1026      const SDep &Pred = LoadPreds[i];
1027      RemovePred(SU, Pred);
1028      if (isNewLoad)
1029        AddPred(LoadSU, Pred);
1030    }
1031    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
1032      const SDep &Pred = NodePreds[i];
1033      RemovePred(SU, Pred);
1034      AddPred(NewSU, Pred);
1035    }
1036    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
1037      SDep D = NodeSuccs[i];
1038      SUnit *SuccDep = D.getSUnit();
1039      D.setSUnit(SU);
1040      RemovePred(SuccDep, D);
1041      D.setSUnit(NewSU);
1042      AddPred(SuccDep, D);
1043      // Balance register pressure.
1044      if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled
1045          && !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
1046        --NewSU->NumRegDefsLeft;
1047    }
1048    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
1049      SDep D = ChainSuccs[i];
1050      SUnit *SuccDep = D.getSUnit();
1051      D.setSUnit(SU);
1052      RemovePred(SuccDep, D);
1053      if (isNewLoad) {
1054        D.setSUnit(LoadSU);
1055        AddPred(SuccDep, D);
1056      }
1057    }
1058
1059    // Add a data dependency to reflect that NewSU reads the value defined
1060    // by LoadSU.
1061    AddPred(NewSU, SDep(LoadSU, SDep::Data, LoadSU->Latency));
1062
1063    if (isNewLoad)
1064      AvailableQueue->addNode(LoadSU);
1065    AvailableQueue->addNode(NewSU);
1066
1067    ++NumUnfolds;
1068
1069    if (NewSU->NumSuccsLeft == 0) {
1070      NewSU->isAvailable = true;
1071      return NewSU;
1072    }
1073    SU = NewSU;
1074  }
1075
1076  DEBUG(dbgs() << "    Duplicating SU #" << SU->NodeNum << "\n");
1077  NewSU = CreateClone(SU);
1078
1079  // New SUnit has the exact same predecessors.
1080  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1081       I != E; ++I)
1082    if (!I->isArtificial())
1083      AddPred(NewSU, *I);
1084
1085  // Only copy scheduled successors. Cut them from old node's successor
1086  // list and move them over.
1087  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1088  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1089       I != E; ++I) {
1090    if (I->isArtificial())
1091      continue;
1092    SUnit *SuccSU = I->getSUnit();
1093    if (SuccSU->isScheduled) {
1094      SDep D = *I;
1095      D.setSUnit(NewSU);
1096      AddPred(SuccSU, D);
1097      D.setSUnit(SU);
1098      DelDeps.push_back(std::make_pair(SuccSU, D));
1099    }
1100  }
1101  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
1102    RemovePred(DelDeps[i].first, DelDeps[i].second);
1103
1104  AvailableQueue->updateNode(SU);
1105  AvailableQueue->addNode(NewSU);
1106
1107  ++NumDups;
1108  return NewSU;
1109}
1110
1111/// InsertCopiesAndMoveSuccs - Insert register copies and move all
1112/// scheduled successors of the given SUnit to the last copy.
1113void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
1114                                               const TargetRegisterClass *DestRC,
1115                                               const TargetRegisterClass *SrcRC,
1116                                               SmallVector<SUnit*, 2> &Copies) {
1117  SUnit *CopyFromSU = CreateNewSUnit(NULL);
1118  CopyFromSU->CopySrcRC = SrcRC;
1119  CopyFromSU->CopyDstRC = DestRC;
1120
1121  SUnit *CopyToSU = CreateNewSUnit(NULL);
1122  CopyToSU->CopySrcRC = DestRC;
1123  CopyToSU->CopyDstRC = SrcRC;
1124
1125  // Only copy scheduled successors. Cut them from old node's successor
1126  // list and move them over.
1127  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1128  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1129       I != E; ++I) {
1130    if (I->isArtificial())
1131      continue;
1132    SUnit *SuccSU = I->getSUnit();
1133    if (SuccSU->isScheduled) {
1134      SDep D = *I;
1135      D.setSUnit(CopyToSU);
1136      AddPred(SuccSU, D);
1137      DelDeps.push_back(std::make_pair(SuccSU, *I));
1138    }
1139    else {
1140      // Avoid scheduling the def-side copy before other successors. Otherwise
1141      // we could introduce another physreg interference on the copy and
1142      // continue inserting copies indefinitely.
1143      SDep D(CopyFromSU, SDep::Order, /*Latency=*/0,
1144             /*Reg=*/0, /*isNormalMemory=*/false,
1145             /*isMustAlias=*/false, /*isArtificial=*/true);
1146      AddPred(SuccSU, D);
1147    }
1148  }
1149  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
1150    RemovePred(DelDeps[i].first, DelDeps[i].second);
1151
1152  AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
1153  AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
1154
1155  AvailableQueue->updateNode(SU);
1156  AvailableQueue->addNode(CopyFromSU);
1157  AvailableQueue->addNode(CopyToSU);
1158  Copies.push_back(CopyFromSU);
1159  Copies.push_back(CopyToSU);
1160
1161  ++NumPRCopies;
1162}
1163
1164/// getPhysicalRegisterVT - Returns the ValueType of the physical register
1165/// definition of the specified node.
1166/// FIXME: Move to SelectionDAG?
1167static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
1168                                 const TargetInstrInfo *TII) {
1169  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1170  assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
1171  unsigned NumRes = MCID.getNumDefs();
1172  for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
1173    if (Reg == *ImpDef)
1174      break;
1175    ++NumRes;
1176  }
1177  return N->getValueType(NumRes);
1178}
1179
1180/// CheckForLiveRegDef - Return true and update live register vector if the
1181/// specified register def of the specified SUnit clobbers any "live" registers.
1182static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
1183                               std::vector<SUnit*> &LiveRegDefs,
1184                               SmallSet<unsigned, 4> &RegAdded,
1185                               SmallVector<unsigned, 4> &LRegs,
1186                               const TargetRegisterInfo *TRI) {
1187  for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {
1188
1189    // Check if Ref is live.
1190    if (!LiveRegDefs[*AliasI]) continue;
1191
1192    // Allow multiple uses of the same def.
1193    if (LiveRegDefs[*AliasI] == SU) continue;
1194
1195    // Add Reg to the set of interfering live regs.
1196    if (RegAdded.insert(*AliasI)) {
1197      LRegs.push_back(*AliasI);
1198    }
1199  }
1200}
1201
1202/// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
1203/// by RegMask, and add them to LRegs.
1204static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
1205                                     std::vector<SUnit*> &LiveRegDefs,
1206                                     SmallSet<unsigned, 4> &RegAdded,
1207                                     SmallVector<unsigned, 4> &LRegs) {
1208  // Look at all live registers. Skip Reg0 and the special CallResource.
1209  for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
1210    if (!LiveRegDefs[i]) continue;
1211    if (LiveRegDefs[i] == SU) continue;
1212    if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
1213    if (RegAdded.insert(i))
1214      LRegs.push_back(i);
1215  }
1216}
1217
1218/// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
1219static const uint32_t *getNodeRegMask(const SDNode *N) {
1220  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1221    if (const RegisterMaskSDNode *Op =
1222        dyn_cast<RegisterMaskSDNode>(N->getOperand(i).getNode()))
1223      return Op->getRegMask();
1224  return NULL;
1225}
1226
1227/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
1228/// scheduling of the given node to satisfy live physical register dependencies.
1229/// If the specific node is the last one that's available to schedule, do
1230/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
1231bool ScheduleDAGRRList::
1232DelayForLiveRegsBottomUp(SUnit *SU, SmallVector<unsigned, 4> &LRegs) {
1233  if (NumLiveRegs == 0)
1234    return false;
1235
1236  SmallSet<unsigned, 4> RegAdded;
1237  // If this node would clobber any "live" register, then it's not ready.
1238  //
1239  // If SU is the currently live definition of the same register that it uses,
1240  // then we are free to schedule it.
1241  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1242       I != E; ++I) {
1243    if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] != SU)
1244      CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
1245                         RegAdded, LRegs, TRI);
1246  }
1247
1248  for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
1249    if (Node->getOpcode() == ISD::INLINEASM) {
1250      // Inline asm can clobber physical defs.
1251      unsigned NumOps = Node->getNumOperands();
1252      if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1253        --NumOps;  // Ignore the glue operand.
1254
1255      for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1256        unsigned Flags =
1257          cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1258        unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1259
1260        ++i; // Skip the ID value.
1261        if (InlineAsm::isRegDefKind(Flags) ||
1262            InlineAsm::isRegDefEarlyClobberKind(Flags) ||
1263            InlineAsm::isClobberKind(Flags)) {
1264          // Check for def of register or earlyclobber register.
1265          for (; NumVals; --NumVals, ++i) {
1266            unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1267            if (TargetRegisterInfo::isPhysicalRegister(Reg))
1268              CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
1269          }
1270        } else
1271          i += NumVals;
1272      }
1273      continue;
1274    }
1275
1276    if (!Node->isMachineOpcode())
1277      continue;
1278    // If we're in the middle of scheduling a call, don't begin scheduling
1279    // another call. Also, don't allow any physical registers to be live across
1280    // the call.
1281    if (Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
1282      // Check the special calling-sequence resource.
1283      unsigned CallResource = TRI->getNumRegs();
1284      if (LiveRegDefs[CallResource]) {
1285        SDNode *Gen = LiveRegGens[CallResource]->getNode();
1286        while (SDNode *Glued = Gen->getGluedNode())
1287          Gen = Glued;
1288        if (!IsChainDependent(Gen, Node, 0, TII) && RegAdded.insert(CallResource))
1289          LRegs.push_back(CallResource);
1290      }
1291    }
1292    if (const uint32_t *RegMask = getNodeRegMask(Node))
1293      CheckForLiveRegDefMasked(SU, RegMask, LiveRegDefs, RegAdded, LRegs);
1294
1295    const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
1296    if (!MCID.ImplicitDefs)
1297      continue;
1298    for (const uint16_t *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
1299      CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
1300  }
1301
1302  return !LRegs.empty();
1303}
1304
1305/// Return a node that can be scheduled in this cycle. Requirements:
1306/// (1) Ready: latency has been satisfied
1307/// (2) No Hazards: resources are available
1308/// (3) No Interferences: may unschedule to break register interferences.
1309SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
1310  SmallVector<SUnit*, 4> Interferences;
1311  DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
1312
1313  SUnit *CurSU = AvailableQueue->pop();
1314  while (CurSU) {
1315    SmallVector<unsigned, 4> LRegs;
1316    if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
1317      break;
1318    LRegsMap.insert(std::make_pair(CurSU, LRegs));
1319
1320    CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
1321    Interferences.push_back(CurSU);
1322    CurSU = AvailableQueue->pop();
1323  }
1324  if (CurSU) {
1325    // Add the nodes that aren't ready back onto the available list.
1326    for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1327      Interferences[i]->isPending = false;
1328      assert(Interferences[i]->isAvailable && "must still be available");
1329      AvailableQueue->push(Interferences[i]);
1330    }
1331    return CurSU;
1332  }
1333
1334  // All candidates are delayed due to live physical reg dependencies.
1335  // Try backtracking, code duplication, or inserting cross class copies
1336  // to resolve it.
1337  for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1338    SUnit *TrySU = Interferences[i];
1339    SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
1340
1341    // Try unscheduling up to the point where it's safe to schedule
1342    // this node.
1343    SUnit *BtSU = NULL;
1344    unsigned LiveCycle = UINT_MAX;
1345    for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
1346      unsigned Reg = LRegs[j];
1347      if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
1348        BtSU = LiveRegGens[Reg];
1349        LiveCycle = BtSU->getHeight();
1350      }
1351    }
1352    if (!WillCreateCycle(TrySU, BtSU))  {
1353      BacktrackBottomUp(TrySU, BtSU);
1354
1355      // Force the current node to be scheduled before the node that
1356      // requires the physical reg dep.
1357      if (BtSU->isAvailable) {
1358        BtSU->isAvailable = false;
1359        if (!BtSU->isPending)
1360          AvailableQueue->remove(BtSU);
1361      }
1362      AddPred(TrySU, SDep(BtSU, SDep::Order, /*Latency=*/1,
1363                          /*Reg=*/0, /*isNormalMemory=*/false,
1364                          /*isMustAlias=*/false, /*isArtificial=*/true));
1365
1366      // If one or more successors has been unscheduled, then the current
1367      // node is no longer avaialable. Schedule a successor that's now
1368      // available instead.
1369      if (!TrySU->isAvailable) {
1370        CurSU = AvailableQueue->pop();
1371      }
1372      else {
1373        CurSU = TrySU;
1374        TrySU->isPending = false;
1375        Interferences.erase(Interferences.begin()+i);
1376      }
1377      break;
1378    }
1379  }
1380
1381  if (!CurSU) {
1382    // Can't backtrack. If it's too expensive to copy the value, then try
1383    // duplicate the nodes that produces these "too expensive to copy"
1384    // values to break the dependency. In case even that doesn't work,
1385    // insert cross class copies.
1386    // If it's not too expensive, i.e. cost != -1, issue copies.
1387    SUnit *TrySU = Interferences[0];
1388    SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
1389    assert(LRegs.size() == 1 && "Can't handle this yet!");
1390    unsigned Reg = LRegs[0];
1391    SUnit *LRDef = LiveRegDefs[Reg];
1392    EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
1393    const TargetRegisterClass *RC =
1394      TRI->getMinimalPhysRegClass(Reg, VT);
1395    const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1396
1397    // If cross copy register class is the same as RC, then it must be possible
1398    // copy the value directly. Do not try duplicate the def.
1399    // If cross copy register class is not the same as RC, then it's possible to
1400    // copy the value but it require cross register class copies and it is
1401    // expensive.
1402    // If cross copy register class is null, then it's not possible to copy
1403    // the value at all.
1404    SUnit *NewDef = 0;
1405    if (DestRC != RC) {
1406      NewDef = CopyAndMoveSuccessors(LRDef);
1407      if (!DestRC && !NewDef)
1408        report_fatal_error("Can't handle live physical register dependency!");
1409    }
1410    if (!NewDef) {
1411      // Issue copies, these can be expensive cross register class copies.
1412      SmallVector<SUnit*, 2> Copies;
1413      InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1414      DEBUG(dbgs() << "    Adding an edge from SU #" << TrySU->NodeNum
1415            << " to SU #" << Copies.front()->NodeNum << "\n");
1416      AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
1417                          /*Reg=*/0, /*isNormalMemory=*/false,
1418                          /*isMustAlias=*/false,
1419                          /*isArtificial=*/true));
1420      NewDef = Copies.back();
1421    }
1422
1423    DEBUG(dbgs() << "    Adding an edge from SU #" << NewDef->NodeNum
1424          << " to SU #" << TrySU->NodeNum << "\n");
1425    LiveRegDefs[Reg] = NewDef;
1426    AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
1427                         /*Reg=*/0, /*isNormalMemory=*/false,
1428                         /*isMustAlias=*/false,
1429                         /*isArtificial=*/true));
1430    TrySU->isAvailable = false;
1431    CurSU = NewDef;
1432  }
1433
1434  assert(CurSU && "Unable to resolve live physical register dependencies!");
1435
1436  // Add the nodes that aren't ready back onto the available list.
1437  for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1438    Interferences[i]->isPending = false;
1439    // May no longer be available due to backtracking.
1440    if (Interferences[i]->isAvailable) {
1441      AvailableQueue->push(Interferences[i]);
1442    }
1443  }
1444  return CurSU;
1445}
1446
1447/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
1448/// schedulers.
1449void ScheduleDAGRRList::ListScheduleBottomUp() {
1450  // Release any predecessors of the special Exit node.
1451  ReleasePredecessors(&ExitSU);
1452
1453  // Add root to Available queue.
1454  if (!SUnits.empty()) {
1455    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
1456    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
1457    RootSU->isAvailable = true;
1458    AvailableQueue->push(RootSU);
1459  }
1460
1461  // While Available queue is not empty, grab the node with the highest
1462  // priority. If it is not ready put it back.  Schedule the node.
1463  Sequence.reserve(SUnits.size());
1464  while (!AvailableQueue->empty()) {
1465    DEBUG(dbgs() << "\nExamining Available:\n";
1466          AvailableQueue->dump(this));
1467
1468    // Pick the best node to schedule taking all constraints into
1469    // consideration.
1470    SUnit *SU = PickNodeToScheduleBottomUp();
1471
1472    AdvancePastStalls(SU);
1473
1474    ScheduleNodeBottomUp(SU);
1475
1476    while (AvailableQueue->empty() && !PendingQueue.empty()) {
1477      // Advance the cycle to free resources. Skip ahead to the next ready SU.
1478      assert(MinAvailableCycle < UINT_MAX && "MinAvailableCycle uninitialized");
1479      AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
1480    }
1481  }
1482
1483  // Reverse the order if it is bottom up.
1484  std::reverse(Sequence.begin(), Sequence.end());
1485
1486#ifndef NDEBUG
1487  VerifyScheduledSequence(/*isBottomUp=*/true);
1488#endif
1489}
1490
1491//===----------------------------------------------------------------------===//
1492//                RegReductionPriorityQueue Definition
1493//===----------------------------------------------------------------------===//
1494//
1495// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1496// to reduce register pressure.
1497//
1498namespace {
1499class RegReductionPQBase;
1500
1501struct queue_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1502  bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
1503};
1504
1505#ifndef NDEBUG
1506template<class SF>
1507struct reverse_sort : public queue_sort {
1508  SF &SortFunc;
1509  reverse_sort(SF &sf) : SortFunc(sf) {}
1510  reverse_sort(const reverse_sort &RHS) : SortFunc(RHS.SortFunc) {}
1511
1512  bool operator()(SUnit* left, SUnit* right) const {
1513    // reverse left/right rather than simply !SortFunc(left, right)
1514    // to expose different paths in the comparison logic.
1515    return SortFunc(right, left);
1516  }
1517};
1518#endif // NDEBUG
1519
1520/// bu_ls_rr_sort - Priority function for bottom up register pressure
1521// reduction scheduler.
1522struct bu_ls_rr_sort : public queue_sort {
1523  enum {
1524    IsBottomUp = true,
1525    HasReadyFilter = false
1526  };
1527
1528  RegReductionPQBase *SPQ;
1529  bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1530  bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1531
1532  bool operator()(SUnit* left, SUnit* right) const;
1533};
1534
1535// src_ls_rr_sort - Priority function for source order scheduler.
1536struct src_ls_rr_sort : public queue_sort {
1537  enum {
1538    IsBottomUp = true,
1539    HasReadyFilter = false
1540  };
1541
1542  RegReductionPQBase *SPQ;
1543  src_ls_rr_sort(RegReductionPQBase *spq)
1544    : SPQ(spq) {}
1545  src_ls_rr_sort(const src_ls_rr_sort &RHS)
1546    : SPQ(RHS.SPQ) {}
1547
1548  bool operator()(SUnit* left, SUnit* right) const;
1549};
1550
1551// hybrid_ls_rr_sort - Priority function for hybrid scheduler.
1552struct hybrid_ls_rr_sort : public queue_sort {
1553  enum {
1554    IsBottomUp = true,
1555    HasReadyFilter = false
1556  };
1557
1558  RegReductionPQBase *SPQ;
1559  hybrid_ls_rr_sort(RegReductionPQBase *spq)
1560    : SPQ(spq) {}
1561  hybrid_ls_rr_sort(const hybrid_ls_rr_sort &RHS)
1562    : SPQ(RHS.SPQ) {}
1563
1564  bool isReady(SUnit *SU, unsigned CurCycle) const;
1565
1566  bool operator()(SUnit* left, SUnit* right) const;
1567};
1568
1569// ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
1570// scheduler.
1571struct ilp_ls_rr_sort : public queue_sort {
1572  enum {
1573    IsBottomUp = true,
1574    HasReadyFilter = false
1575  };
1576
1577  RegReductionPQBase *SPQ;
1578  ilp_ls_rr_sort(RegReductionPQBase *spq)
1579    : SPQ(spq) {}
1580  ilp_ls_rr_sort(const ilp_ls_rr_sort &RHS)
1581    : SPQ(RHS.SPQ) {}
1582
1583  bool isReady(SUnit *SU, unsigned CurCycle) const;
1584
1585  bool operator()(SUnit* left, SUnit* right) const;
1586};
1587
1588class RegReductionPQBase : public SchedulingPriorityQueue {
1589protected:
1590  std::vector<SUnit*> Queue;
1591  unsigned CurQueueId;
1592  bool TracksRegPressure;
1593  bool SrcOrder;
1594
1595  // SUnits - The SUnits for the current graph.
1596  std::vector<SUnit> *SUnits;
1597
1598  MachineFunction &MF;
1599  const TargetInstrInfo *TII;
1600  const TargetRegisterInfo *TRI;
1601  const TargetLowering *TLI;
1602  ScheduleDAGRRList *scheduleDAG;
1603
1604  // SethiUllmanNumbers - The SethiUllman number for each node.
1605  std::vector<unsigned> SethiUllmanNumbers;
1606
1607  /// RegPressure - Tracking current reg pressure per register class.
1608  ///
1609  std::vector<unsigned> RegPressure;
1610
1611  /// RegLimit - Tracking the number of allocatable registers per register
1612  /// class.
1613  std::vector<unsigned> RegLimit;
1614
1615public:
1616  RegReductionPQBase(MachineFunction &mf,
1617                     bool hasReadyFilter,
1618                     bool tracksrp,
1619                     bool srcorder,
1620                     const TargetInstrInfo *tii,
1621                     const TargetRegisterInfo *tri,
1622                     const TargetLowering *tli)
1623    : SchedulingPriorityQueue(hasReadyFilter),
1624      CurQueueId(0), TracksRegPressure(tracksrp), SrcOrder(srcorder),
1625      MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(NULL) {
1626    if (TracksRegPressure) {
1627      unsigned NumRC = TRI->getNumRegClasses();
1628      RegLimit.resize(NumRC);
1629      RegPressure.resize(NumRC);
1630      std::fill(RegLimit.begin(), RegLimit.end(), 0);
1631      std::fill(RegPressure.begin(), RegPressure.end(), 0);
1632      for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1633             E = TRI->regclass_end(); I != E; ++I)
1634        RegLimit[(*I)->getID()] = tri->getRegPressureLimit(*I, MF);
1635    }
1636  }
1637
1638  void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1639    scheduleDAG = scheduleDag;
1640  }
1641
1642  ScheduleHazardRecognizer* getHazardRec() {
1643    return scheduleDAG->getHazardRec();
1644  }
1645
1646  void initNodes(std::vector<SUnit> &sunits);
1647
1648  void addNode(const SUnit *SU);
1649
1650  void updateNode(const SUnit *SU);
1651
1652  void releaseState() {
1653    SUnits = 0;
1654    SethiUllmanNumbers.clear();
1655    std::fill(RegPressure.begin(), RegPressure.end(), 0);
1656  }
1657
1658  unsigned getNodePriority(const SUnit *SU) const;
1659
1660  unsigned getNodeOrdering(const SUnit *SU) const {
1661    if (!SU->getNode()) return 0;
1662
1663    return scheduleDAG->DAG->GetOrdering(SU->getNode());
1664  }
1665
1666  bool empty() const { return Queue.empty(); }
1667
1668  void push(SUnit *U) {
1669    assert(!U->NodeQueueId && "Node in the queue already");
1670    U->NodeQueueId = ++CurQueueId;
1671    Queue.push_back(U);
1672  }
1673
1674  void remove(SUnit *SU) {
1675    assert(!Queue.empty() && "Queue is empty!");
1676    assert(SU->NodeQueueId != 0 && "Not in queue!");
1677    std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
1678                                                 SU);
1679    if (I != prior(Queue.end()))
1680      std::swap(*I, Queue.back());
1681    Queue.pop_back();
1682    SU->NodeQueueId = 0;
1683  }
1684
1685  bool tracksRegPressure() const { return TracksRegPressure; }
1686
1687  void dumpRegPressure() const;
1688
1689  bool HighRegPressure(const SUnit *SU) const;
1690
1691  bool MayReduceRegPressure(SUnit *SU) const;
1692
1693  int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
1694
1695  void scheduledNode(SUnit *SU);
1696
1697  void unscheduledNode(SUnit *SU);
1698
1699protected:
1700  bool canClobber(const SUnit *SU, const SUnit *Op);
1701  void AddPseudoTwoAddrDeps();
1702  void PrescheduleNodesWithMultipleUses();
1703  void CalculateSethiUllmanNumbers();
1704};
1705
1706template<class SF>
1707static SUnit *popFromQueueImpl(std::vector<SUnit*> &Q, SF &Picker) {
1708  std::vector<SUnit *>::iterator Best = Q.begin();
1709  for (std::vector<SUnit *>::iterator I = llvm::next(Q.begin()),
1710         E = Q.end(); I != E; ++I)
1711    if (Picker(*Best, *I))
1712      Best = I;
1713  SUnit *V = *Best;
1714  if (Best != prior(Q.end()))
1715    std::swap(*Best, Q.back());
1716  Q.pop_back();
1717  return V;
1718}
1719
1720template<class SF>
1721SUnit *popFromQueue(std::vector<SUnit*> &Q, SF &Picker, ScheduleDAG *DAG) {
1722#ifndef NDEBUG
1723  if (DAG->StressSched) {
1724    reverse_sort<SF> RPicker(Picker);
1725    return popFromQueueImpl(Q, RPicker);
1726  }
1727#endif
1728  (void)DAG;
1729  return popFromQueueImpl(Q, Picker);
1730}
1731
1732template<class SF>
1733class RegReductionPriorityQueue : public RegReductionPQBase {
1734  SF Picker;
1735
1736public:
1737  RegReductionPriorityQueue(MachineFunction &mf,
1738                            bool tracksrp,
1739                            bool srcorder,
1740                            const TargetInstrInfo *tii,
1741                            const TargetRegisterInfo *tri,
1742                            const TargetLowering *tli)
1743    : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
1744                         tii, tri, tli),
1745      Picker(this) {}
1746
1747  bool isBottomUp() const { return SF::IsBottomUp; }
1748
1749  bool isReady(SUnit *U) const {
1750    return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
1751  }
1752
1753  SUnit *pop() {
1754    if (Queue.empty()) return NULL;
1755
1756    SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
1757    V->NodeQueueId = 0;
1758    return V;
1759  }
1760
1761#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1762  void dump(ScheduleDAG *DAG) const {
1763    // Emulate pop() without clobbering NodeQueueIds.
1764    std::vector<SUnit*> DumpQueue = Queue;
1765    SF DumpPicker = Picker;
1766    while (!DumpQueue.empty()) {
1767      SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
1768      dbgs() << "Height " << SU->getHeight() << ": ";
1769      SU->dump(DAG);
1770    }
1771  }
1772#endif
1773};
1774
1775typedef RegReductionPriorityQueue<bu_ls_rr_sort>
1776BURegReductionPriorityQueue;
1777
1778typedef RegReductionPriorityQueue<src_ls_rr_sort>
1779SrcRegReductionPriorityQueue;
1780
1781typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
1782HybridBURRPriorityQueue;
1783
1784typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
1785ILPBURRPriorityQueue;
1786} // end anonymous namespace
1787
1788//===----------------------------------------------------------------------===//
1789//           Static Node Priority for Register Pressure Reduction
1790//===----------------------------------------------------------------------===//
1791
1792// Check for special nodes that bypass scheduling heuristics.
1793// Currently this pushes TokenFactor nodes down, but may be used for other
1794// pseudo-ops as well.
1795//
1796// Return -1 to schedule right above left, 1 for left above right.
1797// Return 0 if no bias exists.
1798static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
1799  bool LSchedLow = left->isScheduleLow;
1800  bool RSchedLow = right->isScheduleLow;
1801  if (LSchedLow != RSchedLow)
1802    return LSchedLow < RSchedLow ? 1 : -1;
1803  return 0;
1804}
1805
1806/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
1807/// Smaller number is the higher priority.
1808static unsigned
1809CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1810  unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
1811  if (SethiUllmanNumber != 0)
1812    return SethiUllmanNumber;
1813
1814  unsigned Extra = 0;
1815  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1816       I != E; ++I) {
1817    if (I->isCtrl()) continue;  // ignore chain preds
1818    SUnit *PredSU = I->getSUnit();
1819    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
1820    if (PredSethiUllman > SethiUllmanNumber) {
1821      SethiUllmanNumber = PredSethiUllman;
1822      Extra = 0;
1823    } else if (PredSethiUllman == SethiUllmanNumber)
1824      ++Extra;
1825  }
1826
1827  SethiUllmanNumber += Extra;
1828
1829  if (SethiUllmanNumber == 0)
1830    SethiUllmanNumber = 1;
1831
1832  return SethiUllmanNumber;
1833}
1834
1835/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1836/// scheduling units.
1837void RegReductionPQBase::CalculateSethiUllmanNumbers() {
1838  SethiUllmanNumbers.assign(SUnits->size(), 0);
1839
1840  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1841    CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1842}
1843
1844void RegReductionPQBase::addNode(const SUnit *SU) {
1845  unsigned SUSize = SethiUllmanNumbers.size();
1846  if (SUnits->size() > SUSize)
1847    SethiUllmanNumbers.resize(SUSize*2, 0);
1848  CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1849}
1850
1851void RegReductionPQBase::updateNode(const SUnit *SU) {
1852  SethiUllmanNumbers[SU->NodeNum] = 0;
1853  CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1854}
1855
1856// Lower priority means schedule further down. For bottom-up scheduling, lower
1857// priority SUs are scheduled before higher priority SUs.
1858unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
1859  assert(SU->NodeNum < SethiUllmanNumbers.size());
1860  unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
1861  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1862    // CopyToReg should be close to its uses to facilitate coalescing and
1863    // avoid spilling.
1864    return 0;
1865  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
1866      Opc == TargetOpcode::SUBREG_TO_REG ||
1867      Opc == TargetOpcode::INSERT_SUBREG)
1868    // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
1869    // close to their uses to facilitate coalescing.
1870    return 0;
1871  if (SU->NumSuccs == 0 && SU->NumPreds != 0)
1872    // If SU does not have a register use, i.e. it doesn't produce a value
1873    // that would be consumed (e.g. store), then it terminates a chain of
1874    // computation.  Give it a large SethiUllman number so it will be
1875    // scheduled right before its predecessors that it doesn't lengthen
1876    // their live ranges.
1877    return 0xffff;
1878  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
1879    // If SU does not have a register def, schedule it close to its uses
1880    // because it does not lengthen any live ranges.
1881    return 0;
1882#if 1
1883  return SethiUllmanNumbers[SU->NodeNum];
1884#else
1885  unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
1886  if (SU->isCallOp) {
1887    // FIXME: This assumes all of the defs are used as call operands.
1888    int NP = (int)Priority - SU->getNode()->getNumValues();
1889    return (NP > 0) ? NP : 0;
1890  }
1891  return Priority;
1892#endif
1893}
1894
1895//===----------------------------------------------------------------------===//
1896//                     Register Pressure Tracking
1897//===----------------------------------------------------------------------===//
1898
1899void RegReductionPQBase::dumpRegPressure() const {
1900#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1901  for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1902         E = TRI->regclass_end(); I != E; ++I) {
1903    const TargetRegisterClass *RC = *I;
1904    unsigned Id = RC->getID();
1905    unsigned RP = RegPressure[Id];
1906    if (!RP) continue;
1907    DEBUG(dbgs() << RC->getName() << ": " << RP << " / " << RegLimit[Id]
1908          << '\n');
1909  }
1910#endif
1911}
1912
1913bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
1914  if (!TLI)
1915    return false;
1916
1917  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
1918       I != E; ++I) {
1919    if (I->isCtrl())
1920      continue;
1921    SUnit *PredSU = I->getSUnit();
1922    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1923    // to cover the number of registers defined (they are all live).
1924    if (PredSU->NumRegDefsLeft == 0) {
1925      continue;
1926    }
1927    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1928         RegDefPos.IsValid(); RegDefPos.Advance()) {
1929      unsigned RCId, Cost;
1930      GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
1931
1932      if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
1933        return true;
1934    }
1935  }
1936  return false;
1937}
1938
1939bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
1940  const SDNode *N = SU->getNode();
1941
1942  if (!N->isMachineOpcode() || !SU->NumSuccs)
1943    return false;
1944
1945  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1946  for (unsigned i = 0; i != NumDefs; ++i) {
1947    EVT VT = N->getValueType(i);
1948    if (!N->hasAnyUseOfValue(i))
1949      continue;
1950    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1951    if (RegPressure[RCId] >= RegLimit[RCId])
1952      return true;
1953  }
1954  return false;
1955}
1956
1957// Compute the register pressure contribution by this instruction by count up
1958// for uses that are not live and down for defs. Only count register classes
1959// that are already under high pressure. As a side effect, compute the number of
1960// uses of registers that are already live.
1961//
1962// FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
1963// so could probably be factored.
1964int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
1965  LiveUses = 0;
1966  int PDiff = 0;
1967  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
1968       I != E; ++I) {
1969    if (I->isCtrl())
1970      continue;
1971    SUnit *PredSU = I->getSUnit();
1972    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1973    // to cover the number of registers defined (they are all live).
1974    if (PredSU->NumRegDefsLeft == 0) {
1975      if (PredSU->getNode()->isMachineOpcode())
1976        ++LiveUses;
1977      continue;
1978    }
1979    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1980         RegDefPos.IsValid(); RegDefPos.Advance()) {
1981      EVT VT = RegDefPos.GetValue();
1982      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1983      if (RegPressure[RCId] >= RegLimit[RCId])
1984        ++PDiff;
1985    }
1986  }
1987  const SDNode *N = SU->getNode();
1988
1989  if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
1990    return PDiff;
1991
1992  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1993  for (unsigned i = 0; i != NumDefs; ++i) {
1994    EVT VT = N->getValueType(i);
1995    if (!N->hasAnyUseOfValue(i))
1996      continue;
1997    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1998    if (RegPressure[RCId] >= RegLimit[RCId])
1999      --PDiff;
2000  }
2001  return PDiff;
2002}
2003
2004void RegReductionPQBase::scheduledNode(SUnit *SU) {
2005  if (!TracksRegPressure)
2006    return;
2007
2008  if (!SU->getNode())
2009    return;
2010
2011  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2012       I != E; ++I) {
2013    if (I->isCtrl())
2014      continue;
2015    SUnit *PredSU = I->getSUnit();
2016    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2017    // to cover the number of registers defined (they are all live).
2018    if (PredSU->NumRegDefsLeft == 0) {
2019      continue;
2020    }
2021    // FIXME: The ScheduleDAG currently loses information about which of a
2022    // node's values is consumed by each dependence. Consequently, if the node
2023    // defines multiple register classes, we don't know which to pressurize
2024    // here. Instead the following loop consumes the register defs in an
2025    // arbitrary order. At least it handles the common case of clustered loads
2026    // to the same class. For precise liveness, each SDep needs to indicate the
2027    // result number. But that tightly couples the ScheduleDAG with the
2028    // SelectionDAG making updates tricky. A simpler hack would be to attach a
2029    // value type or register class to SDep.
2030    //
2031    // The most important aspect of register tracking is balancing the increase
2032    // here with the reduction further below. Note that this SU may use multiple
2033    // defs in PredSU. The can't be determined here, but we've already
2034    // compensated by reducing NumRegDefsLeft in PredSU during
2035    // ScheduleDAGSDNodes::AddSchedEdges.
2036    --PredSU->NumRegDefsLeft;
2037    unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
2038    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2039         RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2040      if (SkipRegDefs)
2041        continue;
2042
2043      unsigned RCId, Cost;
2044      GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2045      RegPressure[RCId] += Cost;
2046      break;
2047    }
2048  }
2049
2050  // We should have this assert, but there may be dead SDNodes that never
2051  // materialize as SUnits, so they don't appear to generate liveness.
2052  //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
2053  int SkipRegDefs = (int)SU->NumRegDefsLeft;
2054  for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
2055       RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2056    if (SkipRegDefs > 0)
2057      continue;
2058    unsigned RCId, Cost;
2059    GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2060    if (RegPressure[RCId] < Cost) {
2061      // Register pressure tracking is imprecise. This can happen. But we try
2062      // hard not to let it happen because it likely results in poor scheduling.
2063      DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") has too many regdefs\n");
2064      RegPressure[RCId] = 0;
2065    }
2066    else {
2067      RegPressure[RCId] -= Cost;
2068    }
2069  }
2070  dumpRegPressure();
2071}
2072
2073void RegReductionPQBase::unscheduledNode(SUnit *SU) {
2074  if (!TracksRegPressure)
2075    return;
2076
2077  const SDNode *N = SU->getNode();
2078  if (!N) return;
2079
2080  if (!N->isMachineOpcode()) {
2081    if (N->getOpcode() != ISD::CopyToReg)
2082      return;
2083  } else {
2084    unsigned Opc = N->getMachineOpcode();
2085    if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2086        Opc == TargetOpcode::INSERT_SUBREG ||
2087        Opc == TargetOpcode::SUBREG_TO_REG ||
2088        Opc == TargetOpcode::REG_SEQUENCE ||
2089        Opc == TargetOpcode::IMPLICIT_DEF)
2090      return;
2091  }
2092
2093  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2094       I != E; ++I) {
2095    if (I->isCtrl())
2096      continue;
2097    SUnit *PredSU = I->getSUnit();
2098    // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
2099    // counts data deps.
2100    if (PredSU->NumSuccsLeft != PredSU->Succs.size())
2101      continue;
2102    const SDNode *PN = PredSU->getNode();
2103    if (!PN->isMachineOpcode()) {
2104      if (PN->getOpcode() == ISD::CopyFromReg) {
2105        EVT VT = PN->getValueType(0);
2106        unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2107        RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2108      }
2109      continue;
2110    }
2111    unsigned POpc = PN->getMachineOpcode();
2112    if (POpc == TargetOpcode::IMPLICIT_DEF)
2113      continue;
2114    if (POpc == TargetOpcode::EXTRACT_SUBREG ||
2115        POpc == TargetOpcode::INSERT_SUBREG ||
2116        POpc == TargetOpcode::SUBREG_TO_REG) {
2117      EVT VT = PN->getValueType(0);
2118      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2119      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2120      continue;
2121    }
2122    unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
2123    for (unsigned i = 0; i != NumDefs; ++i) {
2124      EVT VT = PN->getValueType(i);
2125      if (!PN->hasAnyUseOfValue(i))
2126        continue;
2127      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2128      if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
2129        // Register pressure tracking is imprecise. This can happen.
2130        RegPressure[RCId] = 0;
2131      else
2132        RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
2133    }
2134  }
2135
2136  // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
2137  // may transfer data dependencies to CopyToReg.
2138  if (SU->NumSuccs && N->isMachineOpcode()) {
2139    unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2140    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2141      EVT VT = N->getValueType(i);
2142      if (VT == MVT::Glue || VT == MVT::Other)
2143        continue;
2144      if (!N->hasAnyUseOfValue(i))
2145        continue;
2146      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2147      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2148    }
2149  }
2150
2151  dumpRegPressure();
2152}
2153
2154//===----------------------------------------------------------------------===//
2155//           Dynamic Node Priority for Register Pressure Reduction
2156//===----------------------------------------------------------------------===//
2157
2158/// closestSucc - Returns the scheduled cycle of the successor which is
2159/// closest to the current cycle.
2160static unsigned closestSucc(const SUnit *SU) {
2161  unsigned MaxHeight = 0;
2162  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2163       I != E; ++I) {
2164    if (I->isCtrl()) continue;  // ignore chain succs
2165    unsigned Height = I->getSUnit()->getHeight();
2166    // If there are bunch of CopyToRegs stacked up, they should be considered
2167    // to be at the same position.
2168    if (I->getSUnit()->getNode() &&
2169        I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
2170      Height = closestSucc(I->getSUnit())+1;
2171    if (Height > MaxHeight)
2172      MaxHeight = Height;
2173  }
2174  return MaxHeight;
2175}
2176
2177/// calcMaxScratches - Returns an cost estimate of the worse case requirement
2178/// for scratch registers, i.e. number of data dependencies.
2179static unsigned calcMaxScratches(const SUnit *SU) {
2180  unsigned Scratches = 0;
2181  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2182       I != E; ++I) {
2183    if (I->isCtrl()) continue;  // ignore chain preds
2184    Scratches++;
2185  }
2186  return Scratches;
2187}
2188
2189/// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
2190/// CopyFromReg from a virtual register.
2191static bool hasOnlyLiveInOpers(const SUnit *SU) {
2192  bool RetVal = false;
2193  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2194       I != E; ++I) {
2195    if (I->isCtrl()) continue;
2196    const SUnit *PredSU = I->getSUnit();
2197    if (PredSU->getNode() &&
2198        PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
2199      unsigned Reg =
2200        cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
2201      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2202        RetVal = true;
2203        continue;
2204      }
2205    }
2206    return false;
2207  }
2208  return RetVal;
2209}
2210
2211/// hasOnlyLiveOutUses - Return true if SU has only value successors that are
2212/// CopyToReg to a virtual register. This SU def is probably a liveout and
2213/// it has no other use. It should be scheduled closer to the terminator.
2214static bool hasOnlyLiveOutUses(const SUnit *SU) {
2215  bool RetVal = false;
2216  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2217       I != E; ++I) {
2218    if (I->isCtrl()) continue;
2219    const SUnit *SuccSU = I->getSUnit();
2220    if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
2221      unsigned Reg =
2222        cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
2223      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2224        RetVal = true;
2225        continue;
2226      }
2227    }
2228    return false;
2229  }
2230  return RetVal;
2231}
2232
2233// Set isVRegCycle for a node with only live in opers and live out uses. Also
2234// set isVRegCycle for its CopyFromReg operands.
2235//
2236// This is only relevant for single-block loops, in which case the VRegCycle
2237// node is likely an induction variable in which the operand and target virtual
2238// registers should be coalesced (e.g. pre/post increment values). Setting the
2239// isVRegCycle flag helps the scheduler prioritize other uses of the same
2240// CopyFromReg so that this node becomes the virtual register "kill". This
2241// avoids interference between the values live in and out of the block and
2242// eliminates a copy inside the loop.
2243static void initVRegCycle(SUnit *SU) {
2244  if (DisableSchedVRegCycle)
2245    return;
2246
2247  if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
2248    return;
2249
2250  DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
2251
2252  SU->isVRegCycle = true;
2253
2254  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2255       I != E; ++I) {
2256    if (I->isCtrl()) continue;
2257    I->getSUnit()->isVRegCycle = true;
2258  }
2259}
2260
2261// After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
2262// CopyFromReg operands. We should no longer penalize other uses of this VReg.
2263static void resetVRegCycle(SUnit *SU) {
2264  if (!SU->isVRegCycle)
2265    return;
2266
2267  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
2268       I != E; ++I) {
2269    if (I->isCtrl()) continue;  // ignore chain preds
2270    SUnit *PredSU = I->getSUnit();
2271    if (PredSU->isVRegCycle) {
2272      assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
2273             "VRegCycle def must be CopyFromReg");
2274      I->getSUnit()->isVRegCycle = 0;
2275    }
2276  }
2277}
2278
2279// Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
2280// means a node that defines the VRegCycle has not been scheduled yet.
2281static bool hasVRegCycleUse(const SUnit *SU) {
2282  // If this SU also defines the VReg, don't hoist it as a "use".
2283  if (SU->isVRegCycle)
2284    return false;
2285
2286  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
2287       I != E; ++I) {
2288    if (I->isCtrl()) continue;  // ignore chain preds
2289    if (I->getSUnit()->isVRegCycle &&
2290        I->getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
2291      DEBUG(dbgs() << "  VReg cycle use: SU (" << SU->NodeNum << ")\n");
2292      return true;
2293    }
2294  }
2295  return false;
2296}
2297
2298// Check for either a dependence (latency) or resource (hazard) stall.
2299//
2300// Note: The ScheduleHazardRecognizer interface requires a non-const SU.
2301static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
2302  if ((int)SPQ->getCurCycle() < Height) return true;
2303  if (SPQ->getHazardRec()->getHazardType(SU, 0)
2304      != ScheduleHazardRecognizer::NoHazard)
2305    return true;
2306  return false;
2307}
2308
2309// Return -1 if left has higher priority, 1 if right has higher priority.
2310// Return 0 if latency-based priority is equivalent.
2311static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
2312                            RegReductionPQBase *SPQ) {
2313  // Scheduling an instruction that uses a VReg whose postincrement has not yet
2314  // been scheduled will induce a copy. Model this as an extra cycle of latency.
2315  int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
2316  int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
2317  int LHeight = (int)left->getHeight() + LPenalty;
2318  int RHeight = (int)right->getHeight() + RPenalty;
2319
2320  bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
2321    BUHasStall(left, LHeight, SPQ);
2322  bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
2323    BUHasStall(right, RHeight, SPQ);
2324
2325  // If scheduling one of the node will cause a pipeline stall, delay it.
2326  // If scheduling either one of the node will cause a pipeline stall, sort
2327  // them according to their height.
2328  if (LStall) {
2329    if (!RStall)
2330      return 1;
2331    if (LHeight != RHeight)
2332      return LHeight > RHeight ? 1 : -1;
2333  } else if (RStall)
2334    return -1;
2335
2336  // If either node is scheduling for latency, sort them by height/depth
2337  // and latency.
2338  if (!checkPref || (left->SchedulingPref == Sched::ILP ||
2339                     right->SchedulingPref == Sched::ILP)) {
2340    // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
2341    // is enabled, grouping instructions by cycle, then its height is already
2342    // covered so only its depth matters. We also reach this point if both stall
2343    // but have the same height.
2344    if (!SPQ->getHazardRec()->isEnabled()) {
2345      if (LHeight != RHeight)
2346        return LHeight > RHeight ? 1 : -1;
2347    }
2348    int LDepth = left->getDepth() - LPenalty;
2349    int RDepth = right->getDepth() - RPenalty;
2350    if (LDepth != RDepth) {
2351      DEBUG(dbgs() << "  Comparing latency of SU (" << left->NodeNum
2352            << ") depth " << LDepth << " vs SU (" << right->NodeNum
2353            << ") depth " << RDepth << "\n");
2354      return LDepth < RDepth ? 1 : -1;
2355    }
2356    if (left->Latency != right->Latency)
2357      return left->Latency > right->Latency ? 1 : -1;
2358  }
2359  return 0;
2360}
2361
2362static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
2363  // Schedule physical register definitions close to their use. This is
2364  // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
2365  // long as shortening physreg live ranges is generally good, we can defer
2366  // creating a subtarget hook.
2367  if (!DisableSchedPhysRegJoin) {
2368    bool LHasPhysReg = left->hasPhysRegDefs;
2369    bool RHasPhysReg = right->hasPhysRegDefs;
2370    if (LHasPhysReg != RHasPhysReg) {
2371      #ifndef NDEBUG
2372      const char *const PhysRegMsg[] = {" has no physreg"," defines a physreg"};
2373      #endif
2374      DEBUG(dbgs() << "  SU (" << left->NodeNum << ") "
2375            << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum << ") "
2376            << PhysRegMsg[RHasPhysReg] << "\n");
2377      return LHasPhysReg < RHasPhysReg;
2378    }
2379  }
2380
2381  // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
2382  unsigned LPriority = SPQ->getNodePriority(left);
2383  unsigned RPriority = SPQ->getNodePriority(right);
2384
2385  // Be really careful about hoisting call operands above previous calls.
2386  // Only allows it if it would reduce register pressure.
2387  if (left->isCall && right->isCallOp) {
2388    unsigned RNumVals = right->getNode()->getNumValues();
2389    RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
2390  }
2391  if (right->isCall && left->isCallOp) {
2392    unsigned LNumVals = left->getNode()->getNumValues();
2393    LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
2394  }
2395
2396  if (LPriority != RPriority)
2397    return LPriority > RPriority;
2398
2399  // One or both of the nodes are calls and their sethi-ullman numbers are the
2400  // same, then keep source order.
2401  if (left->isCall || right->isCall) {
2402    unsigned LOrder = SPQ->getNodeOrdering(left);
2403    unsigned ROrder = SPQ->getNodeOrdering(right);
2404
2405    // Prefer an ordering where the lower the non-zero order number, the higher
2406    // the preference.
2407    if ((LOrder || ROrder) && LOrder != ROrder)
2408      return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2409  }
2410
2411  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
2412  // e.g.
2413  // t1 = op t2, c1
2414  // t3 = op t4, c2
2415  //
2416  // and the following instructions are both ready.
2417  // t2 = op c3
2418  // t4 = op c4
2419  //
2420  // Then schedule t2 = op first.
2421  // i.e.
2422  // t4 = op c4
2423  // t2 = op c3
2424  // t1 = op t2, c1
2425  // t3 = op t4, c2
2426  //
2427  // This creates more short live intervals.
2428  unsigned LDist = closestSucc(left);
2429  unsigned RDist = closestSucc(right);
2430  if (LDist != RDist)
2431    return LDist < RDist;
2432
2433  // How many registers becomes live when the node is scheduled.
2434  unsigned LScratch = calcMaxScratches(left);
2435  unsigned RScratch = calcMaxScratches(right);
2436  if (LScratch != RScratch)
2437    return LScratch > RScratch;
2438
2439  // Comparing latency against a call makes little sense unless the node
2440  // is register pressure-neutral.
2441  if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
2442    return (left->NodeQueueId > right->NodeQueueId);
2443
2444  // Do not compare latencies when one or both of the nodes are calls.
2445  if (!DisableSchedCycles &&
2446      !(left->isCall || right->isCall)) {
2447    int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
2448    if (result != 0)
2449      return result > 0;
2450  }
2451  else {
2452    if (left->getHeight() != right->getHeight())
2453      return left->getHeight() > right->getHeight();
2454
2455    if (left->getDepth() != right->getDepth())
2456      return left->getDepth() < right->getDepth();
2457  }
2458
2459  assert(left->NodeQueueId && right->NodeQueueId &&
2460         "NodeQueueId cannot be zero");
2461  return (left->NodeQueueId > right->NodeQueueId);
2462}
2463
2464// Bottom up
2465bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2466  if (int res = checkSpecialNodes(left, right))
2467    return res > 0;
2468
2469  return BURRSort(left, right, SPQ);
2470}
2471
2472// Source order, otherwise bottom up.
2473bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2474  if (int res = checkSpecialNodes(left, right))
2475    return res > 0;
2476
2477  unsigned LOrder = SPQ->getNodeOrdering(left);
2478  unsigned ROrder = SPQ->getNodeOrdering(right);
2479
2480  // Prefer an ordering where the lower the non-zero order number, the higher
2481  // the preference.
2482  if ((LOrder || ROrder) && LOrder != ROrder)
2483    return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2484
2485  return BURRSort(left, right, SPQ);
2486}
2487
2488// If the time between now and when the instruction will be ready can cover
2489// the spill code, then avoid adding it to the ready queue. This gives long
2490// stalls highest priority and allows hoisting across calls. It should also
2491// speed up processing the available queue.
2492bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2493  static const unsigned ReadyDelay = 3;
2494
2495  if (SPQ->MayReduceRegPressure(SU)) return true;
2496
2497  if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
2498
2499  if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
2500      != ScheduleHazardRecognizer::NoHazard)
2501    return false;
2502
2503  return true;
2504}
2505
2506// Return true if right should be scheduled with higher priority than left.
2507bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2508  if (int res = checkSpecialNodes(left, right))
2509    return res > 0;
2510
2511  if (left->isCall || right->isCall)
2512    // No way to compute latency of calls.
2513    return BURRSort(left, right, SPQ);
2514
2515  bool LHigh = SPQ->HighRegPressure(left);
2516  bool RHigh = SPQ->HighRegPressure(right);
2517  // Avoid causing spills. If register pressure is high, schedule for
2518  // register pressure reduction.
2519  if (LHigh && !RHigh) {
2520    DEBUG(dbgs() << "  pressure SU(" << left->NodeNum << ") > SU("
2521          << right->NodeNum << ")\n");
2522    return true;
2523  }
2524  else if (!LHigh && RHigh) {
2525    DEBUG(dbgs() << "  pressure SU(" << right->NodeNum << ") > SU("
2526          << left->NodeNum << ")\n");
2527    return false;
2528  }
2529  if (!LHigh && !RHigh) {
2530    int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
2531    if (result != 0)
2532      return result > 0;
2533  }
2534  return BURRSort(left, right, SPQ);
2535}
2536
2537// Schedule as many instructions in each cycle as possible. So don't make an
2538// instruction available unless it is ready in the current cycle.
2539bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2540  if (SU->getHeight() > CurCycle) return false;
2541
2542  if (SPQ->getHazardRec()->getHazardType(SU, 0)
2543      != ScheduleHazardRecognizer::NoHazard)
2544    return false;
2545
2546  return true;
2547}
2548
2549static bool canEnableCoalescing(SUnit *SU) {
2550  unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2551  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2552    // CopyToReg should be close to its uses to facilitate coalescing and
2553    // avoid spilling.
2554    return true;
2555
2556  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2557      Opc == TargetOpcode::SUBREG_TO_REG ||
2558      Opc == TargetOpcode::INSERT_SUBREG)
2559    // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2560    // close to their uses to facilitate coalescing.
2561    return true;
2562
2563  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2564    // If SU does not have a register def, schedule it close to its uses
2565    // because it does not lengthen any live ranges.
2566    return true;
2567
2568  return false;
2569}
2570
2571// list-ilp is currently an experimental scheduler that allows various
2572// heuristics to be enabled prior to the normal register reduction logic.
2573bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2574  if (int res = checkSpecialNodes(left, right))
2575    return res > 0;
2576
2577  if (left->isCall || right->isCall)
2578    // No way to compute latency of calls.
2579    return BURRSort(left, right, SPQ);
2580
2581  unsigned LLiveUses = 0, RLiveUses = 0;
2582  int LPDiff = 0, RPDiff = 0;
2583  if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
2584    LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
2585    RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
2586  }
2587  if (!DisableSchedRegPressure && LPDiff != RPDiff) {
2588    DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum << "): " << LPDiff
2589          << " != SU(" << right->NodeNum << "): " << RPDiff << "\n");
2590    return LPDiff > RPDiff;
2591  }
2592
2593  if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
2594    bool LReduce = canEnableCoalescing(left);
2595    bool RReduce = canEnableCoalescing(right);
2596    if (LReduce && !RReduce) return false;
2597    if (RReduce && !LReduce) return true;
2598  }
2599
2600  if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
2601    DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
2602          << " != SU(" << right->NodeNum << "): " << RLiveUses << "\n");
2603    return LLiveUses < RLiveUses;
2604  }
2605
2606  if (!DisableSchedStalls) {
2607    bool LStall = BUHasStall(left, left->getHeight(), SPQ);
2608    bool RStall = BUHasStall(right, right->getHeight(), SPQ);
2609    if (LStall != RStall)
2610      return left->getHeight() > right->getHeight();
2611  }
2612
2613  if (!DisableSchedCriticalPath) {
2614    int spread = (int)left->getDepth() - (int)right->getDepth();
2615    if (std::abs(spread) > MaxReorderWindow) {
2616      DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
2617            << left->getDepth() << " != SU(" << right->NodeNum << "): "
2618            << right->getDepth() << "\n");
2619      return left->getDepth() < right->getDepth();
2620    }
2621  }
2622
2623  if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
2624    int spread = (int)left->getHeight() - (int)right->getHeight();
2625    if (std::abs(spread) > MaxReorderWindow)
2626      return left->getHeight() > right->getHeight();
2627  }
2628
2629  return BURRSort(left, right, SPQ);
2630}
2631
2632void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
2633  SUnits = &sunits;
2634  // Add pseudo dependency edges for two-address nodes.
2635  if (!Disable2AddrHack)
2636    AddPseudoTwoAddrDeps();
2637  // Reroute edges to nodes with multiple uses.
2638  if (!TracksRegPressure && !SrcOrder)
2639    PrescheduleNodesWithMultipleUses();
2640  // Calculate node priorities.
2641  CalculateSethiUllmanNumbers();
2642
2643  // For single block loops, mark nodes that look like canonical IV increments.
2644  if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB)) {
2645    for (unsigned i = 0, e = sunits.size(); i != e; ++i) {
2646      initVRegCycle(&sunits[i]);
2647    }
2648  }
2649}
2650
2651//===----------------------------------------------------------------------===//
2652//                    Preschedule for Register Pressure
2653//===----------------------------------------------------------------------===//
2654
2655bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
2656  if (SU->isTwoAddress) {
2657    unsigned Opc = SU->getNode()->getMachineOpcode();
2658    const MCInstrDesc &MCID = TII->get(Opc);
2659    unsigned NumRes = MCID.getNumDefs();
2660    unsigned NumOps = MCID.getNumOperands() - NumRes;
2661    for (unsigned i = 0; i != NumOps; ++i) {
2662      if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
2663        SDNode *DU = SU->getNode()->getOperand(i).getNode();
2664        if (DU->getNodeId() != -1 &&
2665            Op->OrigNode == &(*SUnits)[DU->getNodeId()])
2666          return true;
2667      }
2668    }
2669  }
2670  return false;
2671}
2672
2673/// canClobberReachingPhysRegUse - True if SU would clobber one of it's
2674/// successor's explicit physregs whose definition can reach DepSU.
2675/// i.e. DepSU should not be scheduled above SU.
2676static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
2677                                         ScheduleDAGRRList *scheduleDAG,
2678                                         const TargetInstrInfo *TII,
2679                                         const TargetRegisterInfo *TRI) {
2680  const uint16_t *ImpDefs
2681    = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
2682  const uint32_t *RegMask = getNodeRegMask(SU->getNode());
2683  if(!ImpDefs && !RegMask)
2684    return false;
2685
2686  for (SUnit::const_succ_iterator SI = SU->Succs.begin(), SE = SU->Succs.end();
2687       SI != SE; ++SI) {
2688    SUnit *SuccSU = SI->getSUnit();
2689    for (SUnit::const_pred_iterator PI = SuccSU->Preds.begin(),
2690           PE = SuccSU->Preds.end(); PI != PE; ++PI) {
2691      if (!PI->isAssignedRegDep())
2692        continue;
2693
2694      if (RegMask && MachineOperand::clobbersPhysReg(RegMask, PI->getReg()) &&
2695          scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
2696        return true;
2697
2698      if (ImpDefs)
2699        for (const uint16_t *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
2700          // Return true if SU clobbers this physical register use and the
2701          // definition of the register reaches from DepSU. IsReachable queries
2702          // a topological forward sort of the DAG (following the successors).
2703          if (TRI->regsOverlap(*ImpDef, PI->getReg()) &&
2704              scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
2705            return true;
2706    }
2707  }
2708  return false;
2709}
2710
2711/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
2712/// physical register defs.
2713static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
2714                                  const TargetInstrInfo *TII,
2715                                  const TargetRegisterInfo *TRI) {
2716  SDNode *N = SuccSU->getNode();
2717  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2718  const uint16_t *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
2719  assert(ImpDefs && "Caller should check hasPhysRegDefs");
2720  for (const SDNode *SUNode = SU->getNode(); SUNode;
2721       SUNode = SUNode->getGluedNode()) {
2722    if (!SUNode->isMachineOpcode())
2723      continue;
2724    const uint16_t *SUImpDefs =
2725      TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
2726    const uint32_t *SURegMask = getNodeRegMask(SUNode);
2727    if (!SUImpDefs && !SURegMask)
2728      continue;
2729    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2730      EVT VT = N->getValueType(i);
2731      if (VT == MVT::Glue || VT == MVT::Other)
2732        continue;
2733      if (!N->hasAnyUseOfValue(i))
2734        continue;
2735      unsigned Reg = ImpDefs[i - NumDefs];
2736      if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
2737        return true;
2738      if (!SUImpDefs)
2739        continue;
2740      for (;*SUImpDefs; ++SUImpDefs) {
2741        unsigned SUReg = *SUImpDefs;
2742        if (TRI->regsOverlap(Reg, SUReg))
2743          return true;
2744      }
2745    }
2746  }
2747  return false;
2748}
2749
2750/// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
2751/// are not handled well by the general register pressure reduction
2752/// heuristics. When presented with code like this:
2753///
2754///      N
2755///    / |
2756///   /  |
2757///  U  store
2758///  |
2759/// ...
2760///
2761/// the heuristics tend to push the store up, but since the
2762/// operand of the store has another use (U), this would increase
2763/// the length of that other use (the U->N edge).
2764///
2765/// This function transforms code like the above to route U's
2766/// dependence through the store when possible, like this:
2767///
2768///      N
2769///      ||
2770///      ||
2771///     store
2772///       |
2773///       U
2774///       |
2775///      ...
2776///
2777/// This results in the store being scheduled immediately
2778/// after N, which shortens the U->N live range, reducing
2779/// register pressure.
2780///
2781void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
2782  // Visit all the nodes in topological order, working top-down.
2783  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2784    SUnit *SU = &(*SUnits)[i];
2785    // For now, only look at nodes with no data successors, such as stores.
2786    // These are especially important, due to the heuristics in
2787    // getNodePriority for nodes with no data successors.
2788    if (SU->NumSuccs != 0)
2789      continue;
2790    // For now, only look at nodes with exactly one data predecessor.
2791    if (SU->NumPreds != 1)
2792      continue;
2793    // Avoid prescheduling copies to virtual registers, which don't behave
2794    // like other nodes from the perspective of scheduling heuristics.
2795    if (SDNode *N = SU->getNode())
2796      if (N->getOpcode() == ISD::CopyToReg &&
2797          TargetRegisterInfo::isVirtualRegister
2798            (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2799        continue;
2800
2801    // Locate the single data predecessor.
2802    SUnit *PredSU = 0;
2803    for (SUnit::const_pred_iterator II = SU->Preds.begin(),
2804         EE = SU->Preds.end(); II != EE; ++II)
2805      if (!II->isCtrl()) {
2806        PredSU = II->getSUnit();
2807        break;
2808      }
2809    assert(PredSU);
2810
2811    // Don't rewrite edges that carry physregs, because that requires additional
2812    // support infrastructure.
2813    if (PredSU->hasPhysRegDefs)
2814      continue;
2815    // Short-circuit the case where SU is PredSU's only data successor.
2816    if (PredSU->NumSuccs == 1)
2817      continue;
2818    // Avoid prescheduling to copies from virtual registers, which don't behave
2819    // like other nodes from the perspective of scheduling heuristics.
2820    if (SDNode *N = SU->getNode())
2821      if (N->getOpcode() == ISD::CopyFromReg &&
2822          TargetRegisterInfo::isVirtualRegister
2823            (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2824        continue;
2825
2826    // Perform checks on the successors of PredSU.
2827    for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
2828         EE = PredSU->Succs.end(); II != EE; ++II) {
2829      SUnit *PredSuccSU = II->getSUnit();
2830      if (PredSuccSU == SU) continue;
2831      // If PredSU has another successor with no data successors, for
2832      // now don't attempt to choose either over the other.
2833      if (PredSuccSU->NumSuccs == 0)
2834        goto outer_loop_continue;
2835      // Don't break physical register dependencies.
2836      if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
2837        if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
2838          goto outer_loop_continue;
2839      // Don't introduce graph cycles.
2840      if (scheduleDAG->IsReachable(SU, PredSuccSU))
2841        goto outer_loop_continue;
2842    }
2843
2844    // Ok, the transformation is safe and the heuristics suggest it is
2845    // profitable. Update the graph.
2846    DEBUG(dbgs() << "    Prescheduling SU #" << SU->NodeNum
2847                 << " next to PredSU #" << PredSU->NodeNum
2848                 << " to guide scheduling in the presence of multiple uses\n");
2849    for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
2850      SDep Edge = PredSU->Succs[i];
2851      assert(!Edge.isAssignedRegDep());
2852      SUnit *SuccSU = Edge.getSUnit();
2853      if (SuccSU != SU) {
2854        Edge.setSUnit(PredSU);
2855        scheduleDAG->RemovePred(SuccSU, Edge);
2856        scheduleDAG->AddPred(SU, Edge);
2857        Edge.setSUnit(SU);
2858        scheduleDAG->AddPred(SuccSU, Edge);
2859        --i;
2860      }
2861    }
2862  outer_loop_continue:;
2863  }
2864}
2865
2866/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
2867/// it as a def&use operand. Add a pseudo control edge from it to the other
2868/// node (if it won't create a cycle) so the two-address one will be scheduled
2869/// first (lower in the schedule). If both nodes are two-address, favor the
2870/// one that has a CopyToReg use (more likely to be a loop induction update).
2871/// If both are two-address, but one is commutable while the other is not
2872/// commutable, favor the one that's not commutable.
2873void RegReductionPQBase::AddPseudoTwoAddrDeps() {
2874  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2875    SUnit *SU = &(*SUnits)[i];
2876    if (!SU->isTwoAddress)
2877      continue;
2878
2879    SDNode *Node = SU->getNode();
2880    if (!Node || !Node->isMachineOpcode() || SU->getNode()->getGluedNode())
2881      continue;
2882
2883    bool isLiveOut = hasOnlyLiveOutUses(SU);
2884    unsigned Opc = Node->getMachineOpcode();
2885    const MCInstrDesc &MCID = TII->get(Opc);
2886    unsigned NumRes = MCID.getNumDefs();
2887    unsigned NumOps = MCID.getNumOperands() - NumRes;
2888    for (unsigned j = 0; j != NumOps; ++j) {
2889      if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
2890        continue;
2891      SDNode *DU = SU->getNode()->getOperand(j).getNode();
2892      if (DU->getNodeId() == -1)
2893        continue;
2894      const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
2895      if (!DUSU) continue;
2896      for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
2897           E = DUSU->Succs.end(); I != E; ++I) {
2898        if (I->isCtrl()) continue;
2899        SUnit *SuccSU = I->getSUnit();
2900        if (SuccSU == SU)
2901          continue;
2902        // Be conservative. Ignore if nodes aren't at roughly the same
2903        // depth and height.
2904        if (SuccSU->getHeight() < SU->getHeight() &&
2905            (SU->getHeight() - SuccSU->getHeight()) > 1)
2906          continue;
2907        // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
2908        // constrains whatever is using the copy, instead of the copy
2909        // itself. In the case that the copy is coalesced, this
2910        // preserves the intent of the pseudo two-address heurietics.
2911        while (SuccSU->Succs.size() == 1 &&
2912               SuccSU->getNode()->isMachineOpcode() &&
2913               SuccSU->getNode()->getMachineOpcode() ==
2914                 TargetOpcode::COPY_TO_REGCLASS)
2915          SuccSU = SuccSU->Succs.front().getSUnit();
2916        // Don't constrain non-instruction nodes.
2917        if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
2918          continue;
2919        // Don't constrain nodes with physical register defs if the
2920        // predecessor can clobber them.
2921        if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
2922          if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
2923            continue;
2924        }
2925        // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
2926        // these may be coalesced away. We want them close to their uses.
2927        unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
2928        if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
2929            SuccOpc == TargetOpcode::INSERT_SUBREG ||
2930            SuccOpc == TargetOpcode::SUBREG_TO_REG)
2931          continue;
2932        if (!canClobberReachingPhysRegUse(SuccSU, SU, scheduleDAG, TII, TRI) &&
2933            (!canClobber(SuccSU, DUSU) ||
2934             (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
2935             (!SU->isCommutable && SuccSU->isCommutable)) &&
2936            !scheduleDAG->IsReachable(SuccSU, SU)) {
2937          DEBUG(dbgs() << "    Adding a pseudo-two-addr edge from SU #"
2938                       << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
2939          scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Order, /*Latency=*/0,
2940                                        /*Reg=*/0, /*isNormalMemory=*/false,
2941                                        /*isMustAlias=*/false,
2942                                        /*isArtificial=*/true));
2943        }
2944      }
2945    }
2946  }
2947}
2948
2949//===----------------------------------------------------------------------===//
2950//                         Public Constructor Functions
2951//===----------------------------------------------------------------------===//
2952
2953llvm::ScheduleDAGSDNodes *
2954llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
2955                                 CodeGenOpt::Level OptLevel) {
2956  const TargetMachine &TM = IS->TM;
2957  const TargetInstrInfo *TII = TM.getInstrInfo();
2958  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2959
2960  BURegReductionPriorityQueue *PQ =
2961    new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, 0);
2962  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2963  PQ->setScheduleDAG(SD);
2964  return SD;
2965}
2966
2967llvm::ScheduleDAGSDNodes *
2968llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
2969                                   CodeGenOpt::Level OptLevel) {
2970  const TargetMachine &TM = IS->TM;
2971  const TargetInstrInfo *TII = TM.getInstrInfo();
2972  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2973
2974  SrcRegReductionPriorityQueue *PQ =
2975    new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, 0);
2976  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2977  PQ->setScheduleDAG(SD);
2978  return SD;
2979}
2980
2981llvm::ScheduleDAGSDNodes *
2982llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
2983                                   CodeGenOpt::Level OptLevel) {
2984  const TargetMachine &TM = IS->TM;
2985  const TargetInstrInfo *TII = TM.getInstrInfo();
2986  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2987  const TargetLowering *TLI = &IS->getTargetLowering();
2988
2989  HybridBURRPriorityQueue *PQ =
2990    new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
2991
2992  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
2993  PQ->setScheduleDAG(SD);
2994  return SD;
2995}
2996
2997llvm::ScheduleDAGSDNodes *
2998llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
2999                                CodeGenOpt::Level OptLevel) {
3000  const TargetMachine &TM = IS->TM;
3001  const TargetInstrInfo *TII = TM.getInstrInfo();
3002  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
3003  const TargetLowering *TLI = &IS->getTargetLowering();
3004
3005  ILPBURRPriorityQueue *PQ =
3006    new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3007  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3008  PQ->setScheduleDAG(SD);
3009  return SD;
3010}
3011