ScheduleDAGRRList.cpp revision c6be777208f4539af400ac694d9d1dc8b992bc80
1//===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms.  The basic approach uses a priority
12// queue of available nodes to schedule.  One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "pre-RA-sched"
19#include "llvm/CodeGen/ScheduleDAG.h"
20#include "llvm/CodeGen/SchedulerRegistry.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22#include "llvm/Target/TargetData.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/PriorityQueue.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/STLExtras.h"
33#include <climits>
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
38STATISTIC(NumUnfolds,    "Number of nodes unfolded");
39STATISTIC(NumDups,       "Number of duplicated nodes");
40STATISTIC(NumCCCopies,   "Number of cross class copies");
41
42static RegisterScheduler
43  burrListDAGScheduler("list-burr",
44                       "  Bottom-up register reduction list scheduling",
45                       createBURRListDAGScheduler);
46static RegisterScheduler
47  tdrListrDAGScheduler("list-tdrr",
48                       "  Top-down register reduction list scheduling",
49                       createTDRRListDAGScheduler);
50
51namespace {
52//===----------------------------------------------------------------------===//
53/// ScheduleDAGRRList - The actual register reduction list scheduler
54/// implementation.  This supports both top-down and bottom-up scheduling.
55///
56class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAG {
57private:
58  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
59  /// it is top-down.
60  bool isBottomUp;
61
62  /// Fast - True if we are performing fast scheduling.
63  ///
64  bool Fast;
65
66  /// AvailableQueue - The priority queue to use for the available SUnits.
67  SchedulingPriorityQueue *AvailableQueue;
68
69  /// LiveRegs / LiveRegDefs - A set of physical registers and their definition
70  /// that are "live". These nodes must be scheduled before any other nodes that
71  /// modifies the registers can be scheduled.
72  SmallSet<unsigned, 4> LiveRegs;
73  std::vector<SUnit*> LiveRegDefs;
74  std::vector<unsigned> LiveRegCycles;
75
76public:
77  ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
78                    const TargetMachine &tm, bool isbottomup, bool f,
79                    SchedulingPriorityQueue *availqueue)
80    : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup), Fast(f),
81      AvailableQueue(availqueue) {
82    }
83
84  ~ScheduleDAGRRList() {
85    delete AvailableQueue;
86  }
87
88  void Schedule();
89
90  /// IsReachable - Checks if SU is reachable from TargetSU.
91  bool IsReachable(SUnit *SU, SUnit *TargetSU);
92
93  /// willCreateCycle - Returns true if adding an edge from SU to TargetSU will
94  /// create a cycle.
95  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
96
97  /// AddPred - This adds the specified node X as a predecessor of
98  /// the current node Y if not already.
99  /// This returns true if this is a new predecessor.
100  /// Updates the topological ordering if required.
101  bool AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial,
102               unsigned PhyReg = 0, int Cost = 1);
103
104  /// RemovePred - This removes the specified node N from the predecessors of
105  /// the current node M. Updates the topological ordering if required.
106  bool RemovePred(SUnit *M, SUnit *N, bool isCtrl, bool isSpecial);
107
108private:
109  void ReleasePred(SUnit*, bool, unsigned);
110  void ReleaseSucc(SUnit*, bool isChain, unsigned);
111  void CapturePred(SUnit*, SUnit*, bool);
112  void ScheduleNodeBottomUp(SUnit*, unsigned);
113  void ScheduleNodeTopDown(SUnit*, unsigned);
114  void UnscheduleNodeBottomUp(SUnit*);
115  void BacktrackBottomUp(SUnit*, unsigned, unsigned&);
116  SUnit *CopyAndMoveSuccessors(SUnit*);
117  void InsertCCCopiesAndMoveSuccs(SUnit*, unsigned,
118                                  const TargetRegisterClass*,
119                                  const TargetRegisterClass*,
120                                  SmallVector<SUnit*, 2>&);
121  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
122  void ListScheduleTopDown();
123  void ListScheduleBottomUp();
124  void CommuteNodesToReducePressure();
125
126
127  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
128  /// Updates the topological ordering if required.
129  SUnit *CreateNewSUnit(SDNode *N) {
130    SUnit *NewNode = NewSUnit(N);
131    // Update the topological ordering.
132    if (NewNode->NodeNum >= Node2Index.size())
133      InitDAGTopologicalSorting();
134    return NewNode;
135  }
136
137  /// CreateClone - Creates a new SUnit from an existing one.
138  /// Updates the topological ordering if required.
139  SUnit *CreateClone(SUnit *N) {
140    SUnit *NewNode = Clone(N);
141    // Update the topological ordering.
142    if (NewNode->NodeNum >= Node2Index.size())
143      InitDAGTopologicalSorting();
144    return NewNode;
145  }
146
147  /// Functions for preserving the topological ordering
148  /// even after dynamic insertions of new edges.
149  /// This allows a very fast implementation of IsReachable.
150
151  /// InitDAGTopologicalSorting - create the initial topological
152  /// ordering from the DAG to be scheduled.
153  void InitDAGTopologicalSorting();
154
155  /// DFS - make a DFS traversal and mark all nodes affected by the
156  /// edge insertion. These nodes will later get new topological indexes
157  /// by means of the Shift method.
158  void DFS(SUnit *SU, int UpperBound, bool& HasLoop);
159
160  /// Shift - reassign topological indexes for the nodes in the DAG
161  /// to preserve the topological ordering.
162  void Shift(BitVector& Visited, int LowerBound, int UpperBound);
163
164  /// Allocate - assign the topological index to the node n.
165  void Allocate(int n, int index);
166
167  /// Index2Node - Maps topological index to the node number.
168  std::vector<int> Index2Node;
169  /// Node2Index - Maps the node number to its topological index.
170  std::vector<int> Node2Index;
171  /// Visited - a set of nodes visited during a DFS traversal.
172  BitVector Visited;
173};
174}  // end anonymous namespace
175
176
177/// Schedule - Schedule the DAG using list scheduling.
178void ScheduleDAGRRList::Schedule() {
179  DOUT << "********** List Scheduling **********\n";
180
181  LiveRegDefs.resize(TRI->getNumRegs(), NULL);
182  LiveRegCycles.resize(TRI->getNumRegs(), 0);
183
184  // Build scheduling units.
185  BuildSchedUnits();
186
187  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
188          SUnits[su].dumpAll(&DAG));
189  if (!Fast) {
190    CalculateDepths();
191    CalculateHeights();
192  }
193  InitDAGTopologicalSorting();
194
195  AvailableQueue->initNodes(SUnits);
196
197  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
198  if (isBottomUp)
199    ListScheduleBottomUp();
200  else
201    ListScheduleTopDown();
202
203  AvailableQueue->releaseState();
204
205  if (!Fast)
206    CommuteNodesToReducePressure();
207
208  DOUT << "*** Final schedule ***\n";
209  DEBUG(dumpSchedule());
210  DOUT << "\n";
211
212  // Emit in scheduled order
213  EmitSchedule();
214}
215
216/// CommuteNodesToReducePressure - If a node is two-address and commutable, and
217/// it is not the last use of its first operand, add it to the CommuteSet if
218/// possible. It will be commuted when it is translated to a MI.
219void ScheduleDAGRRList::CommuteNodesToReducePressure() {
220  SmallPtrSet<SUnit*, 4> OperandSeen;
221  for (unsigned i = Sequence.size(); i != 0; ) {
222    --i;
223    SUnit *SU = Sequence[i];
224    if (!SU || !SU->Node) continue;
225    if (SU->isCommutable) {
226      unsigned Opc = SU->Node->getTargetOpcode();
227      const TargetInstrDesc &TID = TII->get(Opc);
228      unsigned NumRes = TID.getNumDefs();
229      unsigned NumOps = TID.getNumOperands() - NumRes;
230      for (unsigned j = 0; j != NumOps; ++j) {
231        if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
232          continue;
233
234        SDNode *OpN = SU->Node->getOperand(j).Val;
235        SUnit *OpSU = isPassiveNode(OpN) ? NULL : &SUnits[OpN->getNodeId()];
236        if (OpSU && OperandSeen.count(OpSU) == 1) {
237          // Ok, so SU is not the last use of OpSU, but SU is two-address so
238          // it will clobber OpSU. Try to commute SU if no other source operands
239          // are live below.
240          bool DoCommute = true;
241          for (unsigned k = 0; k < NumOps; ++k) {
242            if (k != j) {
243              OpN = SU->Node->getOperand(k).Val;
244              OpSU = isPassiveNode(OpN) ? NULL : &SUnits[OpN->getNodeId()];
245              if (OpSU && OperandSeen.count(OpSU) == 1) {
246                DoCommute = false;
247                break;
248              }
249            }
250          }
251          if (DoCommute)
252            CommuteSet.insert(SU->Node);
253        }
254
255        // Only look at the first use&def node for now.
256        break;
257      }
258    }
259
260    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
261         I != E; ++I) {
262      if (!I->isCtrl)
263        OperandSeen.insert(I->Dep->OrigNode);
264    }
265  }
266}
267
268//===----------------------------------------------------------------------===//
269//  Bottom-Up Scheduling
270//===----------------------------------------------------------------------===//
271
272/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
273/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
274void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain,
275                                    unsigned CurCycle) {
276  // FIXME: the distance between two nodes is not always == the predecessor's
277  // latency. For example, the reader can very well read the register written
278  // by the predecessor later than the issue cycle. It also depends on the
279  // interrupt model (drain vs. freeze).
280  PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
281
282  --PredSU->NumSuccsLeft;
283
284#ifndef NDEBUG
285  if (PredSU->NumSuccsLeft < 0) {
286    cerr << "*** List scheduling failed! ***\n";
287    PredSU->dump(&DAG);
288    cerr << " has been released too many times!\n";
289    assert(0);
290  }
291#endif
292
293  if (PredSU->NumSuccsLeft == 0) {
294    PredSU->isAvailable = true;
295    AvailableQueue->push(PredSU);
296  }
297}
298
299/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
300/// count of its predecessors. If a predecessor pending count is zero, add it to
301/// the Available queue.
302void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
303  DOUT << "*** Scheduling [" << CurCycle << "]: ";
304  DEBUG(SU->dump(&DAG));
305  SU->Cycle = CurCycle;
306
307  AvailableQueue->ScheduledNode(SU);
308
309  // Bottom up: release predecessors
310  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
311       I != E; ++I) {
312    ReleasePred(I->Dep, I->isCtrl, CurCycle);
313    if (I->Cost < 0)  {
314      // This is a physical register dependency and it's impossible or
315      // expensive to copy the register. Make sure nothing that can
316      // clobber the register is scheduled between the predecessor and
317      // this node.
318      if (LiveRegs.insert(I->Reg)) {
319        LiveRegDefs[I->Reg] = I->Dep;
320        LiveRegCycles[I->Reg] = CurCycle;
321      }
322    }
323  }
324
325  // Release all the implicit physical register defs that are live.
326  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
327       I != E; ++I) {
328    if (I->Cost < 0)  {
329      if (LiveRegCycles[I->Reg] == I->Dep->Cycle) {
330        LiveRegs.erase(I->Reg);
331        assert(LiveRegDefs[I->Reg] == SU &&
332               "Physical register dependency violated?");
333        LiveRegDefs[I->Reg] = NULL;
334        LiveRegCycles[I->Reg] = 0;
335      }
336    }
337  }
338
339  SU->isScheduled = true;
340}
341
342/// CapturePred - This does the opposite of ReleasePred. Since SU is being
343/// unscheduled, incrcease the succ left count of its predecessors. Remove
344/// them from AvailableQueue if necessary.
345void ScheduleDAGRRList::CapturePred(SUnit *PredSU, SUnit *SU, bool isChain) {
346  unsigned CycleBound = 0;
347  for (SUnit::succ_iterator I = PredSU->Succs.begin(), E = PredSU->Succs.end();
348       I != E; ++I) {
349    if (I->Dep == SU)
350      continue;
351    CycleBound = std::max(CycleBound,
352                          I->Dep->Cycle + PredSU->Latency);
353  }
354
355  if (PredSU->isAvailable) {
356    PredSU->isAvailable = false;
357    if (!PredSU->isPending)
358      AvailableQueue->remove(PredSU);
359  }
360
361  PredSU->CycleBound = CycleBound;
362  ++PredSU->NumSuccsLeft;
363}
364
365/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
366/// its predecessor states to reflect the change.
367void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
368  DOUT << "*** Unscheduling [" << SU->Cycle << "]: ";
369  DEBUG(SU->dump(&DAG));
370
371  AvailableQueue->UnscheduledNode(SU);
372
373  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
374       I != E; ++I) {
375    CapturePred(I->Dep, SU, I->isCtrl);
376    if (I->Cost < 0 && SU->Cycle == LiveRegCycles[I->Reg])  {
377      LiveRegs.erase(I->Reg);
378      assert(LiveRegDefs[I->Reg] == I->Dep &&
379             "Physical register dependency violated?");
380      LiveRegDefs[I->Reg] = NULL;
381      LiveRegCycles[I->Reg] = 0;
382    }
383  }
384
385  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
386       I != E; ++I) {
387    if (I->Cost < 0)  {
388      if (LiveRegs.insert(I->Reg)) {
389        assert(!LiveRegDefs[I->Reg] &&
390               "Physical register dependency violated?");
391        LiveRegDefs[I->Reg] = SU;
392      }
393      if (I->Dep->Cycle < LiveRegCycles[I->Reg])
394        LiveRegCycles[I->Reg] = I->Dep->Cycle;
395    }
396  }
397
398  SU->Cycle = 0;
399  SU->isScheduled = false;
400  SU->isAvailable = true;
401  AvailableQueue->push(SU);
402}
403
404/// IsReachable - Checks if SU is reachable from TargetSU.
405bool ScheduleDAGRRList::IsReachable(SUnit *SU, SUnit *TargetSU) {
406  // If insertion of the edge SU->TargetSU would create a cycle
407  // then there is a path from TargetSU to SU.
408  int UpperBound, LowerBound;
409  LowerBound = Node2Index[TargetSU->NodeNum];
410  UpperBound = Node2Index[SU->NodeNum];
411  bool HasLoop = false;
412  // Is Ord(TargetSU) < Ord(SU) ?
413  if (LowerBound < UpperBound) {
414    Visited.reset();
415    // There may be a path from TargetSU to SU. Check for it.
416    DFS(TargetSU, UpperBound, HasLoop);
417  }
418  return HasLoop;
419}
420
421/// Allocate - assign the topological index to the node n.
422inline void ScheduleDAGRRList::Allocate(int n, int index) {
423  Node2Index[n] = index;
424  Index2Node[index] = n;
425}
426
427/// InitDAGTopologicalSorting - create the initial topological
428/// ordering from the DAG to be scheduled.
429
430/// The idea of the algorithm is taken from
431/// "Online algorithms for managing the topological order of
432/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
433/// This is the MNR algorithm, which was first introduced by
434/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
435/// "Maintaining a topological order under edge insertions".
436///
437/// Short description of the algorithm:
438///
439/// Topological ordering, ord, of a DAG maps each node to a topological
440/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
441///
442/// This means that if there is a path from the node X to the node Z,
443/// then ord(X) < ord(Z).
444///
445/// This property can be used to check for reachability of nodes:
446/// if Z is reachable from X, then an insertion of the edge Z->X would
447/// create a cycle.
448///
449/// The algorithm first computes a topological ordering for the DAG by
450/// initializing the Index2Node and Node2Index arrays and then tries to keep
451/// the ordering up-to-date after edge insertions by reordering the DAG.
452///
453/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
454/// the nodes reachable from Y, and then shifts them using Shift to lie
455/// immediately after X in Index2Node.
456void ScheduleDAGRRList::InitDAGTopologicalSorting() {
457  unsigned DAGSize = SUnits.size();
458  std::vector<unsigned> InDegree(DAGSize);
459  std::vector<SUnit*> WorkList;
460  WorkList.reserve(DAGSize);
461  std::vector<SUnit*> TopOrder;
462  TopOrder.reserve(DAGSize);
463
464  // Initialize the data structures.
465  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
466    SUnit *SU = &SUnits[i];
467    int NodeNum = SU->NodeNum;
468    unsigned Degree = SU->Succs.size();
469    InDegree[NodeNum] = Degree;
470
471    // Is it a node without dependencies?
472    if (Degree == 0) {
473        assert(SU->Succs.empty() && "SUnit should have no successors");
474        // Collect leaf nodes.
475        WorkList.push_back(SU);
476    }
477  }
478
479  while (!WorkList.empty()) {
480    SUnit *SU = WorkList.back();
481    WorkList.pop_back();
482    TopOrder.push_back(SU);
483    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
484         I != E; ++I) {
485      SUnit *SU = I->Dep;
486      if (!--InDegree[SU->NodeNum])
487        // If all dependencies of the node are processed already,
488        // then the node can be computed now.
489        WorkList.push_back(SU);
490    }
491  }
492
493  // Second pass, assign the actual topological order as node ids.
494  int Id = 0;
495
496  Index2Node.clear();
497  Node2Index.clear();
498  Index2Node.resize(DAGSize);
499  Node2Index.resize(DAGSize);
500  Visited.resize(DAGSize);
501
502  for (std::vector<SUnit*>::reverse_iterator TI = TopOrder.rbegin(),
503       TE = TopOrder.rend();TI != TE; ++TI) {
504    Allocate((*TI)->NodeNum, Id);
505    Id++;
506  }
507
508#ifndef NDEBUG
509  // Check correctness of the ordering
510  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
511    SUnit *SU = &SUnits[i];
512    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
513         I != E; ++I) {
514       assert(Node2Index[SU->NodeNum] > Node2Index[I->Dep->NodeNum] &&
515       "Wrong topological sorting");
516    }
517  }
518#endif
519}
520
521/// AddPred - adds an edge from SUnit X to SUnit Y.
522/// Updates the topological ordering if required.
523bool ScheduleDAGRRList::AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial,
524                 unsigned PhyReg, int Cost) {
525  int UpperBound, LowerBound;
526  LowerBound = Node2Index[Y->NodeNum];
527  UpperBound = Node2Index[X->NodeNum];
528  bool HasLoop = false;
529  // Is Ord(X) < Ord(Y) ?
530  if (LowerBound < UpperBound) {
531    // Update the topological order.
532    Visited.reset();
533    DFS(Y, UpperBound, HasLoop);
534    assert(!HasLoop && "Inserted edge creates a loop!");
535    // Recompute topological indexes.
536    Shift(Visited, LowerBound, UpperBound);
537  }
538  // Now really insert the edge.
539  return Y->addPred(X, isCtrl, isSpecial, PhyReg, Cost);
540}
541
542/// RemovePred - This removes the specified node N from the predecessors of
543/// the current node M. Updates the topological ordering if required.
544bool ScheduleDAGRRList::RemovePred(SUnit *M, SUnit *N,
545                                   bool isCtrl, bool isSpecial) {
546  // InitDAGTopologicalSorting();
547  return M->removePred(N, isCtrl, isSpecial);
548}
549
550/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
551/// all nodes affected by the edge insertion. These nodes will later get new
552/// topological indexes by means of the Shift method.
553void ScheduleDAGRRList::DFS(SUnit *SU, int UpperBound, bool& HasLoop) {
554  std::vector<SUnit*> WorkList;
555  WorkList.reserve(SUnits.size());
556
557  WorkList.push_back(SU);
558  while (!WorkList.empty()) {
559    SU = WorkList.back();
560    WorkList.pop_back();
561    Visited.set(SU->NodeNum);
562    for (int I = SU->Succs.size()-1; I >= 0; --I) {
563      int s = SU->Succs[I].Dep->NodeNum;
564      if (Node2Index[s] == UpperBound) {
565        HasLoop = true;
566        return;
567      }
568      // Visit successors if not already and in affected region.
569      if (!Visited.test(s) && Node2Index[s] < UpperBound) {
570        WorkList.push_back(SU->Succs[I].Dep);
571      }
572    }
573  }
574}
575
576/// Shift - Renumber the nodes so that the topological ordering is
577/// preserved.
578void ScheduleDAGRRList::Shift(BitVector& Visited, int LowerBound,
579                              int UpperBound) {
580  std::vector<int> L;
581  int shift = 0;
582  int i;
583
584  for (i = LowerBound; i <= UpperBound; ++i) {
585    // w is node at topological index i.
586    int w = Index2Node[i];
587    if (Visited.test(w)) {
588      // Unmark.
589      Visited.reset(w);
590      L.push_back(w);
591      shift = shift + 1;
592    } else {
593      Allocate(w, i - shift);
594    }
595  }
596
597  for (unsigned j = 0; j < L.size(); ++j) {
598    Allocate(L[j], i - shift);
599    i = i + 1;
600  }
601}
602
603
604/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
605/// create a cycle.
606bool ScheduleDAGRRList::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
607  if (IsReachable(TargetSU, SU))
608    return true;
609  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
610       I != E; ++I)
611    if (I->Cost < 0 && IsReachable(TargetSU, I->Dep))
612      return true;
613  return false;
614}
615
616/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
617/// BTCycle in order to schedule a specific node. Returns the last unscheduled
618/// SUnit. Also returns if a successor is unscheduled in the process.
619void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle,
620                                          unsigned &CurCycle) {
621  SUnit *OldSU = NULL;
622  while (CurCycle > BtCycle) {
623    OldSU = Sequence.back();
624    Sequence.pop_back();
625    if (SU->isSucc(OldSU))
626      // Don't try to remove SU from AvailableQueue.
627      SU->isAvailable = false;
628    UnscheduleNodeBottomUp(OldSU);
629    --CurCycle;
630  }
631
632
633  if (SU->isSucc(OldSU)) {
634    assert(false && "Something is wrong!");
635    abort();
636  }
637
638  ++NumBacktracks;
639}
640
641/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
642/// successors to the newly created node.
643SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
644  if (SU->FlaggedNodes.size())
645    return NULL;
646
647  SDNode *N = SU->Node;
648  if (!N)
649    return NULL;
650
651  SUnit *NewSU;
652  bool TryUnfold = false;
653  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
654    MVT VT = N->getValueType(i);
655    if (VT == MVT::Flag)
656      return NULL;
657    else if (VT == MVT::Other)
658      TryUnfold = true;
659  }
660  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
661    const SDOperand &Op = N->getOperand(i);
662    MVT VT = Op.Val->getValueType(Op.ResNo);
663    if (VT == MVT::Flag)
664      return NULL;
665  }
666
667  if (TryUnfold) {
668    SmallVector<SDNode*, 2> NewNodes;
669    if (!TII->unfoldMemoryOperand(DAG, N, NewNodes))
670      return NULL;
671
672    DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
673    assert(NewNodes.size() == 2 && "Expected a load folding node!");
674
675    N = NewNodes[1];
676    SDNode *LoadNode = NewNodes[0];
677    unsigned NumVals = N->getNumValues();
678    unsigned OldNumVals = SU->Node->getNumValues();
679    for (unsigned i = 0; i != NumVals; ++i)
680      DAG.ReplaceAllUsesOfValueWith(SDOperand(SU->Node, i), SDOperand(N, i));
681    DAG.ReplaceAllUsesOfValueWith(SDOperand(SU->Node, OldNumVals-1),
682                                  SDOperand(LoadNode, 1));
683
684    SUnit *NewSU = CreateNewSUnit(N);
685    assert(N->getNodeId() == -1 && "Node already inserted!");
686    N->setNodeId(NewSU->NodeNum);
687
688    const TargetInstrDesc &TID = TII->get(N->getTargetOpcode());
689    for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
690      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
691        NewSU->isTwoAddress = true;
692        break;
693      }
694    }
695    if (TID.isCommutable())
696      NewSU->isCommutable = true;
697    // FIXME: Calculate height / depth and propagate the changes?
698    NewSU->Depth = SU->Depth;
699    NewSU->Height = SU->Height;
700    ComputeLatency(NewSU);
701
702    // LoadNode may already exist. This can happen when there is another
703    // load from the same location and producing the same type of value
704    // but it has different alignment or volatileness.
705    bool isNewLoad = true;
706    SUnit *LoadSU;
707    if (LoadNode->getNodeId() != -1) {
708      LoadSU = &SUnits[LoadNode->getNodeId()];
709      isNewLoad = false;
710    } else {
711      LoadSU = CreateNewSUnit(LoadNode);
712      LoadNode->setNodeId(LoadSU->NodeNum);
713
714      LoadSU->Depth = SU->Depth;
715      LoadSU->Height = SU->Height;
716      ComputeLatency(LoadSU);
717    }
718
719    SUnit *ChainPred = NULL;
720    SmallVector<SDep, 4> ChainSuccs;
721    SmallVector<SDep, 4> LoadPreds;
722    SmallVector<SDep, 4> NodePreds;
723    SmallVector<SDep, 4> NodeSuccs;
724    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
725         I != E; ++I) {
726      if (I->isCtrl)
727        ChainPred = I->Dep;
728      else if (I->Dep->Node && I->Dep->Node->isOperandOf(LoadNode))
729        LoadPreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
730      else
731        NodePreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
732    }
733    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
734         I != E; ++I) {
735      if (I->isCtrl)
736        ChainSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
737                                  I->isCtrl, I->isSpecial));
738      else
739        NodeSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
740                                 I->isCtrl, I->isSpecial));
741    }
742
743    if (ChainPred) {
744      RemovePred(SU, ChainPred, true, false);
745      if (isNewLoad)
746        AddPred(LoadSU, ChainPred, true, false);
747    }
748    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
749      SDep *Pred = &LoadPreds[i];
750      RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial);
751      if (isNewLoad) {
752        AddPred(LoadSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial,
753                Pred->Reg, Pred->Cost);
754      }
755    }
756    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
757      SDep *Pred = &NodePreds[i];
758      RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial);
759      AddPred(NewSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial,
760              Pred->Reg, Pred->Cost);
761    }
762    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
763      SDep *Succ = &NodeSuccs[i];
764      RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial);
765      AddPred(Succ->Dep, NewSU, Succ->isCtrl, Succ->isSpecial,
766              Succ->Reg, Succ->Cost);
767    }
768    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
769      SDep *Succ = &ChainSuccs[i];
770      RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial);
771      if (isNewLoad) {
772        AddPred(Succ->Dep, LoadSU, Succ->isCtrl, Succ->isSpecial,
773                Succ->Reg, Succ->Cost);
774      }
775    }
776    if (isNewLoad) {
777      AddPred(NewSU, LoadSU, false, false);
778    }
779
780    if (isNewLoad)
781      AvailableQueue->addNode(LoadSU);
782    AvailableQueue->addNode(NewSU);
783
784    ++NumUnfolds;
785
786    if (NewSU->NumSuccsLeft == 0) {
787      NewSU->isAvailable = true;
788      return NewSU;
789    }
790    SU = NewSU;
791  }
792
793  DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
794  NewSU = CreateClone(SU);
795
796  // New SUnit has the exact same predecessors.
797  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
798       I != E; ++I)
799    if (!I->isSpecial) {
800      AddPred(NewSU, I->Dep, I->isCtrl, false, I->Reg, I->Cost);
801      NewSU->Depth = std::max(NewSU->Depth, I->Dep->Depth+1);
802    }
803
804  // Only copy scheduled successors. Cut them from old node's successor
805  // list and move them over.
806  SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
807  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
808       I != E; ++I) {
809    if (I->isSpecial)
810      continue;
811    if (I->Dep->isScheduled) {
812      NewSU->Height = std::max(NewSU->Height, I->Dep->Height+1);
813      AddPred(I->Dep, NewSU, I->isCtrl, false, I->Reg, I->Cost);
814      DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
815    }
816  }
817  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
818    SUnit *Succ = DelDeps[i].first;
819    bool isCtrl = DelDeps[i].second;
820    RemovePred(Succ, SU, isCtrl, false);
821  }
822
823  AvailableQueue->updateNode(SU);
824  AvailableQueue->addNode(NewSU);
825
826  ++NumDups;
827  return NewSU;
828}
829
830/// InsertCCCopiesAndMoveSuccs - Insert expensive cross register class copies
831/// and move all scheduled successors of the given SUnit to the last copy.
832void ScheduleDAGRRList::InsertCCCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
833                                              const TargetRegisterClass *DestRC,
834                                              const TargetRegisterClass *SrcRC,
835                                               SmallVector<SUnit*, 2> &Copies) {
836  SUnit *CopyFromSU = CreateNewSUnit(NULL);
837  CopyFromSU->CopySrcRC = SrcRC;
838  CopyFromSU->CopyDstRC = DestRC;
839  CopyFromSU->Depth = SU->Depth;
840  CopyFromSU->Height = SU->Height;
841
842  SUnit *CopyToSU = CreateNewSUnit(NULL);
843  CopyToSU->CopySrcRC = DestRC;
844  CopyToSU->CopyDstRC = SrcRC;
845
846  // Only copy scheduled successors. Cut them from old node's successor
847  // list and move them over.
848  SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
849  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
850       I != E; ++I) {
851    if (I->isSpecial)
852      continue;
853    if (I->Dep->isScheduled) {
854      CopyToSU->Height = std::max(CopyToSU->Height, I->Dep->Height+1);
855      AddPred(I->Dep, CopyToSU, I->isCtrl, false, I->Reg, I->Cost);
856      DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
857    }
858  }
859  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
860    SUnit *Succ = DelDeps[i].first;
861    bool isCtrl = DelDeps[i].second;
862    RemovePred(Succ, SU, isCtrl, false);
863  }
864
865  AddPred(CopyFromSU, SU, false, false, Reg, -1);
866  AddPred(CopyToSU, CopyFromSU, false, false, Reg, 1);
867
868  AvailableQueue->updateNode(SU);
869  AvailableQueue->addNode(CopyFromSU);
870  AvailableQueue->addNode(CopyToSU);
871  Copies.push_back(CopyFromSU);
872  Copies.push_back(CopyToSU);
873
874  ++NumCCCopies;
875}
876
877/// getPhysicalRegisterVT - Returns the ValueType of the physical register
878/// definition of the specified node.
879/// FIXME: Move to SelectionDAG?
880static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
881                                 const TargetInstrInfo *TII) {
882  const TargetInstrDesc &TID = TII->get(N->getTargetOpcode());
883  assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
884  unsigned NumRes = TID.getNumDefs();
885  for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
886    if (Reg == *ImpDef)
887      break;
888    ++NumRes;
889  }
890  return N->getValueType(NumRes);
891}
892
893/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
894/// scheduling of the given node to satisfy live physical register dependencies.
895/// If the specific node is the last one that's available to schedule, do
896/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
897bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
898                                                 SmallVector<unsigned, 4> &LRegs){
899  if (LiveRegs.empty())
900    return false;
901
902  SmallSet<unsigned, 4> RegAdded;
903  // If this node would clobber any "live" register, then it's not ready.
904  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
905       I != E; ++I) {
906    if (I->Cost < 0)  {
907      unsigned Reg = I->Reg;
908      if (LiveRegs.count(Reg) && LiveRegDefs[Reg] != I->Dep) {
909        if (RegAdded.insert(Reg))
910          LRegs.push_back(Reg);
911      }
912      for (const unsigned *Alias = TRI->getAliasSet(Reg);
913           *Alias; ++Alias)
914        if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != I->Dep) {
915          if (RegAdded.insert(*Alias))
916            LRegs.push_back(*Alias);
917        }
918    }
919  }
920
921  for (unsigned i = 0, e = SU->FlaggedNodes.size()+1; i != e; ++i) {
922    SDNode *Node = (i == 0) ? SU->Node : SU->FlaggedNodes[i-1];
923    if (!Node || !Node->isTargetOpcode())
924      continue;
925    const TargetInstrDesc &TID = TII->get(Node->getTargetOpcode());
926    if (!TID.ImplicitDefs)
927      continue;
928    for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
929      if (LiveRegs.count(*Reg) && LiveRegDefs[*Reg] != SU) {
930        if (RegAdded.insert(*Reg))
931          LRegs.push_back(*Reg);
932      }
933      for (const unsigned *Alias = TRI->getAliasSet(*Reg);
934           *Alias; ++Alias)
935        if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != SU) {
936          if (RegAdded.insert(*Alias))
937            LRegs.push_back(*Alias);
938        }
939    }
940  }
941  return !LRegs.empty();
942}
943
944
945/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
946/// schedulers.
947void ScheduleDAGRRList::ListScheduleBottomUp() {
948  unsigned CurCycle = 0;
949  // Add root to Available queue.
950  if (!SUnits.empty()) {
951    SUnit *RootSU = &SUnits[DAG.getRoot().Val->getNodeId()];
952    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
953    RootSU->isAvailable = true;
954    AvailableQueue->push(RootSU);
955  }
956
957  // While Available queue is not empty, grab the node with the highest
958  // priority. If it is not ready put it back.  Schedule the node.
959  SmallVector<SUnit*, 4> NotReady;
960  DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
961  Sequence.reserve(SUnits.size());
962  while (!AvailableQueue->empty()) {
963    bool Delayed = false;
964    LRegsMap.clear();
965    SUnit *CurSU = AvailableQueue->pop();
966    while (CurSU) {
967      if (CurSU->CycleBound <= CurCycle) {
968        SmallVector<unsigned, 4> LRegs;
969        if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
970          break;
971        Delayed = true;
972        LRegsMap.insert(std::make_pair(CurSU, LRegs));
973      }
974
975      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
976      NotReady.push_back(CurSU);
977      CurSU = AvailableQueue->pop();
978    }
979
980    // All candidates are delayed due to live physical reg dependencies.
981    // Try backtracking, code duplication, or inserting cross class copies
982    // to resolve it.
983    if (Delayed && !CurSU) {
984      for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
985        SUnit *TrySU = NotReady[i];
986        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
987
988        // Try unscheduling up to the point where it's safe to schedule
989        // this node.
990        unsigned LiveCycle = CurCycle;
991        for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
992          unsigned Reg = LRegs[j];
993          unsigned LCycle = LiveRegCycles[Reg];
994          LiveCycle = std::min(LiveCycle, LCycle);
995        }
996        SUnit *OldSU = Sequence[LiveCycle];
997        if (!WillCreateCycle(TrySU, OldSU))  {
998          BacktrackBottomUp(TrySU, LiveCycle, CurCycle);
999          // Force the current node to be scheduled before the node that
1000          // requires the physical reg dep.
1001          if (OldSU->isAvailable) {
1002            OldSU->isAvailable = false;
1003            AvailableQueue->remove(OldSU);
1004          }
1005          AddPred(TrySU, OldSU, true, true);
1006          // If one or more successors has been unscheduled, then the current
1007          // node is no longer avaialable. Schedule a successor that's now
1008          // available instead.
1009          if (!TrySU->isAvailable)
1010            CurSU = AvailableQueue->pop();
1011          else {
1012            CurSU = TrySU;
1013            TrySU->isPending = false;
1014            NotReady.erase(NotReady.begin()+i);
1015          }
1016          break;
1017        }
1018      }
1019
1020      if (!CurSU) {
1021        // Can't backtrack. Try duplicating the nodes that produces these
1022        // "expensive to copy" values to break the dependency. In case even
1023        // that doesn't work, insert cross class copies.
1024        SUnit *TrySU = NotReady[0];
1025        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
1026        assert(LRegs.size() == 1 && "Can't handle this yet!");
1027        unsigned Reg = LRegs[0];
1028        SUnit *LRDef = LiveRegDefs[Reg];
1029        SUnit *NewDef = CopyAndMoveSuccessors(LRDef);
1030        if (!NewDef) {
1031          // Issue expensive cross register class copies.
1032          MVT VT = getPhysicalRegisterVT(LRDef->Node, Reg, TII);
1033          const TargetRegisterClass *RC =
1034            TRI->getPhysicalRegisterRegClass(Reg, VT);
1035          const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1036          if (!DestRC) {
1037            assert(false && "Don't know how to copy this physical register!");
1038            abort();
1039          }
1040          SmallVector<SUnit*, 2> Copies;
1041          InsertCCCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1042          DOUT << "Adding an edge from SU # " << TrySU->NodeNum
1043               << " to SU #" << Copies.front()->NodeNum << "\n";
1044          AddPred(TrySU, Copies.front(), true, true);
1045          NewDef = Copies.back();
1046        }
1047
1048        DOUT << "Adding an edge from SU # " << NewDef->NodeNum
1049             << " to SU #" << TrySU->NodeNum << "\n";
1050        LiveRegDefs[Reg] = NewDef;
1051        AddPred(NewDef, TrySU, true, true);
1052        TrySU->isAvailable = false;
1053        CurSU = NewDef;
1054      }
1055
1056      if (!CurSU) {
1057        assert(false && "Unable to resolve live physical register dependencies!");
1058        abort();
1059      }
1060    }
1061
1062    // Add the nodes that aren't ready back onto the available list.
1063    for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
1064      NotReady[i]->isPending = false;
1065      // May no longer be available due to backtracking.
1066      if (NotReady[i]->isAvailable)
1067        AvailableQueue->push(NotReady[i]);
1068    }
1069    NotReady.clear();
1070
1071    if (!CurSU)
1072      Sequence.push_back(0);
1073    else {
1074      ScheduleNodeBottomUp(CurSU, CurCycle);
1075      Sequence.push_back(CurSU);
1076    }
1077    ++CurCycle;
1078  }
1079
1080  // Reverse the order if it is bottom up.
1081  std::reverse(Sequence.begin(), Sequence.end());
1082
1083
1084#ifndef NDEBUG
1085  // Verify that all SUnits were scheduled.
1086  bool AnyNotSched = false;
1087  unsigned DeadNodes = 0;
1088  unsigned Noops = 0;
1089  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1090    if (!SUnits[i].isScheduled) {
1091      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
1092        ++DeadNodes;
1093        continue;
1094      }
1095      if (!AnyNotSched)
1096        cerr << "*** List scheduling failed! ***\n";
1097      SUnits[i].dump(&DAG);
1098      cerr << "has not been scheduled!\n";
1099      AnyNotSched = true;
1100    }
1101    if (SUnits[i].NumSuccsLeft != 0) {
1102      if (!AnyNotSched)
1103        cerr << "*** List scheduling failed! ***\n";
1104      SUnits[i].dump(&DAG);
1105      cerr << "has successors left!\n";
1106      AnyNotSched = true;
1107    }
1108  }
1109  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
1110    if (!Sequence[i])
1111      ++Noops;
1112  assert(!AnyNotSched);
1113  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
1114         "The number of nodes scheduled doesn't match the expected number!");
1115#endif
1116}
1117
1118//===----------------------------------------------------------------------===//
1119//  Top-Down Scheduling
1120//===----------------------------------------------------------------------===//
1121
1122/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
1123/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
1124void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain,
1125                                    unsigned CurCycle) {
1126  // FIXME: the distance between two nodes is not always == the predecessor's
1127  // latency. For example, the reader can very well read the register written
1128  // by the predecessor later than the issue cycle. It also depends on the
1129  // interrupt model (drain vs. freeze).
1130  SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
1131
1132  --SuccSU->NumPredsLeft;
1133
1134#ifndef NDEBUG
1135  if (SuccSU->NumPredsLeft < 0) {
1136    cerr << "*** List scheduling failed! ***\n";
1137    SuccSU->dump(&DAG);
1138    cerr << " has been released too many times!\n";
1139    assert(0);
1140  }
1141#endif
1142
1143  if (SuccSU->NumPredsLeft == 0) {
1144    SuccSU->isAvailable = true;
1145    AvailableQueue->push(SuccSU);
1146  }
1147}
1148
1149
1150/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
1151/// count of its successors. If a successor pending count is zero, add it to
1152/// the Available queue.
1153void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
1154  DOUT << "*** Scheduling [" << CurCycle << "]: ";
1155  DEBUG(SU->dump(&DAG));
1156  SU->Cycle = CurCycle;
1157
1158  AvailableQueue->ScheduledNode(SU);
1159
1160  // Top down: release successors
1161  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1162       I != E; ++I)
1163    ReleaseSucc(I->Dep, I->isCtrl, CurCycle);
1164  SU->isScheduled = true;
1165}
1166
1167/// ListScheduleTopDown - The main loop of list scheduling for top-down
1168/// schedulers.
1169void ScheduleDAGRRList::ListScheduleTopDown() {
1170  unsigned CurCycle = 0;
1171
1172  // All leaves to Available queue.
1173  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1174    // It is available if it has no predecessors.
1175    if (SUnits[i].Preds.empty()) {
1176      AvailableQueue->push(&SUnits[i]);
1177      SUnits[i].isAvailable = true;
1178    }
1179  }
1180
1181  // While Available queue is not empty, grab the node with the highest
1182  // priority. If it is not ready put it back.  Schedule the node.
1183  std::vector<SUnit*> NotReady;
1184  Sequence.reserve(SUnits.size());
1185  while (!AvailableQueue->empty()) {
1186    SUnit *CurSU = AvailableQueue->pop();
1187    while (CurSU && CurSU->CycleBound > CurCycle) {
1188      NotReady.push_back(CurSU);
1189      CurSU = AvailableQueue->pop();
1190    }
1191
1192    // Add the nodes that aren't ready back onto the available list.
1193    AvailableQueue->push_all(NotReady);
1194    NotReady.clear();
1195
1196    if (!CurSU)
1197      Sequence.push_back(0);
1198    else {
1199      ScheduleNodeTopDown(CurSU, CurCycle);
1200      Sequence.push_back(CurSU);
1201    }
1202    ++CurCycle;
1203  }
1204
1205
1206#ifndef NDEBUG
1207  // Verify that all SUnits were scheduled.
1208  bool AnyNotSched = false;
1209  unsigned DeadNodes = 0;
1210  unsigned Noops = 0;
1211  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1212    if (!SUnits[i].isScheduled) {
1213      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
1214        ++DeadNodes;
1215        continue;
1216      }
1217      if (!AnyNotSched)
1218        cerr << "*** List scheduling failed! ***\n";
1219      SUnits[i].dump(&DAG);
1220      cerr << "has not been scheduled!\n";
1221      AnyNotSched = true;
1222    }
1223    if (SUnits[i].NumPredsLeft != 0) {
1224      if (!AnyNotSched)
1225        cerr << "*** List scheduling failed! ***\n";
1226      SUnits[i].dump(&DAG);
1227      cerr << "has predecessors left!\n";
1228      AnyNotSched = true;
1229    }
1230  }
1231  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
1232    if (!Sequence[i])
1233      ++Noops;
1234  assert(!AnyNotSched);
1235  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
1236         "The number of nodes scheduled doesn't match the expected number!");
1237#endif
1238}
1239
1240
1241
1242//===----------------------------------------------------------------------===//
1243//                RegReductionPriorityQueue Implementation
1244//===----------------------------------------------------------------------===//
1245//
1246// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1247// to reduce register pressure.
1248//
1249namespace {
1250  template<class SF>
1251  class RegReductionPriorityQueue;
1252
1253  /// Sorting functions for the Available queue.
1254  struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1255    RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
1256    bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
1257    bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1258
1259    bool operator()(const SUnit* left, const SUnit* right) const;
1260  };
1261
1262  struct bu_ls_rr_fast_sort : public std::binary_function<SUnit*, SUnit*, bool>{
1263    RegReductionPriorityQueue<bu_ls_rr_fast_sort> *SPQ;
1264    bu_ls_rr_fast_sort(RegReductionPriorityQueue<bu_ls_rr_fast_sort> *spq)
1265      : SPQ(spq) {}
1266    bu_ls_rr_fast_sort(const bu_ls_rr_fast_sort &RHS) : SPQ(RHS.SPQ) {}
1267
1268    bool operator()(const SUnit* left, const SUnit* right) const;
1269  };
1270
1271  struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1272    RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
1273    td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
1274    td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1275
1276    bool operator()(const SUnit* left, const SUnit* right) const;
1277  };
1278}  // end anonymous namespace
1279
1280static inline bool isCopyFromLiveIn(const SUnit *SU) {
1281  SDNode *N = SU->Node;
1282  return N && N->getOpcode() == ISD::CopyFromReg &&
1283    N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
1284}
1285
1286/// CalcNodeBUSethiUllmanNumber - Compute Sethi Ullman number for bottom up
1287/// scheduling. Smaller number is the higher priority.
1288static unsigned
1289CalcNodeBUSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1290  unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
1291  if (SethiUllmanNumber != 0)
1292    return SethiUllmanNumber;
1293
1294  unsigned Extra = 0;
1295  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1296       I != E; ++I) {
1297    if (I->isCtrl) continue;  // ignore chain preds
1298    SUnit *PredSU = I->Dep;
1299    unsigned PredSethiUllman = CalcNodeBUSethiUllmanNumber(PredSU, SUNumbers);
1300    if (PredSethiUllman > SethiUllmanNumber) {
1301      SethiUllmanNumber = PredSethiUllman;
1302      Extra = 0;
1303    } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
1304      ++Extra;
1305  }
1306
1307  SethiUllmanNumber += Extra;
1308
1309  if (SethiUllmanNumber == 0)
1310    SethiUllmanNumber = 1;
1311
1312  return SethiUllmanNumber;
1313}
1314
1315/// CalcNodeTDSethiUllmanNumber - Compute Sethi Ullman number for top down
1316/// scheduling. Smaller number is the higher priority.
1317static unsigned
1318CalcNodeTDSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1319  unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
1320  if (SethiUllmanNumber != 0)
1321    return SethiUllmanNumber;
1322
1323  unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
1324  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1325    SethiUllmanNumber = 0xffff;
1326  else if (SU->NumSuccsLeft == 0)
1327    // If SU does not have a use, i.e. it doesn't produce a value that would
1328    // be consumed (e.g. store), then it terminates a chain of computation.
1329    // Give it a small SethiUllman number so it will be scheduled right before
1330    // its predecessors that it doesn't lengthen their live ranges.
1331    SethiUllmanNumber = 0;
1332  else if (SU->NumPredsLeft == 0 &&
1333           (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
1334    SethiUllmanNumber = 0xffff;
1335  else {
1336    int Extra = 0;
1337    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1338         I != E; ++I) {
1339      if (I->isCtrl) continue;  // ignore chain preds
1340      SUnit *PredSU = I->Dep;
1341      unsigned PredSethiUllman = CalcNodeTDSethiUllmanNumber(PredSU, SUNumbers);
1342      if (PredSethiUllman > SethiUllmanNumber) {
1343        SethiUllmanNumber = PredSethiUllman;
1344        Extra = 0;
1345      } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
1346        ++Extra;
1347    }
1348
1349    SethiUllmanNumber += Extra;
1350  }
1351
1352  return SethiUllmanNumber;
1353}
1354
1355
1356namespace {
1357  template<class SF>
1358  class VISIBILITY_HIDDEN RegReductionPriorityQueue
1359   : public SchedulingPriorityQueue {
1360    PriorityQueue<SUnit*, std::vector<SUnit*>, SF> Queue;
1361    unsigned currentQueueId;
1362
1363  public:
1364    RegReductionPriorityQueue() :
1365    Queue(SF(this)), currentQueueId(0) {}
1366
1367    virtual void initNodes(std::vector<SUnit> &sunits) {}
1368
1369    virtual void addNode(const SUnit *SU) {}
1370
1371    virtual void updateNode(const SUnit *SU) {}
1372
1373    virtual void releaseState() {}
1374
1375    virtual unsigned getNodePriority(const SUnit *SU) const {
1376      return 0;
1377    }
1378
1379    unsigned size() const { return Queue.size(); }
1380
1381    bool empty() const { return Queue.empty(); }
1382
1383    void push(SUnit *U) {
1384      assert(!U->NodeQueueId && "Node in the queue already");
1385      U->NodeQueueId = ++currentQueueId;
1386      Queue.push(U);
1387    }
1388
1389    void push_all(const std::vector<SUnit *> &Nodes) {
1390      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
1391        push(Nodes[i]);
1392    }
1393
1394    SUnit *pop() {
1395      if (empty()) return NULL;
1396      SUnit *V = Queue.top();
1397      Queue.pop();
1398      V->NodeQueueId = 0;
1399      return V;
1400    }
1401
1402    void remove(SUnit *SU) {
1403      assert(!Queue.empty() && "Queue is empty!");
1404      assert(SU->NodeQueueId != 0 && "Not in queue!");
1405      Queue.erase_one(SU);
1406      SU->NodeQueueId = 0;
1407    }
1408  };
1409
1410  class VISIBILITY_HIDDEN BURegReductionPriorityQueue
1411   : public RegReductionPriorityQueue<bu_ls_rr_sort> {
1412    // SUnits - The SUnits for the current graph.
1413    const std::vector<SUnit> *SUnits;
1414
1415    // SethiUllmanNumbers - The SethiUllman number for each node.
1416    std::vector<unsigned> SethiUllmanNumbers;
1417
1418    const TargetInstrInfo *TII;
1419    const TargetRegisterInfo *TRI;
1420    ScheduleDAGRRList *scheduleDAG;
1421
1422  public:
1423    explicit BURegReductionPriorityQueue(const TargetInstrInfo *tii,
1424                                         const TargetRegisterInfo *tri)
1425      : TII(tii), TRI(tri), scheduleDAG(NULL) {}
1426
1427    void initNodes(std::vector<SUnit> &sunits) {
1428      SUnits = &sunits;
1429      // Add pseudo dependency edges for two-address nodes.
1430      AddPseudoTwoAddrDeps();
1431      // Calculate node priorities.
1432      CalculateSethiUllmanNumbers();
1433    }
1434
1435    void addNode(const SUnit *SU) {
1436      unsigned SUSize = SethiUllmanNumbers.size();
1437      if (SUnits->size() > SUSize)
1438        SethiUllmanNumbers.resize(SUSize*2, 0);
1439      CalcNodeBUSethiUllmanNumber(SU, SethiUllmanNumbers);
1440    }
1441
1442    void updateNode(const SUnit *SU) {
1443      SethiUllmanNumbers[SU->NodeNum] = 0;
1444      CalcNodeBUSethiUllmanNumber(SU, SethiUllmanNumbers);
1445    }
1446
1447    void releaseState() {
1448      SUnits = 0;
1449      SethiUllmanNumbers.clear();
1450    }
1451
1452    unsigned getNodePriority(const SUnit *SU) const {
1453      assert(SU->NodeNum < SethiUllmanNumbers.size());
1454      unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
1455      if (Opc == ISD::CopyFromReg && !isCopyFromLiveIn(SU))
1456        // CopyFromReg should be close to its def because it restricts
1457        // allocation choices. But if it is a livein then perhaps we want it
1458        // closer to its uses so it can be coalesced.
1459        return 0xffff;
1460      else if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1461        // CopyToReg should be close to its uses to facilitate coalescing and
1462        // avoid spilling.
1463        return 0;
1464      else if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
1465               Opc == TargetInstrInfo::INSERT_SUBREG)
1466        // EXTRACT_SUBREG / INSERT_SUBREG should be close to its use to
1467        // facilitate coalescing.
1468        return 0;
1469      else if (SU->NumSuccs == 0)
1470        // If SU does not have a use, i.e. it doesn't produce a value that would
1471        // be consumed (e.g. store), then it terminates a chain of computation.
1472        // Give it a large SethiUllman number so it will be scheduled right
1473        // before its predecessors that it doesn't lengthen their live ranges.
1474        return 0xffff;
1475      else if (SU->NumPreds == 0)
1476        // If SU does not have a def, schedule it close to its uses because it
1477        // does not lengthen any live ranges.
1478        return 0;
1479      else
1480        return SethiUllmanNumbers[SU->NodeNum];
1481    }
1482
1483    void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1484      scheduleDAG = scheduleDag;
1485    }
1486
1487  private:
1488    bool canClobber(const SUnit *SU, const SUnit *Op);
1489    void AddPseudoTwoAddrDeps();
1490    void CalculateSethiUllmanNumbers();
1491  };
1492
1493
1494  class VISIBILITY_HIDDEN BURegReductionFastPriorityQueue
1495   : public RegReductionPriorityQueue<bu_ls_rr_fast_sort> {
1496    // SUnits - The SUnits for the current graph.
1497    const std::vector<SUnit> *SUnits;
1498
1499    // SethiUllmanNumbers - The SethiUllman number for each node.
1500    std::vector<unsigned> SethiUllmanNumbers;
1501  public:
1502    explicit BURegReductionFastPriorityQueue() {}
1503
1504    void initNodes(std::vector<SUnit> &sunits) {
1505      SUnits = &sunits;
1506      // Calculate node priorities.
1507      CalculateSethiUllmanNumbers();
1508    }
1509
1510    void addNode(const SUnit *SU) {
1511      unsigned SUSize = SethiUllmanNumbers.size();
1512      if (SUnits->size() > SUSize)
1513        SethiUllmanNumbers.resize(SUSize*2, 0);
1514      CalcNodeBUSethiUllmanNumber(SU, SethiUllmanNumbers);
1515    }
1516
1517    void updateNode(const SUnit *SU) {
1518      SethiUllmanNumbers[SU->NodeNum] = 0;
1519      CalcNodeBUSethiUllmanNumber(SU, SethiUllmanNumbers);
1520    }
1521
1522    void releaseState() {
1523      SUnits = 0;
1524      SethiUllmanNumbers.clear();
1525    }
1526
1527    unsigned getNodePriority(const SUnit *SU) const {
1528      return SethiUllmanNumbers[SU->NodeNum];
1529    }
1530
1531  private:
1532    void CalculateSethiUllmanNumbers();
1533  };
1534
1535
1536  class VISIBILITY_HIDDEN TDRegReductionPriorityQueue
1537   : public RegReductionPriorityQueue<td_ls_rr_sort> {
1538    // SUnits - The SUnits for the current graph.
1539    const std::vector<SUnit> *SUnits;
1540
1541    // SethiUllmanNumbers - The SethiUllman number for each node.
1542    std::vector<unsigned> SethiUllmanNumbers;
1543
1544  public:
1545    TDRegReductionPriorityQueue() {}
1546
1547    void initNodes(std::vector<SUnit> &sunits) {
1548      SUnits = &sunits;
1549      // Calculate node priorities.
1550      CalculateSethiUllmanNumbers();
1551    }
1552
1553    void addNode(const SUnit *SU) {
1554      unsigned SUSize = SethiUllmanNumbers.size();
1555      if (SUnits->size() > SUSize)
1556        SethiUllmanNumbers.resize(SUSize*2, 0);
1557      CalcNodeTDSethiUllmanNumber(SU, SethiUllmanNumbers);
1558    }
1559
1560    void updateNode(const SUnit *SU) {
1561      SethiUllmanNumbers[SU->NodeNum] = 0;
1562      CalcNodeTDSethiUllmanNumber(SU, SethiUllmanNumbers);
1563    }
1564
1565    void releaseState() {
1566      SUnits = 0;
1567      SethiUllmanNumbers.clear();
1568    }
1569
1570    unsigned getNodePriority(const SUnit *SU) const {
1571      assert(SU->NodeNum < SethiUllmanNumbers.size());
1572      return SethiUllmanNumbers[SU->NodeNum];
1573    }
1574
1575  private:
1576    void CalculateSethiUllmanNumbers();
1577  };
1578}
1579
1580/// closestSucc - Returns the scheduled cycle of the successor which is
1581/// closet to the current cycle.
1582static unsigned closestSucc(const SUnit *SU) {
1583  unsigned MaxCycle = 0;
1584  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1585       I != E; ++I) {
1586    unsigned Cycle = I->Dep->Cycle;
1587    // If there are bunch of CopyToRegs stacked up, they should be considered
1588    // to be at the same position.
1589    if (I->Dep->Node && I->Dep->Node->getOpcode() == ISD::CopyToReg)
1590      Cycle = closestSucc(I->Dep)+1;
1591    if (Cycle > MaxCycle)
1592      MaxCycle = Cycle;
1593  }
1594  return MaxCycle;
1595}
1596
1597/// calcMaxScratches - Returns an cost estimate of the worse case requirement
1598/// for scratch registers. Live-in operands and live-out results don't count
1599/// since they are "fixed".
1600static unsigned calcMaxScratches(const SUnit *SU) {
1601  unsigned Scratches = 0;
1602  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1603       I != E; ++I) {
1604    if (I->isCtrl) continue;  // ignore chain preds
1605    if (!I->Dep->Node || I->Dep->Node->getOpcode() != ISD::CopyFromReg)
1606      Scratches++;
1607  }
1608  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1609       I != E; ++I) {
1610    if (I->isCtrl) continue;  // ignore chain succs
1611    if (!I->Dep->Node || I->Dep->Node->getOpcode() != ISD::CopyToReg)
1612      Scratches += 10;
1613  }
1614  return Scratches;
1615}
1616
1617// Bottom up
1618bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1619  unsigned LPriority = SPQ->getNodePriority(left);
1620  unsigned RPriority = SPQ->getNodePriority(right);
1621  if (LPriority != RPriority)
1622    return LPriority > RPriority;
1623
1624  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
1625  // e.g.
1626  // t1 = op t2, c1
1627  // t3 = op t4, c2
1628  //
1629  // and the following instructions are both ready.
1630  // t2 = op c3
1631  // t4 = op c4
1632  //
1633  // Then schedule t2 = op first.
1634  // i.e.
1635  // t4 = op c4
1636  // t2 = op c3
1637  // t1 = op t2, c1
1638  // t3 = op t4, c2
1639  //
1640  // This creates more short live intervals.
1641  unsigned LDist = closestSucc(left);
1642  unsigned RDist = closestSucc(right);
1643  if (LDist != RDist)
1644    return LDist < RDist;
1645
1646  // Intuitively, it's good to push down instructions whose results are
1647  // liveout so their long live ranges won't conflict with other values
1648  // which are needed inside the BB. Further prioritize liveout instructions
1649  // by the number of operands which are calculated within the BB.
1650  unsigned LScratch = calcMaxScratches(left);
1651  unsigned RScratch = calcMaxScratches(right);
1652  if (LScratch != RScratch)
1653    return LScratch > RScratch;
1654
1655  if (left->Height != right->Height)
1656    return left->Height > right->Height;
1657
1658  if (left->Depth != right->Depth)
1659    return left->Depth < right->Depth;
1660
1661  if (left->CycleBound != right->CycleBound)
1662    return left->CycleBound > right->CycleBound;
1663
1664  assert(left->NodeQueueId && right->NodeQueueId &&
1665         "NodeQueueId cannot be zero");
1666  return (left->NodeQueueId > right->NodeQueueId);
1667}
1668
1669bool
1670bu_ls_rr_fast_sort::operator()(const SUnit *left, const SUnit *right) const {
1671  unsigned LPriority = SPQ->getNodePriority(left);
1672  unsigned RPriority = SPQ->getNodePriority(right);
1673  if (LPriority != RPriority)
1674    return LPriority > RPriority;
1675  assert(left->NodeQueueId && right->NodeQueueId &&
1676         "NodeQueueId cannot be zero");
1677  return (left->NodeQueueId > right->NodeQueueId);
1678}
1679
1680bool
1681BURegReductionPriorityQueue::canClobber(const SUnit *SU, const SUnit *Op) {
1682  if (SU->isTwoAddress) {
1683    unsigned Opc = SU->Node->getTargetOpcode();
1684    const TargetInstrDesc &TID = TII->get(Opc);
1685    unsigned NumRes = TID.getNumDefs();
1686    unsigned NumOps = TID.getNumOperands() - NumRes;
1687    for (unsigned i = 0; i != NumOps; ++i) {
1688      if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) {
1689        SDNode *DU = SU->Node->getOperand(i).Val;
1690        if (DU->getNodeId() != -1 &&
1691            Op->OrigNode == &(*SUnits)[DU->getNodeId()])
1692          return true;
1693      }
1694    }
1695  }
1696  return false;
1697}
1698
1699
1700/// hasCopyToRegUse - Return true if SU has a value successor that is a
1701/// CopyToReg node.
1702static bool hasCopyToRegUse(SUnit *SU) {
1703  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1704       I != E; ++I) {
1705    if (I->isCtrl) continue;
1706    SUnit *SuccSU = I->Dep;
1707    if (SuccSU->Node && SuccSU->Node->getOpcode() == ISD::CopyToReg)
1708      return true;
1709  }
1710  return false;
1711}
1712
1713/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
1714/// physical register defs.
1715static bool canClobberPhysRegDefs(SUnit *SuccSU, SUnit *SU,
1716                                  const TargetInstrInfo *TII,
1717                                  const TargetRegisterInfo *TRI) {
1718  SDNode *N = SuccSU->Node;
1719  unsigned NumDefs = TII->get(N->getTargetOpcode()).getNumDefs();
1720  const unsigned *ImpDefs = TII->get(N->getTargetOpcode()).getImplicitDefs();
1721  assert(ImpDefs && "Caller should check hasPhysRegDefs");
1722  const unsigned *SUImpDefs =
1723    TII->get(SU->Node->getTargetOpcode()).getImplicitDefs();
1724  if (!SUImpDefs)
1725    return false;
1726  for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
1727    MVT VT = N->getValueType(i);
1728    if (VT == MVT::Flag || VT == MVT::Other)
1729      continue;
1730    unsigned Reg = ImpDefs[i - NumDefs];
1731    for (;*SUImpDefs; ++SUImpDefs) {
1732      unsigned SUReg = *SUImpDefs;
1733      if (TRI->regsOverlap(Reg, SUReg))
1734        return true;
1735    }
1736  }
1737  return false;
1738}
1739
1740/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
1741/// it as a def&use operand. Add a pseudo control edge from it to the other
1742/// node (if it won't create a cycle) so the two-address one will be scheduled
1743/// first (lower in the schedule). If both nodes are two-address, favor the
1744/// one that has a CopyToReg use (more likely to be a loop induction update).
1745/// If both are two-address, but one is commutable while the other is not
1746/// commutable, favor the one that's not commutable.
1747void BURegReductionPriorityQueue::AddPseudoTwoAddrDeps() {
1748  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
1749    SUnit *SU = (SUnit *)&((*SUnits)[i]);
1750    if (!SU->isTwoAddress)
1751      continue;
1752
1753    SDNode *Node = SU->Node;
1754    if (!Node || !Node->isTargetOpcode() || SU->FlaggedNodes.size() > 0)
1755      continue;
1756
1757    unsigned Opc = Node->getTargetOpcode();
1758    const TargetInstrDesc &TID = TII->get(Opc);
1759    unsigned NumRes = TID.getNumDefs();
1760    unsigned NumOps = TID.getNumOperands() - NumRes;
1761    for (unsigned j = 0; j != NumOps; ++j) {
1762      if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) != -1) {
1763        SDNode *DU = SU->Node->getOperand(j).Val;
1764        if (DU->getNodeId() == -1)
1765          continue;
1766        const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
1767        if (!DUSU) continue;
1768        for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
1769             E = DUSU->Succs.end(); I != E; ++I) {
1770          if (I->isCtrl) continue;
1771          SUnit *SuccSU = I->Dep;
1772          if (SuccSU == SU)
1773            continue;
1774          // Be conservative. Ignore if nodes aren't at roughly the same
1775          // depth and height.
1776          if (SuccSU->Height < SU->Height && (SU->Height - SuccSU->Height) > 1)
1777            continue;
1778          if (!SuccSU->Node || !SuccSU->Node->isTargetOpcode())
1779            continue;
1780          // Don't constrain nodes with physical register defs if the
1781          // predecessor can clobber them.
1782          if (SuccSU->hasPhysRegDefs) {
1783            if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
1784              continue;
1785          }
1786          // Don't constraint extract_subreg / insert_subreg these may be
1787          // coalesced away. We don't them close to their uses.
1788          unsigned SuccOpc = SuccSU->Node->getTargetOpcode();
1789          if (SuccOpc == TargetInstrInfo::EXTRACT_SUBREG ||
1790              SuccOpc == TargetInstrInfo::INSERT_SUBREG)
1791            continue;
1792          if ((!canClobber(SuccSU, DUSU) ||
1793               (hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
1794               (!SU->isCommutable && SuccSU->isCommutable)) &&
1795              !scheduleDAG->IsReachable(SuccSU, SU)) {
1796            DOUT << "Adding an edge from SU # " << SU->NodeNum
1797                 << " to SU #" << SuccSU->NodeNum << "\n";
1798            scheduleDAG->AddPred(SU, SuccSU, true, true);
1799          }
1800        }
1801      }
1802    }
1803  }
1804}
1805
1806/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1807/// scheduling units.
1808void BURegReductionPriorityQueue::CalculateSethiUllmanNumbers() {
1809  SethiUllmanNumbers.assign(SUnits->size(), 0);
1810
1811  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1812    CalcNodeBUSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1813}
1814void BURegReductionFastPriorityQueue::CalculateSethiUllmanNumbers() {
1815  SethiUllmanNumbers.assign(SUnits->size(), 0);
1816
1817  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1818    CalcNodeBUSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1819}
1820
1821/// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled
1822/// predecessors of the successors of the SUnit SU. Stop when the provided
1823/// limit is exceeded.
1824static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU,
1825                                                    unsigned Limit) {
1826  unsigned Sum = 0;
1827  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1828       I != E; ++I) {
1829    SUnit *SuccSU = I->Dep;
1830    for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
1831         EE = SuccSU->Preds.end(); II != EE; ++II) {
1832      SUnit *PredSU = II->Dep;
1833      if (!PredSU->isScheduled)
1834        if (++Sum > Limit)
1835          return Sum;
1836    }
1837  }
1838  return Sum;
1839}
1840
1841
1842// Top down
1843bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1844  unsigned LPriority = SPQ->getNodePriority(left);
1845  unsigned RPriority = SPQ->getNodePriority(right);
1846  bool LIsTarget = left->Node && left->Node->isTargetOpcode();
1847  bool RIsTarget = right->Node && right->Node->isTargetOpcode();
1848  bool LIsFloater = LIsTarget && left->NumPreds == 0;
1849  bool RIsFloater = RIsTarget && right->NumPreds == 0;
1850  unsigned LBonus = (LimitedSumOfUnscheduledPredsOfSuccs(left,1) == 1) ? 2 : 0;
1851  unsigned RBonus = (LimitedSumOfUnscheduledPredsOfSuccs(right,1) == 1) ? 2 : 0;
1852
1853  if (left->NumSuccs == 0 && right->NumSuccs != 0)
1854    return false;
1855  else if (left->NumSuccs != 0 && right->NumSuccs == 0)
1856    return true;
1857
1858  if (LIsFloater)
1859    LBonus -= 2;
1860  if (RIsFloater)
1861    RBonus -= 2;
1862  if (left->NumSuccs == 1)
1863    LBonus += 2;
1864  if (right->NumSuccs == 1)
1865    RBonus += 2;
1866
1867  if (LPriority+LBonus != RPriority+RBonus)
1868    return LPriority+LBonus < RPriority+RBonus;
1869
1870  if (left->Depth != right->Depth)
1871    return left->Depth < right->Depth;
1872
1873  if (left->NumSuccsLeft != right->NumSuccsLeft)
1874    return left->NumSuccsLeft > right->NumSuccsLeft;
1875
1876  if (left->CycleBound != right->CycleBound)
1877    return left->CycleBound > right->CycleBound;
1878
1879  assert(left->NodeQueueId && right->NodeQueueId &&
1880         "NodeQueueId cannot be zero");
1881  return (left->NodeQueueId > right->NodeQueueId);
1882}
1883
1884/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1885/// scheduling units.
1886void TDRegReductionPriorityQueue::CalculateSethiUllmanNumbers() {
1887  SethiUllmanNumbers.assign(SUnits->size(), 0);
1888
1889  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1890    CalcNodeTDSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1891}
1892
1893//===----------------------------------------------------------------------===//
1894//                         Public Constructor Functions
1895//===----------------------------------------------------------------------===//
1896
1897llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
1898                                                    SelectionDAG *DAG,
1899                                                    MachineBasicBlock *BB,
1900                                                    bool Fast) {
1901  if (Fast)
1902    return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), true, true,
1903                                 new BURegReductionFastPriorityQueue());
1904
1905  const TargetInstrInfo *TII = DAG->getTarget().getInstrInfo();
1906  const TargetRegisterInfo *TRI = DAG->getTarget().getRegisterInfo();
1907
1908  BURegReductionPriorityQueue *PQ = new BURegReductionPriorityQueue(TII, TRI);
1909
1910  ScheduleDAGRRList *SD =
1911    new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(),true,false, PQ);
1912  PQ->setScheduleDAG(SD);
1913  return SD;
1914}
1915
1916llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
1917                                                    SelectionDAG *DAG,
1918                                                    MachineBasicBlock *BB,
1919                                                    bool Fast) {
1920  return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), false, Fast,
1921                               new TDRegReductionPriorityQueue());
1922}
1923